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ABSTRACT. The present set of notes are written to support our students
at the mathematics 4 and 5 levels.
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CHAPTER 1

Introduction

Functional Analysis is a vast area within mathematics. Briefly phrased,
it concerns a number of features common to the many vector spaces met in
various branches of mathematics, not least in analysis. For this reason it is
perhaps appropriate that the title of the topic contains the word “analysis”.

Even though the theory is concerned with vector spaces, it is not at all
the same as linear algebra; it goes much beyond it. This has a very sim-
ple explanation, departing from the fact that mainly the infinite dimensional
vector spaces are in focus. So, if V denotes a vector space of infinite di-
mension, then one could try to carry over the succesful notion from linear
algebra of a basis to the infinite dimensional case. That is, we could look
for families (v j) j∈J in V such that an arbitrary vector v∈V would be a sum

v = ∑λ jv j, (1.0.1)

for some uniquely determined scalars λ j . However, although one may add
two or any finite number of vectors in V , we would need to make sense
of the above sum, where the number of summands would be infinite in
general. Consequently the discussion of existence and uniqueness of such
decompositions of v would have to wait until such sums have been defined.

More specifically, this indicates that we need to define convergence of
infinite series; and so it seems inevitable that we need to have a metric d on
V . (One can actually make do with a topology, but this is another story to
be taken up later.) But given a metric d , it is natural to let (1.0.1) mean that
v = lim j→∞(λ1v1 + · · ·+λ jv j) with respect to d .

Another lesson from linear algebra could be that we should study maps
T : V → V that are linear. However, if T is such a linear map, and if there
is a metric d on V so that series like (1.0.1) make sense, then T should also
be linear with respect to infinite sums, that is

T
(
∑λ jv j

)
= ∑λ jT v j. (1.0.2)

This is just in order that the properties of V and T play well together. But it
is a consequence, however, that (1.0.2) holds if T is merely assumed to be
a continuous, linear map T : V →V .

This indicates in a clear way that, for vector spaces V of infinite dimen-
sion, various objects that a priori only have an algebraic content (such as
bases or linear maps) are intimately connected with topological properties
(such as convergence or continuity). This link is far more important for the
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2 1. INTRODUCTION

infinite dimensional case than, say bases and matrices are — the study of
the mere connection constitutes the theory. 1

In addition to the remarks above, it has been known (at least) since the
milestone work of Stephan Banach [Ban32] that the continuous linear maps
V→F from a metric vector space V to its scalar field F (say R or C) furnish
a tremendous tool. Such maps are called functionals on V , and they are par-
ticularly useful in establishing the abovementioned link between algebraic
and topological properties. When infinite dimensional vector spaces and
their operators are studied from this angle, one speaks of functional analy-
sis — not to hint at what functionals are (there isn’t much to add), but rather
because one analyses by means of functionals.

1When applying functional analysis to problems in, say mathematical analysis, it is
often these ‘connections’ one needs. However, this is perhaps best illustrated with words
from Lars Hörmander’s lecture notes on the subject [Hör89]: “functional analysis alone
rarely solves an analytical problem; its role is to clarify what is essential in it”.



CHAPTER 2

Topological and metric spaces

As the most fundamental objects in functional analysis, the topological
and metric spaces are introduced in this chapter. However, emphasis will
almost immediately be on the metric spaces, so the topological ones are
mentioned for reference purposes.

2.1. Rudimentary Topology

A topological space T is a set T considered with some collection τ of
subsets of T , such that τ fulfils

T ∈ τ, /0 ∈ τ (2.1.1)
k⋂

j=1

S j ∈ τ for S1, . . . ,Sk ∈ τ (2.1.2)

⋃
i∈I

Si ∈ τ for Si ∈ τ for i ∈ I; (2.1.3)

hereby I is an arbitrary index set (possibly infinite). Such a family τ is
called a topology on T ; the topological space T is rather the pair (T,τ).

A trivial example isτ = P(T ), the set of all subsets of T , which clearly
satisfies the above requirements; this is the discrete topology on T . At the
other extreme one has τ = { /0,T}, which is the diffuse topology on T .

When τ is fixed, a subset S⊂ T is called an open set of T if S ∈ τ . The
interior of S, denoted S◦ , is the largest open set O⊂ S. Clearly

S◦ =
⋃
{O ∈ τ | O⊂ S} (2.1.4)

for by (2.1.3) the right-hand side is open, hence one of the sets O contained
in S as well as the largest such. A set U is called a neighbourhood of a
point x ∈ T if there is some open set O such that x ∈ O⊂U .

On any subset A⊂ T there is an induced topology α = {A∩O |O∈ τ }.
A subset S ⊂ T is said to be closed if the complement of S is open,

ie if T \ S ∈ τ . The closure of S, written S, is the smallest closed subset
containing S; one has S =

⋂
{F | F is closed, S⊂ F } because the right-

hand side (called the closed hull of S) is one of the closed sets F ⊃ S.
A subset K ⊂ T is compact if every open covering of K contains a finite

subcovering. In details this means that whenever K ⊂
⋃

i∈I Oi where Oi ∈ τ

for every i ∈ I , then there exist some i1 ,. . . , iN such that

K ⊂ Oi1 ∪·· ·∪OiN . (2.1.5)
3



4 2. TOPOLOGICAL AND METRIC SPACES

T is a connected space, if it is not a disjoint union of two non-trivial open
sets, that is if T = O1∪O2 for some O1 , O2 ∈ τ implies that either O1 = /0
or O2 = /0.

The space T is called a Hausdorff space, and τ a Hausdorff topology,
if to different points x and y in T there exists disjoint open sets Ox and Oy
such that x ∈Ox and y ∈Oy (then τ is also said to separate the points in T ).

Using open sets, continuity of a map can also be introduced:

DEFINITION 2.1.1. For topological spaces (S,σ) and (T,τ), a map
f : S→ T is said to be continuous if f−1(O) ∈ σ for every O ∈ τ .

Here f−1(O) denotes the preimage of O, ie f−1(O) = { p ∈ S | f (p) ∈
O}. For the interplay between continuity and compactness, notice that
whenever f : S→ T is continuous, then every compact set K ⊂ S has an
image f (K) that is compact in T .

Continuity at a point x ∈ S is defined thus: f : S→ T is continuous at x
if for every neighbourhood V of f (x) there exists a neighbourhood U of x
such that f (U)⊂V .

When f is a bijection, so that the inverse map f−1 : T → S is defined,
then f is called a homeomorphism if both f and f−1 are continous with
respect to the topologies σ , τ . In that case A ⊂ S is open if and only if
f (A) is open in T ; ie the topological spaces S and T are indistinguishable.
Hence the natural notion of isomorphisms for topological spaces is homeo-
morphism.

REMARK 2.1.2. The notion of continuity depends heavily on the con-
sidered topologies. Indeed, if σ = P(S) every map f : S→ T is continu-
ous; similarly if τ = { /0,T}.

2.2. Metric spaces

Most topological spaces met in practice have more structure than just a
topology; indeed, it is usually possible to measure distances between points
by means of metrics:

A non-empty set M is called a metric space when it is endowed with a
map d : M×M→ R fulfilling, for every x, y and z ∈M ,

(d1) d(x,y)≥ 0, and d(x,y) = 0 if and only if x = y, (2.2.1)

(d2) d(x,y) = d(y,x), (2.2.2)

(d3) d(x,z)≤ d(x,y)+d(y,z). (2.2.3)

Such a map d is said to be a metric on M; stricly speaking the metric space
is the pair (M,d). The inequality (d3) is called the triangle inequality.

The main case of interest is is a vector space V on which there is a norm
‖ · ‖; this always has the induced metric d(x,y) = ‖x− y‖ .
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EXAMPLE 2.2.1. On the space M =C([a,b],C) of continuous functions
on the bounded interval [a,b]⊂ R there are several metrics such as

d∞( f ,g) = sup{| f (t)−g(t)| | t ∈ [a,b]} (2.2.4)

d1( f ,g) =
∫ b

a
| f (t)−g(t)|dt. (2.2.5)

Or, more generally, dp( f ,g) =
(∫ b

a | f (t)−g(t)|p dt
)1/p for 1≤ p < ∞.

For clarity, this chapter will review some necessary prerequisites from
the theory of abstract metric spaces (but not study these per se).

In a metric space (M,d) the open ball centered at x ∈ M , with radius
r > 0 is the set

B(x,r) =
{

y ∈M
∣∣ d(x,y) < r

}
. (2.2.6)

A family τ is then defined to consist of the subsets A⊂M such that to every
x ∈ A there is some r > 0 such that B(x,r)⊂ A (ie A ∈ τ if A only contains
interior points). It straightforward to check that every open ball B(x,r) ∈ τ

and that, moreover, the collection τ is a topology as defined in Section 2.1.
Hence the elements A ∈ τ are called open sets.

By referring to the general definitions in Section 2.1, notions such as
closed and compact sets in M now also have a meaning.

Any (non-empty) subset A⊂M is a metric space with the induced met-
ric dA , which is the restriction of d to A×A. Similarly, for metric spaces
(M,d) and (M′,d′), the product set M×M′ has a metric d given by

d((x,x′),(y,y′)) = d(x,y)+d′(x′,y′). (2.2.7)

The notion of convergence is of course just the well-known one:

DEFINITION 2.2.2. A sequence (xn) in a metric space M is convergent
if there is some x ∈M for which d(xn,x)→ 0 for n→ ∞. In this case x is
called the limit point of (xn), and one writes xn→ x or x = limn→∞ xn .

REMARK 2.2.3. Obviously the requirement for convergence of (xn) to x
is whether, for every neighbourhood U of x, it holds eventually that xn ∈U .

Basic exercises show that the limit point of a sequence is unique (if it
exists), and that every convergent sequence has the following property:

DEFINITION 2.2.4. In a metric space (M,d) a sequence (xn) is a Cauchy
sequence (or fundamental sequence) if to every ε > 0 there exists some
N ∈ N such that d(xn,xm) < ε for all n, m > N .

The space (M,d) itself is said to be complete if every Cauchy sequence
is convergent in M . Besides Cn , it is well known that (C([a,b]),d∞) is
complete.
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EXAMPLE 2.2.5. Eg C([−1,1]) is incomplete with respect to d1 , for

fn(t) =


−1 for −1≤ t <−1

n
nt for −1

n ≤ t ≤ 1
n

1 for 1
n < t ≤ 1

(2.2.8)

gives a fundamental sequence as d1( fn+k, fn) ≤
∫ 1/n

0 1dt = 1/n; but the
limit is f (t) = sign(t) (almost everywhere), which is not in C([−1,1]).

Continuity of a map f : M1 → M2 between two metric spaces means
that f−1(O) is open in M1 for every open subset O⊂M2 (cf this notion for
topological spaces).

Similarly continuity at a point x ∈M1 means that every neighbourhood
V of f (x) contains the image f (U) of some neighbourhood U of x. This
is of course equivalent to the usual criterion that to every error ε > 0 there
exists a deviation δ > 0 such that

d1(x,y) < δ =⇒ d2( f (x), f (y)) < ε. (2.2.9)

Thus continuity at x ∈ M1 means that f is approximately constant (equal
to f (x)) in a neighbourhood of x. Note that (2.2.9) holds if and only if
limn→∞ xn = x implies f (x) = limn→∞ f (xn).

For later reference one has the folowing

PROPOSITION 2.2.6. The metric M×M d−→ R is continuous.

PROOF. If (x,y) = lim(xn,yn) in M×M , then (2.2.7) gives d(x,xn)→ 0
and d(y,yn)→ 0, so d(x,y) = limn→∞ d(xn,yn) results from the inequality

0≤ |d(x,y)−d(xn,yn)| ≤ d(x,xn)+d(yn,y), (2.2.10)

that follows since the triangle inequality shows, eg, d(x,y) ≤ d(x,xn) +
d(xn,yn)+d(yn,y). �

2.3. Dense subsets

In a metric space M , a subset A is (everywhere) dense in another subset
B if to every point b ∈ B one can find points of A arbitrarily close to b; that
is if every ball B(b,δ ) has a non-empty intersection with A. Rephrasing
this one has

DEFINITION 2.3.1. For subsets A, B of M , A is dense in B if B⊂ A.

As an example, Q and R\Q are dense in one another; notice that these
sets are disjoint and that the definition actually allows this. By abuse of
language, a sequence (xn) in M is called dense if its range {xn | n ∈ N} is
dense in M .

A metric space M is called separable if there is a dense sequence of
points xn ∈ M . This is a rather useful property enjoyed by most spaces
met in applications, hence the spaces will be assumed separable whenever
convenient in the following.
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2.3.1. An example of density: uniform approximation by polyno-
mials. If P denotes the set of polynomials on R, consider the question
whether any continuous function f : [a,b]→C, on a compact interval [a,b],
can be uniformly approximated on [a,b] by polynomials. Ie does there to
every ε > 0 exist p ∈P such that | f (x)− p(x)|< ε for all x ∈ [a,b] ?

Using the sup-norm on C([a,b]), this amounts to whether (the restric-
tions to [a,b] of) P is dense in the (Banach) space C([a,b]). The affirma-
tive answer is Weierstrass’s approximation theorem:

THEOREM 2.3.2. The polynomials are dense in C([a,b]).

PROOF. By means of an affine transformation, y = a+ x(b−a), it suf-
fices to treat the case [a,b] = [0,1]. So let f be given in C([0,1]), ε > 0.

Consider then the so-called Bernstein polynomials associated with f ,

pn(x) =
n

∑
k=0

(
n
k

)
f (k/n)xk(1− x)n−k. (2.3.1)

Since 1 = (x+(1− x))n the binomial formula gives

f (x)− pn(x) =
n

∑
k=0

( f (x)− f (k/n))
(

n
k

)
xk(1− x)n−k. (2.3.2)

By uniform continuity there is some δ > 0 such that | f (x)− f (y)| < ε

whenever |x− y| < δ for 0 ≤ x,y ≤ 1. Taking out the terms of the above
sum for which k is such that |x− k

n |< δ ,

| f (x)− pn(x)| ≤ ε + ∑
|x− k

n |≥δ

| f (x)− f (k/n)|
(

n
k

)
xk(1− x)n−k. (2.3.3)

With M = sup | f |, insertion of 1≤ |x−
k
n |

2

δ 2 in the sum yields

| f (x)− pn(x)| ≤ ε + 2M
n2δ 2

n

∑
k=0
|k− xn|2

(
n
k

)
xk(1− x)n−k. (2.3.4)

Because the variance of the binomial distribution is nx(1− x), this entails

sup | f − p| ≤ ε + 2M
4nδ 2 . (2.3.5)

So by taking n > M/(εδ 2), the conclusion ‖ f − pn‖ < 2ε follows. �

2.4. Metric and topological concepts

Whether a subset A⊂M is, say closed or not, this is a topological prop-
erty of A in the sense that it may be settled as soon as one knows the open
sets or, that is, knows the topology τ .

As another example, Remark 2.2.3 yields that convergence of a se-
quence is a topological property. So is density of a subset A in B⊂M .

However, some properties are not topological, but rather metric in the
sense that they depend on which metric M is endowed with. For example,
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A ⊂ M is called bounded if there is some open ball B(x,r) such that A ⊂
B(x,r). But it is not difficult to see that in any case

d′(x,y) =
d(x,y)

1+d(x,y)
(2.4.1)

also defines a metric on M and that the two metrics d and d′ give the same
topology τ on M . But d′(x,y) < 1 for all x, y, so every A ⊂ M (and in
particular M itself) is bounded in (M,d′). Eg R is unbounded with respect
to d(x,y) = |x− y|, while bounded with respect to d′(x,y) = |x−y|

1+|x−y| .
Whether a sequence (xn) is fundamental is another metric property. In-

deed, the sequence of reals given by xn = n is a Cauchy sequence in the
metric space (R,d) when d(x,y) = |arctanx− arctany|. But (xn) cannot
converge to some x as it leaves every sufficiently small ball. Moreover, this
metric induces the usual topology on R (since x 7→ arctanx is a homeomor-
phism R→ ]− π

2 , π

2 [ , a set F ⊂R is closed if and only if it is so with respect
to d). Completeness is consequently also a metric property.

All in all, a metric on a topological space may induce certain character-
istics that are topologically irrelevant and depend on the metric.

2.5. Equivalence of metric spaces

A map T : M1→M2 between metric spaces (M1,d1), (M2,d2) is called
an isometry if

d2(T (x),T (y)) = d1(x,y) for all x,y ∈M1. (2.5.1)

Every isometry T : M1 → M2 is obviously injective; if T is surjective
too, the metric spaces M1 and M2 are indistinguishable (eg A ⊂ M1 is
bounded if and only if T (A) is bounded in M2 , similarly the sets of fun-
damental sequences is invariant under T and T−1).

Therefore the natural notion of isomorphisms for metric spaces is sur-
jective isometry. Note that T : M1→M2 is a surjective isometry if and only
if and only if T is a bijection for which both T and T−1 are isometries.

Two metric spaces M1 , M2 are said to be isometric if there exists a
surjective isometry M1 → M2 . This is an equivalence relation, written as
M1 ∼M2 .

2.6. Completions of metric spaces

To overcome the possible incompleteness of metric spaces, the conve-
nient construction below shows that every metric space M is isometric (cf
Section 2.5) to a dense subspace of a complete space. That is, M always
has a completion:

DEFINITION 2.6.1. A completion of a metric space (M,d) is a triple
(M′,d′,T ) consisting of a complete metric space (M′,d′) and an isometry
T : M→M′ for which the range T (M) is a dense subspace of M′ .
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In the affimative case, one may simply identify M with T (M), cf the
remark above. In view of the next rather abstract result, one speaks about
the completion of M .

THEOREM 2.6.2. To any metric space (M,d) there exists a completion,
and it is uniquely determined up to isometry.

PROOF. Let C be the vector space of continuous bounded maps M→R.
This is complete with the metric d∞( f ,g) = supM | f −g|.

To get a map M→C, one can fix an m in the non-empty set M and send
each x ∈M into

Fx(y) = d(x,y)−d(m,y). (2.6.1)
Indeed, continuity of y 7→ Fx(y) follows from that of the metric, whilst the
triangle inequality yields its boundedness,

|Fx(y)|= |d(x,y)−d(m,y)| ≤ d(x,m). (2.6.2)

Similarly any x, y, z ∈M gives

|Fx(y)−Fz(y)|= |d(x,y)−d(z,y)| ≤ d(x,z) (2.6.3)

with equality for y = z, so d∞(Fx,Fz) = sup |Fx−Fz| = d(x,z). Therefore
Φ(x) = Fx is isometric, and if M′ is defined to be the closure (in C) of
Φ(M) = {Fx | x ∈M }, it is clear that Φ(M) is dense in M′ . Finally, M′ is
complete since it is a closed subset of C, so (M′,d∞,Φ) is a completion.
By composing with Φ−1 , any other completion (M′′,d′′,Ψ) is isometric to
M′ . �

EXAMPLE 2.6.3. If P([a,b]) denotes the space of restrictions of all
complex polynomials to a compact interval [a,b]⊂ R, then the completion
of (P([a,b]),d∞) equals (or rather, can be identified with) the well-known
space (C([a,b]),d∞).

Indeed, the identity map I : P([a,b])→ C([a,b]) is an isometry and
according to Weierstrass’s approximation theorem it has dense range in
C([a,b]); and the latter is complete as required.





CHAPTER 3

Banach spaces

A Banach space is a vector space V , which is complete with respect to
the metric d(x,y) = ‖x−y‖ induced by a norm on V . This chapter gives an
outline of their basic properties and the operators betweem them.

3.1. Normed Vector Spaces

In this chapter V will throughout denote a vector space over the field F
of scalars, which can be either F = R or F = C unless specified.

DEFINITION 3.1.1. A norm on V is a map ‖ · ‖ : V → [0,∞[ that for all
x, y ∈V and all λ ∈ F satisfies

‖x‖ = 0 =⇒ x = 0, (3.1.1)

‖λx‖ = |λ |‖x‖, (3.1.2)

‖x+ y‖ ≤ ‖x‖+‖y‖. (3.1.3)

A normed space V is a pair (V,‖·‖) consisting of a vector space V on which
‖ · ‖ is a norm. When only (3.1.2)–(3.1.3) holds, then ‖ · ‖ is a semi-norm.

Note that (3.1.2) yields ‖0‖ = 0. Moreover, the triangle inequality
(3.1.3) implies that

0≤
∣∣‖x‖−‖y‖∣∣≤ ‖x− y‖. (3.1.4)

Every normed space V is a metric space, for one has the metric induced
by the norm, that is, d(x,y) = ‖x− y‖ . In this framework, the norm is
always continuous for whenever a sequence (xn)n∈N converges to x in V ,
then (3.1.4) implies that ‖xn‖ → ‖x‖ for n→ ∞.

The compositions on V have similar properties:

PROPOSITION 3.1.2. On a normed space V , the addition and scalar
multiplication are continuous maps

V ×V +−→V, F×V ·−→V. (3.1.5)

PROOF. For the addition, notice that by the triangle inequality

0≤‖(xn+yn)−(x+y)‖ ≤‖xn−x‖+‖yn−y‖= d((xn,yn),(x,y)), (3.1.6)

where the right-hand side equals the distance in V ×V . This shows that
xn + yn→ x+ y in V when (xn,yn)→ (x,y).

11
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If (λn,xn)n∈N converges to (λ ,x) in F×V , then λn→ λ and xn→ x for
n→ ∞. And bilinearity gives

λnxn−λx = (λn−λ )(xn− x)+λ (xn− x)+(λn−λ )x, (3.1.7)

so the axioms of a norm give

‖λnxn−λx‖ ≤ |λn−λ |‖xn− x‖+ |λ |‖xn− x‖+ |λn−λ |‖x‖, (3.1.8)

which yields λx = limλnxn , whence the continuity. �

Normed vector spaces are frequently complete, and hence designated
by the following name:

DEFINITION 3.1.3. A vector space V normed by ‖·‖ is called a Banach
space if it is a complete metric space with respect to the induced metric
d(x− y) = ‖x− y‖ .

As a basic criterion, the next result states that completeness is equiv-
alent to the property that every series ∑

∞
k=1 xk of vectors is convergent if

it has a finite norm series, ie if ∑
∞
k=1 ‖xk‖ < ∞ (in analogy with absolute

convergence in C).

LEMMA 3.1.4. A normed space V is a Banach space if, and only if,
every series ∑

∞
k=1 xk converges in V whenever it fulfils ∑

∞
k=0 ‖xk‖ < ∞.

PROOF. If V is a Banach space and ∑
∞
k=1 ‖xk‖ < ∞, the partial sums

sN = ∑
N
k=1 xk form a Cauchy sequence since the triangle inequality gives

‖sN+p− sN‖ =
∥∥ N+p

∑
k=N+1

xk
∥∥ ≤ N+p

∑
k=N+1

‖xk‖. (3.1.9)

Conversely, given a Cauchy sequence (yn) in a normed space V , one can
inductively choose n1 < n2 < · · ·< nk↗ ∞ such that

‖yn+p− yn‖ ≤ 2−k for all n≥ nk, p≥ 1. (3.1.10)

Then the vectors xk = ynk+1 − ynk give a telescopic sum, that is, one has
ynk+1 = yn1 +∑

k
j=1 x j so that

k

∑
n=1
‖x j‖ ≤

k

∑
j=1

2− j ≤ 1. (3.1.11)

Thus the norm series condition implies that (ynk)k∈N converges; but then
the full Cauchy sequence (yn) does so. Hence V is a Banach space. �

REMARK 3.1.5. Somewhat surprisingly, it turns out that every normed
space V has a completion Ṽ ; this means a Banach space Ṽ over the same
field F for which there is an inclusion

V ⊂ Ṽ , (3.1.12)

as normed vector spaces. (More about this later.) This is obviously conve-
nient, and for this reason, Banach spaces are more important than the (in
principle more general) normed vector spaces.
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3.2. Examples of Banach spaces

As a non-trivial example of a Banach space one has the set C([a,b],F)
of continuous functions on the interval [a,b] ⊂ R. Indeed, this is normed
by the sup-norm ‖ f‖∞ = sup[a,b] | f |, which induces the metric of uniform
convergence; hence the space is complete.

More generally one has the next result, which eg shows that the interval
could have been non-closed or unbounded as well.

EXAMPLE 3.2.1. Let C(M,B) denote the set of continuous maps f : M→
B, where M is an arbitrary metric space and B is a Banach space over F.
Then C(M,B) is also a Banach space under the pointwise compositions and
the sup-norm

( f +g)(m) = f (m)+g(m), (λ f )(m) = λ f (m) (3.2.1)

‖ f‖∞ = sup{‖ f (m)‖V | m ∈M }. (3.2.2)

Indeed, if ( fn) is fundamental, then ( fn(x)) converges to some element f (x)
in V ; as limits are unique, this yields a function f : M→ V , the continuity
of which remains to be verified. But given x ∈M and ε > 0, it holds that
‖ fn− fk‖∞ ≤ ε for all n, k ≥ N (for some N ). Moreover, the continuity of
fN at x gives that some δ > 0 fulfils ‖ fN(y)− fN(x)‖ ≤ ε for all y∈B(x,δ ),
and then

‖ f (y)− f (x)‖ ≤ ‖ f (y)− fN(y)‖+‖ fN(y)− fN(x)‖+‖ fN(x)− f (x)‖ ≤ 3ε.
(3.2.3)

Hence f ∈C(M,B), and the convergence is even uniform, for by the conti-
nuity of the sup-norm (cf Section 3.1),

‖ f − fn‖∞ = limsup
k
‖ fk− fn‖∞ ≤ limsup

k
ε ≤ ε, (3.2.4)

for all n≥ N . This shows that C(M,B) is a Banach space as claimed.

EXAMPLE 3.2.2. The space C1([a,b]) is a Banach space with respect to

‖ f‖C1 = sup
a≤t≤b

| f (t)|+ sup
a≤t≤b

| f ′(t)|= ‖ f‖∞ +‖ f ′‖∞. (3.2.5)

Indeed, the expression on the right-hand side shows that ‖ f‖C1 is a norm.
To verify the completeness, note that if ‖ fn+p− fn‖C1 can be made arbitrar-
ily small for all sufficiently large n, then both ( fn) and ( f ′n) are fundamental
in C([a,b]), hence fn→ f and f ′n→ g uniformly on [a,b] for n→∞. But as
fn(t) = fn(a)+

∫ t
a fn(s)ds, uniform convergence (on [a, t]) allows a passage

to the limit in all terms so that

f (t) = f (a)+
∫ t

a
g(s)ds for all t ∈ [a,b]. (3.2.6)

As g ∈C([a,b]), the fundamental theorem of calculus implies that f is dif-
ferentiable with f ′ = g, and

‖ f − fn‖C1 = ‖ f − fn‖∞ +‖g− fn‖∞→ 0. (3.2.7)

Hence C1([a,b]) is a Banach space.
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EXAMPLE 3.2.3. Similarly Ck([a,b]) for k ∈ N is a Banach space with
respect to the norm

‖ f‖Ck = ‖ f‖∞ +‖ f ′‖∞ + · · ·+‖ f (k)‖∞. (3.2.8)

This may be shown by induction using the integral identity of the previous
example. (Notice that C∞([a,b]) cannot be given a norm in this way.)

3.3. Schauder bases

Recall that a family (v j) j∈J of vectors in a space V is said to be linearly
independent, if every finite subfamily (u j1 , . . . ,u jn) has the familiar property
that the equation

0 = λ1u j1 + · · ·+λnu jn (3.3.1)
only has the trivial solution 0 = λ1 = · · ·= λn .

The vector space V itself is said to have infinite dimension, if for ev-
ery n ∈ N there exists n linearly independent vectors in V . In this case
one writes dimV = ∞ (regardless of how ‘many’ linearly independent vec-
tors there are); the study of such ‘wild’ spaces is a key topic in functional
analysis.

As an example, dimC(R) = ∞, for the family of ‘tent functions’ is un-
countable and linearly independent: the functions fk(x) that, with k ∈ R as
a parameter, grow linearly from 0 to 1 on [k− 1

3 ,k] and decrease linearly
to 0 on [k,k + 1

3 ], with the value 0 outside of [k− 1
3 ,k + 1

3 ], are linearly
independent because only λ1 = · · ·= λn = 0 have the property that

λ1 fk1(x)+ · · ·+λn fkn(x) = 0 for all x ∈ R. (3.3.2)

For k1 , . . . kn ∈ Z this is clear since fk1 , . . . , fkn have disjoint supports then.
Generally, when the km are real, the claim follows by considering suitable
values of x (supply the details!).

Notice that dimV = ∞ means precisely that the below set has no majo-
rants in R:

N =
{

n ∈ R
∣∣ V contains a linearly independent n-tupel.

}
. (3.3.3)

By definition V is finite-dimensional (or has finite dimension) if the
above set N is upwards bounded. In any case, the dimension of V is
defined as

dimV = supN . (3.3.4)
Recall from linear algebra that finite-dimensional spaces V and W over the
same field are isomorphic if and only if dimV = dimW . The proof of this
non-trivial result relies on suitable choises of bases.

The general concept of bases brings us back to the questions mentioned
in the introduction, so it is natural to let V be normed now.

DEFINITION 3.3.1. In a normed vector space V , a sequence (un), which
may be finite, is a basis if for every x ∈ V there is a unique sequence (λn)
of scalars in F such that x = ∑λnun .
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In the definition of a basis U , uniqueness of the expansions clearly im-
plies that U is a linearly independent family. So if dimV < ∞, every basis
is finite, and the expansions x = ∑λnun are consequently finite sums; hence
the notion of a basis is just the usual one for finite dimensional spaces. For
the infinite dimensional case the term Schauder basis is also used.

A subset W ⊂V is called total if span W = V . Clearly any basis U is a
total set.

A normed space V is said to be separable if there is a sequence (vn)
with dense range, ie V ⊂ {vn | n ∈ N}. It is straightforward to see that V is
separable, if V has a basis (use density of Q in R). For simplicity we shall
stick to separable spaces in the sequel (whenever convenient).

EXAMPLE 3.3.2. For every p in [1,∞[ the sequence space `p has the
canonical basis (en) with

en = (0, . . . ,0,1,0, . . .)︷ ︸︸ ︷
nth entry

. (3.3.5)

This is evident from the definition of basis. `∞ does not have a basis because
it is unseparable.

REMARK 3.3.3. It is not clear whether a total sequence U = (un) will
imply the existence of expansions as in the definition of a basis: given x∈V ,
there is some (sn) in spanU converging to x, hence x = ∑

∞
n=1 yn with yn =

sn−sn−1 (if s0 = 0); here yn ∈ spanU , so y j = α j,1u j,1+ · · ·+α j,n ju j,n j with
u j,m ∈U for every j ∈ N and m = 1, . . . ,n j . By renumeration one is lead
to consideration of the series ∑

∞
j=1 αnun , from which ∑yn is obtained by

introduction of parentheses; the convergence of ∑αnun is therefore unclear.
However, it would be nice if denseness (viz. V = span U ) would be the

natural replacement for the requirement, in the finite dimensional case, that
spanU = V .

REMARK 3.3.4 (Hamel basis). There is an alternative notion of a basis
of an arbitrary vector space V over F: a family (vi)i∈I is a Hamel basis if
every vector has a unique representation as a finite linear combination of the
vi , that is, if every v ∈V has a unique expansion

v = ∑
i∈I

λivi, with λi 6= 0 for only finitely many i. (3.3.6)

While (also) this coincides with the basis concept for finite-dimensional
spaces, it is in general rather difficult to show that a vector space has a
Hamel basis. In fact the difficulties lie at the heart of the foundations of
mathematics; phrased briefly, one has to use transfinite induction (eg Zorn’s
lemma) to prove the existence.

It is well known that the existence of a Hamel basis has startling conse-
quences. One such is when R is considered as a vector space over the field
of rational numbers, Q. Clearly v = 1 is then not a basis, for

√
2 = λv does

not hold for any λ ∈Q; but there exists a Hamel basis (vi)i∈I in R, whence
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(3.3.6) holds for every v ∈ R with rational scalars λi . By the uniqueness,
there are Q-linear maps pi : R→Q given by pi(v) = λi . In particular they
solve the functional equation

f (λx) = λ f (x) for all x ∈ R,λ ∈Q, (3.3.7)

and every pi is a discontinuous function R→R, since a continuous function
on R has an interval as its image.

Moreover, with a = f (1), clearly any solution fulfils f (λ ) = aλ for
λ ∈Q. Since R = Q, every continuous solution to the functional equation
is a scaling x 7→ ax; these are not just continuous but actually C∞ . So it is
rather striking how transfinite induction gives rise to an abundance of other
solutions, that are effectively outside of the class of continuous functions
C(R,R). However, it should be emphasised that no-one is able to write
down expressions for these more general solutions.

Notes. An exposition on Schauder bases may be found in [You01].
Schauder’s definition of a basis was made in 1927, and in 1932 Banach
raised the question whether every Banach space has a basis. This was, how-
ever, first settled in 1973 by Per Enflo, who gave an example of a separable
Banach space without any basis.



CHAPTER 4

Hilbert spaces

The familiar spaces Cn may be seen as subspaces of the infinite dimen-
sional space `2(N) of square-summable sequences (by letting the sequences
consist only of zeroes from index n + 1 onwards). The space `2(N) has
many geometric properties in common with Cn because it is equipped with
the inner product ∑xnȳn . It is therefore natural to study infinite dimensional
vector spaces with inner products; this is the theory of Hilbert spaces which
is developed in this chapter. However, a separable Hilbert space is always
isomorphic to `2 or Cn , as we shall see. In addition a firm basis for manip-
ulation of coordinates is given, including Bessel’s inequality and Parseval’s
identity. We shall also later in Chapter 5 verify that all this applies to Fourier
series of functions in L2(−π,π).

4.1. Inner product spaces

Before Hilbert spaces can be defined, one should first introduce the con-
cept of an inner product, a generalisation of the scalar product from linear
algebra.

DEFINITION 4.1.1. An inner product on a vector space V is a map ( · | ·)
from V ×V to C which for all x, y, z ∈V , all λ , µ ∈ F fulfills

(i) (λx+ µy |z) = λ (x |z)+ µ(y |z);
(ii) (x |y) = (y |x);

(iii) (x |x)≥ 0, with (x |x) = 0 if and only if x = 0.

The pair (V,( · | ·)) is called an inner product space.

Notice that (x |λy + µz) = λ (x |z)+ µ(x |y) is a consequence of the
first two conditions. Thus an inner product is a sesqui-linear form on V :
this is an arbitrary map V ×V → F, which is linear in the first and conjugate
linear in the second variable.

For a sesqui-linear form s(·, ·) one has the polarisation identity, which
eg shows that s is determined by its values on the diagonal:

s(x,y) = 1
4 ∑

k=0,...,3
ik s(x+ ik y,x+ ik y) for F = C (4.1.1)

s(x,y) = 1
4s(x+ y,x+ y)− 1

4s(x− y,x− y) for F = R. (4.1.2)

These are verified by using sesqui-linearity on the right hand sides.
17
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Because of (iii), an inner product is a positive definite sesqui-linear form
on V . This is a characterisation, for the polarisation identity shows that a
sesqui-linear form always fulfills (ii).

As an exercise, (i),(ii) and (iii) yield that for x, y ∈V and λ ∈ F,

0≤ (x+λy |x+λy)

= (x |x)+λ (y |x)+λ (x |y)+λλ (y |y).
(4.1.3)

For vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn) in Fn one has

(x |y) = x1y1 + · · ·+ xnyn. (4.1.4)

Usually this will define the inner products on Rn and Cn .

EXAMPLE 4.1.2. As a less obvious inner product space, one may con-
sider the space C0(Rn) is endowed with

( f |g) =
∫

Rn
f (x)g(x)m(x)dx. (4.1.5)

4.1.1. Identities and inequalities for inner products. A fundamental
fact about inner products is that they give rise to a norm on the vector space.
This is made precise in

DEFINITION 4.1.3. On a vector space V with inner product ( · | ·) the
induced norm on V is given as

‖x‖ =
√

(x |x). (4.1.6)

The definition is permissible, for the square root makes sense because of
condition (iii); whence (4.1.6) may be used as a short-hand. Moreover, the
two first conditions for a norm are trivial to verify (do it!), but the triangle
inequality could deserve an explanation.

However, it turns out that there are three fundamental facts about inner
products which are based on (4.1.3). Indeed, both the triangle inequality,
the Cauchy–Schwarz inequality and a vector version of how to “square the
sum of two terms” result from this:

PROPOSITION 4.1.4. For a vector space V with inner product ( · | ·),
the following relations hold for arbitrary x, y ∈V :

(i) ‖x+ y‖ ≤ ‖x‖+‖y‖ (4.1.7)

(ii) |(x |y)| ≤ ‖x‖‖y‖ (4.1.8)

(iii) ‖x+ y‖2 = ‖x‖2 +‖y‖2 +2Re(x |y). (4.1.9)

PROOF. Clearly λ = 1 in (4.1.3) yields (iii). For (ii) we may assume
y 6= 0; then λ =− (x |y)

(y |y) in (4.1.3) yields |(x |y)|2 ≤ (x |x)(y |y), ie (ii).

Now (ii) gives Re(x |y)≤ |(x |y)| ≤ ‖x‖‖y‖ , so (iii) entails ‖x+ y‖2 ≤
(‖x‖+‖y‖)2 , whence (i) holds. �
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In view of (i) in this proposition, Definition 4.1.3 has now been justified.
For simplicity, given an inner product space V , the symbols ( · | ·) and ‖ · ‖
will often be used, without further notification, to denote the inner product
and the induced norm on V , respectively. Eg the polarisation identity takes
the form, in case F = C,

(x |y) = 1
4

3

∑
k=0

ik ‖x+ ik y‖2. (4.1.10)

Replacing y by −y in (4.1.9) and adding the resulting formula to (4.1.9)
itself, one obtains the parallellogram law:

‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2). (4.1.11)

Conversely, if a norm ‖·‖ on a vector space V fulfils this, one can show that
(x |y) defined by the expression on the right hand side of (4.1.10) actually
is an inner product on V , that moreover induces the given norm ‖ · ‖ .

REMARK 4.1.5. From the use of (4.1.3) in the proof, it is clear that
equality holds in Cauchy–Schwarz’ inequality if and only if x +λy = 0, ie
x and y are proportional. In the triangle inequality (i), equality ‖x + y‖ =
‖x‖+‖y‖ implies Re(x |y) = ‖x‖‖y‖ ≥ |(x |y)|, so therefore either x = λy
or y = λx and (x |y) = |(x |y)|; then λ = |λ | ≥ 0, ie the factor λ is positive.

EXAMPLE 4.1.6. Using the above, it is now easy to show the classical
fact from geometry, that if a map T : Rn→ Rn is an isometry, ie

‖T (x)−T (y)‖ = ‖x− y‖ for all x,y ∈ Rn, (4.1.12)

then T is affine; ie T (x) = Ax+b for some orthogonal matrix A, b ∈ Rn .
Indeed, as T (x)−T (0) is isometric too, b := T (0) = 0 can be assumed.

Then y = 0 yields that T is norm preserving, ie ‖T (x)‖ = ‖x‖ for all x. T
is also inner product preserving, for a calculation of both sides of (4.1.12)
by means of (4.1.9) gives

(T (x) |T (y)) = (x |y) for all x,y ∈ Rn. (4.1.13)

So for the natural basis (e1, . . . ,en) one has (T (e j) |T (ek)) = δ jk , whence
(T (e1), . . . ,T (en)) is another orthonormal basis. Writing T (x) = ∑λ jT (e j)
it follows by taking inner products with T (ek) that λk = (T (x) |T (ek)), so

T (x) = ∑
j=1,...,n

(T (x) |T (e j))T (e j) = ∑
j=1,...,n

(x |e j )T (e j). (4.1.14)

The last expression is linear in x, so that T (x) = Ax for an n×n-matrix A.
Here (4.1.13) gives AtA = I , hence At = A−1 as desired.

4.1.2. Continuity of inner products. In analogy with the fact that a
norm always is continuous, an inner product is always jointly continuous in
both variables, that is, continuous as a map

( · | ·) :
V
×
V
−→ C. (4.1.15)
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Indeed, convergence (xn,yn)→ (x,y) in V ×V for n→∞ means that ‖xn−
x‖+ ‖yn− y‖ → 0, so that both x = limxn and y = limyn . Continuity of
( · | ·) therefore holds if one can conclude

(xn |yn )→ (x |y) for n→ ∞. (4.1.16)

PROPOSITION 4.1.7. Every inner product is continuous.

PROOF. Continuing from the above with Cauchy–Schwarz’ inequality,

|(xn |yn )− (x |y)| ≤ |(xn− x |yn− y)|+ |(x |yn− y)|+ |(xn− x |y)|
≤ ‖xn− x‖‖yn− y‖+‖x‖‖yn− y‖+‖xn− x‖‖y‖.

(4.1.17)

Here all terms on the right hand side goes to 0, so (4.1.16) follows. �

It is clear that the Cauchy–Schwarz inequality is crucial for the above
result. In addition it will be seen in Proposition 4.3.1 below that also the
parallellogram law has rather striking consequences.

4.1.3. Orthogonality. In an inner product space V , the vectors x and
y are called orthogonal if (x |y) = 0; this is symbolically written x⊥ y.

From (4.1.9) one can now read off Pythagoras’ theorem (indeed, a gen-
eralisation to the infinite dimensional case) :

PROPOSITION 4.1.8. If x ⊥ y for two vectors x, y in an inner product
space V , then ‖x+ y‖2 = ‖x‖2 +‖y‖2 .

For subsets M and N of an inner product space V , one says that M , N
are orthogonal, written M ⊥ N if (x |y) = 0 for every x ∈ M , y ∈ N . In
addition the orthogonal complement of such M is defined as

M⊥ = {y ∈V | ∀x ∈M : (x |y) = 0}. (4.1.18)

M⊥ is a subspace of V , and it is closed by Proposition 4.1.7: if yn → y
and yn ∈ M⊥ , then any x ∈ M yields (y |x) = lim(yn |x) = 0, so y ⊥ M .
Analogously it is seen that M⊥ = M⊥ .

Clearly M ⊂M⊥⊥ , so that M⊥⊥ is a closed subspace containing M . In
fact, M⊥⊥ is the smallest such set, provided V is complete as will be seen
later. As a first step towards this, note that M1 ⊂M2 implies M⊥1 ⊃M⊥2 .

As another main example, note that

V⊥ = {0}. (4.1.19)

Indeed, 0 ∈ V⊥ , and if z ∈ V⊥ then (z |z) = 0, whence z = 0. This fact is
used repeatedly (as a theme in proofs) in the following.

Finally, a family (u j) j∈J in an inner product space V is called an or-
thogonal family provided

(u j |uk ) = 0 for j 6= k and u j 6= 0 for every j ∈ J . (4.1.20)

The same terminology applies to a sequence by taking J = N.
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Orthogonal vectors are always linearly independent. Conversely it is
well known that linearly independent vectors can be orthonormalised by
the Gram–Schmidt procedure appearing in the proof of

PROPOSITION 4.1.9. If (vn) is a (possibly finite) linearly independent
sequence in an inner product space V , there is an orthonormal sequence
(en) spanning the same sets, that is, such that

span(e1, . . . ,en) = span(v1, . . . ,vn) for every n. (4.1.21)

PROOF. With e1 = 1
‖v1‖ v1 , one can inductively obtain (en) by setting

en =
vn−∑k<n(vn |ek )ek

‖vn−∑k<n(vn |ek )ek‖
. (4.1.22)

Indeed, in the norm vn /∈ span(e1, . . . ,en−1) by the induction hypothesis and
linear independence. Moreover, clearly ‖en‖ = 1 and en ⊥ ek for k < n.
Finally en ∈ Fvn + span(e1, . . . ,en−1) so

span(e1, . . . ,en)⊂ span(v1, . . . ,vn). (4.1.23)

The opposite inclusion is similar since vn ∈ Fen + span(e1, . . . ,en−1). �

4.2. Hilbert spaces and orthonormal bases

To get a useful generalisation of the Euclidean spaces Rn , that are com-
plete with respect to the metric induced by the inner product, Hilbert spaces
are defined as follows:

DEFINITION 4.2.1. A vector space H with inner product is called a
Hilbert space if it complete with respect to the induced norm.

In particular all Hilbert spaces are Banach spaces. As an example one
has H = `2 endowed with the inner product

((xn) |(yn)) =
∞

∑
n=1

xnyn for (xn),(yn) ∈ `2. (4.2.1)

Notice that the series converges because |xnyn| ≤ 1
2(|xn|2 + |yn|2). The com-

pleteness may be verified directly (try it!).
In the rest of this chapter focus will be on Hilbert spaces, for the com-

pletion of an inner product space may be shown to have the structure of
a Hilbert space, because the inner product extends to the completion in a
unique way.

For convenience, it will also often be assumed that the Hilbert spaces are
separable. This will later have the nice consequence, that an orthonormal
basis will be at most countable.

DEFINITION 4.2.2. An orthonormal basis of a Hilbert space is a ba-
sis (e j) j∈J which is also an orthonormal set, that is, which also satisfies
(e j |ek ) = δ jk for all j, k ∈ J .
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For a an orthonormal family (e j) j∈J to be a basis it is by Definition 3.3.1
required that every x∈H can be written as a convergent series x = ∑ j∈J λ je j
for uniquely determined scalars λ j . It will follow later that it suffices, in
addition to the orthogonality, that the family (e j) j∈J is total.

In case J = N the uniqueness is a consequence of (4.2.4), which shows
that the coordinates (λ j) of a vector x are given by the scalar products
(x |e j ), just like in linear algebra:

PROPOSITION 4.2.3. Let (en) be an orthonormal sequence in a Hilbert
space H, and let (λn) be a sequence in F. Then

∞

∑
n=1

λnen converges in H ⇐⇒
∞

∑
n=1
|λn|2 < ∞. (4.2.2)

In the affirmative case, with x := ∑λnen ,

‖x‖ = (
∞

∑
n=1
|λn|2)1/2 (4.2.3)

λn = (x |en ) for every n ∈ N. (4.2.4)

PROOF. Setting sn = ∑
n
j=1 λ je j , Pythagoras’ theorem implies

‖sn+p− sn‖2 =
n+p

∑
j=n+1

‖λ je j‖2 =
n+p

∑
j=n+1

|λ j|2. (4.2.5)

Therefore (sn) is fundamental precisely when ∑ |λn|2 is a convergent series.
And in this case, Pythagoras’ theorem and continuity of the norm yield

‖x‖ = lim
n→∞
‖sn‖ = lim

n→∞
(

n

∑
j=1
|λ j|2)1/2 = (

∞

∑
n=1
|λn|2)1/2, (4.2.6)

whilst (x |en ) = limk(∑
k
j λ je j |en ) = λn by continuity of the inner product.

�

Frequently, the proposition is also useful for cases with only finitely
many scalars λn; the trick is then to add infinitely many zeroes to obtain a
sequence (λn). This observation is convenient for the proof of

PROPOSITION 4.2.4 (Bessel’s inequality). Let (en) be an orthonormal
sequence in a Hilbert space H. For all x ∈ H and n ∈ N,

‖x−
n

∑
j=1

(x |e j )e j‖2 = ‖x‖2−
n

∑
j=1
|(x |e j )|2 (4.2.7)

∞

∑
j=1
|(x |e j )|2 ≤ ‖x‖2, (4.2.8)

and the series ∑
∞
j=1(x |e j )e j converges in H.
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PROOF. Using (4.1.9), the first claim is a direct consequence of (4.2.3),
for if xn = ∑

n
j=1(x |e j )e j ,

‖x− xn‖2 = ‖x‖2 +‖xn‖2−2Re(x |xn ) = ‖x‖2−
n

∑
j=1
|(x |e j )|2. (4.2.9)

Since the left hand side is non-negative, ∑
n
j=1 |(x |e j )|2 ≤ ‖x‖2 for each n,

whence (4.2.8). The convergence of the series is then a consequence of
Proposition 4.2.3. �

Whether equality holds in Bessel’s inequality (4.2.8) for all vectors x
in H or not, this depends on whether the given orthonormal sequence (en)
contains enough vectors to be a basis or not; cf (iii) in

THEOREM 4.2.5. For an orthonormal sequence (en) in a Hilbert space
H the following properties are equivalent:

(i) (en) is an orthonormal basis for H.

(ii) (x |y) =
∞

∑
n=1

(x |en )(en |y) for all x, y in H.

(iii) ‖x‖2 =
∞

∑
n=1
|(x |en )|2 for all x in H.

(iv) If x in H is such that (x |en ) = 0 for all n ∈ N, then x = 0.

In the affirmative case x = ∑
∞
n=1(x |en )en holds for every x ∈ H.

PROOF. Notice that when (en) is an orthonormal basis, then the last
statement is true because the basis property shows that x = ∑λnen holds;
then λn = (x |en ) by Proposition 4.2.3.

Now (i) implies (ii) by the continuity of ( · |y). Moreover, (iii) is a spe-
cial case of (ii), and (iv) is immediate from (iii), since ‖x‖= 0 only holds for
x = 0. Given that (iv) holds, one can for any x consider y = ∑

∞
n=1(x |en )en ,

which converges by Proposition 4.2.3 and Bessel’s inequality. But then
(x− y |en ) = 0 is seen for every n ∈ N by substitution of y; hence x = y.
Therefore every x = ∑

∞
n=1 λnen with the coefficients uniquely determined

by λn = (x |en ) according to Proposition 4.2.3, so (i) holds. �

The identity in (iii) is known as Parseval’s equation (especially in con-
nection with Fourier series). Notice that in the affirmative case, (ii) ex-
presses that the inner product (x |y) may be computed from the coordinates
of x, y, for since y = ∑ynen with yn = (y |en ) and similarly for x, the iden-
tity in (ii) amounts to

(x |y) =
∞

∑
n=1

xnȳn. (4.2.10)

It is no coincidence that the right hand side equals the inner product in `2

of the coordinate sequences (xn), (yn) — these are clearly in `2 because of
(iii). Indeed, this fact leads to the proof of the next result.
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To formulate it, an operator U : H1 → H2 , where H1 , H2 are Hilbert
spaces, will be called unitary when U is a linear bijection fulfilling

(Ux |Uy) = (x |y) for all x, y ∈ H1. (4.2.11)

THEOREM 4.2.6. Every separable Hilbert space H has an orthonor-
mal basis (e j) j∈J with index set J ⊂ N; and the corresponding map x 7→
((x |e j )) j∈J is a unitary operator from H onto `2(J).

Observe that `2(J) is either `2 or Fn; the latter possibility occurs if J is
finite, for by a renumeration J = {1, . . . ,n} may be obtained.

PROOF. Let (vn) be dense in H ; then V := span(vn) is dense in H .
By extracting a subsequence, one obtains a family (v j) j∈J , with J ⊂ N,
such that v j /∈ span(v1, . . . ,v j−1) for every j ∈ J and V = span(v j) j∈J . Us-
ing Gram–Schmidt orthonormalisation, there is a family (e j) with V =
span(e j) j∈J . It follows that (e j) j∈J is an orthonormal basis for H , for if
x ∈ H is orthogonal to every e j , then x ∈ V⊥ = H⊥ = {0}, so that (iv) in
Theorem 4.2.5 is fulfilled. (The proof of (iv) =⇒ (i) applies verbatim when
J is finite.)

The operator U : H → `2(J) given by Ux = ((x |e j )) j∈J is linear and
injective (for J = N this is because of (iii)). It is also surjective because any
(α j) ∈ `2(J) gives rise to the vector x = ∑J α je j in H by Proposition 4.2.3;
by continuity of the inner product Ux = (α j) clearly holds. Finally it fol-
lows from (ii) that for all x, y ∈ H ,

(x |y) = ∑
J

(x |e j )(e j |y) = (Ux |Uy). (4.2.12)

Hence U is unitary as claimed. �

Note that (iii) expresses that ‖Ux‖ = ‖x‖ holds for the U in the above
proof, ie U is norm-preserving, so U is clearly a homeomorphism. As
(4.2.12) shows, it also preserves inner products, so one cannot distinguish
the Hilbert spaces H and `2(J) from one another (two vectors are orthogo-
nal in H if and only if their images are so in `2(J) and so on).

Generalising from this, it is seen that the unitary operators constitute
the natural class of isomorphisms on the set of Hilbert spaces; two Hilbert
spaces H1 , H2 are called unitarily equivalent if there is a unitary operator
sending H1 onto H2 . (In relation to isomorphisms of metric spaces, cf Sec-
tion 2.5, a map U is unitary if and only if U is a surjective linear isometry.)

On the unitary equivalence Theorem 4.2.6 gives at once

COROLLARY 4.2.7. Two separable Hilbert spaces H1 and H2 over F
are unitarily equivalent if and only if they both have orthonormal bases in-
dexed by N (or by {1, . . . ,n} for some n∈N). In particular all orthonormal
bases of a separable Hilbert space have the same index set.

From the proof of Theorem 4.2.6 one can read off the next criterion.
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COROLLARY 4.2.8. If H is a Hilbert space and (e j) j∈J is a countable
orthonormal family, then (e j) j∈J is an orthonormal basis if it is total.

4.3. Minimisation of distances

It is a crucial geometric property of a Hilbert space H that for any sub-
space U of finite dimension and any x ∈ H , there exists a uniquely deter-
mined point u0 ∈U with the least possible distance to x. Ie this u0 fulfils

‖x−u0‖ = inf{‖x−u‖ | u ∈U }. (4.3.1)

Since the infimum exists and is ≥ 0, the crux is that it actually is attained
at a certain point u0 (hence is a minimum).

To see that u0 exists, one may first take an orthonormal basis for U , say
(e1, . . . ,en) and note that for arbitrary λ1, . . . ,λn in F,

‖x−
n

∑
j=1

(x |e j )e j‖ ≤ ‖x−
n

∑
j=1

λ je j‖. (4.3.2)

Indeed, clearly x−∑
n
j=1(x |e j )e j is in U⊥ , so by Pythagoras’ theorem,

‖x−
n

∑
j=1

λ je j‖2 = ‖x−
n

∑
j=1

(x |e j )e j‖2 +
n

∑
j=1
|λ j− (x |e j )|2, (4.3.3)

where the last expression is minimal for λ j = (x |e j ). Secondly the vector
u0 = ∑

n
j=1(x |e j )e j belongs to U and clearly minimises the distance to x.

However, the above also follows from the next result, for finite dimen-
sional subspaces are always closed (cf Lemma 6.2.1 below). Recall that
C ⊂ H is convex if θx+(1−θ)y ∈C for every θ ∈ [0,1] and all x, y ∈C.

PROPOSITION 4.3.1. Let C be a closed, convex subset of a Hilbert space
H. For each x ∈H there exists a uniquely determined point y ∈C such that

‖x− y‖ ≤ ‖x− v‖ for all v ∈C. (4.3.4)

PROOF. Let (yn) be chosen in C so that ‖x− yn‖ → δ where δ =
inf{‖x− v‖ | v ∈C}. Applying the parallelogram law and the convexity,

‖yn− ym‖2 = 2‖yn− x‖2 +2‖x− ym‖2−‖yn− x− (x− ym)‖2

= 2‖yn− x‖2 +2‖x− ym‖2−4‖1
2(yn + ym)− x)‖2

≤ 2‖yn− x‖2 +2‖x− ym‖2−4δ
2.

(4.3.5)

Since the last expression can be made arbitrarily small, (yn) is a Cauchy
sequence, hence converges to a limit point y. Since C is closed y ∈C, and
by the continuity of the norm ‖x− y‖ = δ .

If also δ = ‖x− z‖ for some z ∈ C, one can substitute yn and ym by
y and z, respectively, in the above inequality and derive that ‖y− z‖2 ≤
2δ 2 +2δ 2−4δ 2 = 0. Whence z = y. �
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By the proposition, there is a map PC : H→ H given by PCx = y, in the
notation of (4.3.4). Here (PC)2 = PC , so PC is called the projection onto C.

Notice that when U is a subspace of dimension n ∈ N, say with or-
thonormal basis (e1, . . . ,en), then (4.3.2) ff. shows that

PU x =
n

∑
j=1

(x |e j )e j for x ∈ H . (4.3.6)

With this structure PU is linear and bounded for every n-dimensional sub-
space U ⊂ H . Since x−PU x is orthogonal to every e j and therefore to any
vector in U , the operator PU is called the orthogonal projection on U .

4.4. The Projection Theorem and self-duality

It was seen above that orthogonality was involved in the process of find-
ing the minimal distance from a point to a subspace. There are also other
geometric properties of Hilbert spaces that are linked to orthogonality, and
a few of these are presented here.

4.4.1. On orthogonal projection. For orthogonal subspaces M and N ,
ie M ⊥ N , the orthogonal sum is defined as

M⊕N = {x+ y | x ∈M, y ∈ N }. (4.4.1)

Hence any vector z ∈M⊕N has a decomposition z = x+y with x ∈M and
y ∈ N . The orthogonality shows that this decompostion is unique (since
M ⊥ N =⇒ M∩N = {0}).

When both M and N are closed in H , then M⊕N is a closed subspace
too, for if zn ∈M⊕N converges in H , Pythagoras’ theorem applied to the
decompositions zn = xn + yn gives Cauchy sequences (xn), (yn) in M and
N , and the sum of these converges to an element of M⊕N (since M , N are
closed) as well as to limzn .

Recall that for a closed subspace M of H , the orthogonal complement
is denoted M⊥; alternatively H	M may be used to make it clear that the
orthogonal complement is calculated with respect to H . When H = M⊕N
both M and N are called direct summands of H , but for a given M there is,
by the orthogonality, only one possible choice of N : this is a consequence
of the next result known as the Projection Theorem, which states that as the
direct summand N one can take N = H	M .

As a transparent example, take the familiar orthogonal sum Rn = Rk⊕
Rn−k , with Rk '{(x1, . . . ,xk,0, . . . ,0)∈Rn | x1, . . . ,xk ∈R}, for 0≤ k≤ n,
and a similar identification for Rn−k . The Projection Theorem is a non-
trivial generalisation to Hilbert spaces:

THEOREM 4.4.1. Let M be a closed subspace of a Hilbert space H.
Then there is an orthogonal sum

H = M⊕M⊥. (4.4.2)
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PROOF. Given x ∈ H there is a y ∈M such that ‖x− y‖ ≤ ‖x− v‖ for
all v ∈M , by Proposition 4.3.1. Letting z = x− y it remains to be verified
that z ∈M⊥; but for λ ∈ F and v ∈M with ‖v‖ = 1,

‖z‖2 ≤ ‖x− (y+λv)‖2 = ‖z‖2 + |λ |2−2Reλ (z |v), (4.4.3)

so λ = (z |v) entails |λ |2 ≤ 0; whence (z |v) = 0 for any v ∈ M . The
existence of the decomposition x = y+ z implies that M⊕M⊥ = H . (Note
that its uniqueness was seen after (4.4.1).) �

For a subset M ⊂ H the closed linear hull of M is by definition the
intersection

⋂
X of all closed subspaces X ⊃M .

COROLLARY 4.4.2. For M ⊂H the bi-orthogonal complement M⊥⊥ is
the closed linear hull of M; in particular, M = M⊥⊥ if M is a subspace.

PROOF. For a closed subspace M , any x is decomposed x = y + z for
y∈M and z∈M⊥ by the Projection Theorem. When x∈M⊥⊥ the inclusion
M ⊂M⊥⊥ gives z = x− y ∈M⊥∩M⊥⊥ = {0}, so that x = y ∈M . Hence
M = M⊥⊥ . For unclosed subspaces this gives M = M⊥⊥ = M⊥⊥ .

For an arbitrary subset M , let M ⊂ X for some closed subspace X ⊂H .
Then the above gives M ⊂ M⊥⊥ ⊂ X⊥⊥ = X . But as M⊥⊥ is one such
subspace X , this shows that M⊥⊥ =

⋂
X as claimed. �

REMARK 4.4.3. As an addendum to the Projection Theorem, every x
has a unique decomposition x = y+ z for y and z equal to the closest point
of M and M⊥ , respectively, to x. For y this characterisation is clear from
the proof of the theorem. For z note that (M⊥)⊥ = M by Corollary 4.4.2.
Decomposing after M⊥ therefore gives x = y′+ z′ where z′ ∈M⊥ , y′ ∈M ,
with z′ equal to the point of M⊥ closest to x. But by the uniqueness y = y′

and z = z′ .

For an arbitrary closed subspace M ⊂ H there is, by the uniqueness of
the decomposition x = y+ z in the Projection Theorem, a map

Px = y, (4.4.4)

which moreover is linear (verify!).
P is bounded, for by Pythagoras’ theorem the direct sum H = M⊕M⊥

gives
‖Px‖2 = ‖y‖2 ≤ ‖y‖2 +‖z‖2 = ‖x‖2. (4.4.5)

Hence ‖P‖ ≤ 1. Moreover, since x = Px + z and P discards z, clearly
P2x = P(x− z) = Px, that is, P2 = P so that P is idempotent. This yields
‖P‖ = 1. Being idempotent, P is a projection.

As z ⊥ M , the operator P projects along the orthogonal complement
M⊥; for short P is therefore said to be the orthogonal projection on M .

If M is a subspace U of finite dimension, P equals the previously intro-
duced orthogonal projection PU on U (since y = Px was chosen as the point
nearest to x, cf the proof of Theorem 4.4.1). In this case one therefore has
the formula (4.3.6) for P.
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A characterisation of the operators in B(H) that are ortogonal projec-
tions follows in Proposition 6.1.1 below.

4.4.2. On the self-duality. In a Hilbert space H it is immediate that ev-
ery vector y ∈ H gives rise to the linear functional x 7→ (x |y); by Cauchy–
Schwarz’ inequality this is bounded,

|(x |y)| ≤ ‖x‖‖y‖. (4.4.6)

It is a very important fact that all elements in H∗ arise in this way; cf the next
theorem, known as Frechet–Riesz’ theorem (or the Riesz Representation
Theorem).

THEOREM 4.4.4. For each ϕ ∈ H∗ there exists a unique vector z ∈ H
such that ϕ(x) = (x |z) for all x∈H. Moreover, the map Φ : H→H∗ given
by Φ(z) = ( · |z) is a conjugate linear isometry.

PROOF. With N = Z(ϕ), which is a closed subspace by the continuity
of ϕ , the Projection Theorem gives H = N⊕N⊥ . Clearly ϕ ≡ 0 if and only
if N = H , in which case z = 0 will do. For ϕ 6= 0 there is some y∈N⊥ with
‖y‖ = 1, and then v = ϕ(x)y−ϕ(y)x belongs to N , regardless of x ∈H . So
it suffices to let z = ϕ(y)y, for

0 = (v |y) = ϕ(x)(y |y)−ϕ(y)(x |y) = ϕ(x)− (x |z). (4.4.7)

For the uniqueness, assume ϕ = ( · |z) = ( · |w); then (x |z−w) = 0 for all
x, yielding z−w ∈ H⊥ and z = w.

Hence the map Φ is a bijection, and

Φ(λ z+ µw) = ( · |λ z+ µw) = λ ( · |z)+ µ( · |w) = λΦ(z)+ µΦ(w).
(4.4.8)

Finally, ‖Φ(x)‖ = sup‖x‖≤1 |(x |z)| ≤ ‖z‖ follows from Cauchy–Schwarz’
inequality; the equality follows by taking x = z/‖z‖ , unless z = 0, which
case is trivial. �

Because of the identification Φ provides between H∗ and H itself,
Hilbert spaces are said to be self-dual.

Notice that eg (`p)∗ 6= `p for p ∈ [1,∞[ with p 6= 2: the sequence with
xn = n−1/r is only in `q for q > r so that there are strict inclusions

`p ( `q for 1≤ p < q≤ ∞. (4.4.9)

Hence Banach spaces do not identify with their duals in general.
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Examples of Hilbert spaces. Fourier series.

The basic non-trivial example of a Hilbert space is L2(A,A,µ), consist-
ing of (equivalence classes of) square-integrable functions on an arbitrary
measure space (A,A,µ). (`2 is also covered by considering the counting
measure on N).

For an open set Ω⊂ Rn there is the standard Hilbert space L2(Ω) with
inner product ( f |g) =

∫
Ω

f (x)g(x)dx. However, certain subsets of L2(Ω)
are Hilbert spaces in their own right.

EXAMPLE 5.0.5 (Sobolev spaces). Let the subset H1(Ω) ⊂ L2(Ω) be
defined by the requirement that to each f ∈ H1(Ω) there exist other func-
tions f ′1 ,. . . , f ′n in L2(Ω) such that for every ϕ ∈C∞

0 (Ω) it holds that∫
Ω

f (x)(− ∂

∂x j
ϕ(x))dx =

∫
Ω

f ′j(x)ϕ(x)dx for j = 1, . . . ,n. (5.0.10)

Notice that for f in C1
0(Ω) one can take f ′j = ∂ f

∂x j
; hence C1

0(Ω)⊂ H1(Ω).

For f ∈ H1(Ω) the functions f ′j are called the (generalised) derivatives
of f of the first order, and these are written in operator notation as

∂ j f = ∂x j f = ∂ f
∂x j

= f ′j, for j = 1, . . . ,n. (5.0.11)

Here it was used that the derivatives f ′j are determined by f : if f̃1 ,. . . ,
f̃n is another set of functions in L2(Ω) fulfilling (5.0.10), then f ′1− f̃1 ∈
C∞

0 (Ω)⊥ = L2(Ω)⊥ = (0); similarly f ′j = f̃ j for all j. As a consequence
these partial differential operators give well defined maps

∂ j : H1(Ω)→ L2(Ω) for j = 1, . . . ,n. (5.0.12)

(In C1(Ω)∩H1(Ω) these maps are given by limits of difference quotients.
In general the f ′j equal the so-called distribution derivatives ∂ j f of f .)

A topology on H1(Ω) may be obtained eg as a metric subspace of
L2(Ω). But to have some control over f ′1 ,. . . , f ′n , it is stronger to note that,
by the uniqueness and linearity of the generalised derivatives, there is a well
defined inner product on H1(Ω) given by

( f |g)H1 = ( f |g)L2 +( f ′1 |g′1 )L2 + · · ·+( f ′n |g′n )L2; (5.0.13)

the norm induced is clearly given by

‖ f‖H1 =
(∫

Ω

(| f (x)|2 +
n

∑
j=1
|∂ j f (x)|2)dx

)1/2
. (5.0.14)

29
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Actually H1(Ω) is a Hilbert space, because it is complete with respect
to this norm (verify this!). Notice that the injection H1(Ω) ↪→ L2(Ω) is
continuous, because for every f ∈ H1(Ω) one has ‖ f‖L2 ≤ ‖ f‖H1 . More-
over, the expression for ‖·‖H1 implies directly that the differential operators
∂1, . . . ,∂n in (5.0.12) above all are continuous maps H1→ L2 .

H1(Ω) is called the Sobolev space of order 1 over Ω; this Hilbert space
plays a very significant role in the theory of partial differential equations. It
is also convenient to introduce the subspace H1

0 (Ω) by taking the closure of
C∞

0 (Ω) in H1(Ω), ie

H1
0 (Ω) =

{
f ∈ H1(Ω)

∣∣ ∃ϕk ∈C∞
0 (Ω) : lim

k→∞
‖ f −ϕk‖H1 = 0

}
. (5.0.15)

Clearly H1
0 (Ω) is Hilbert space with the induced inner product from H1(Ω).

EXAMPLE 5.0.6. The Sobolev spaces have generalisations to Hilbert
spaces Hm(Ω) incorporating higher order derivatives up to some order m ∈
N. For this it is useful to adopt the multiindex notation, say for f ∈C∞(Ω):

For α = (α1, . . . ,αn)∈Nn
0 , which is said to have length |α|= α1 + · · ·+

αn , one writes
∂

α f = ∂ |α| f
∂

α1
x1 ...∂ αn

xn
. (5.0.16)

Then the subspace Hm(Ω) ⊂ L2(Ω) is defined as the set of f to which
there for every |α| ≤ m exists some fα ∈ L2(Ω) fulfilling the condition
( f |∂ αϕ )L2 = (−1)|α|( fα |ϕ ) for all ϕ ∈C∞

0 (Ω).
Since the fα are uniquely determined, there are maps ∂ α f := fα defined

for f ∈ Hm(Ω). This gives rise to an inner product on Hm(Ω), namely

( f |g)Hm = ∑
|α|≤m

∫
Ω

∂
α f (x)∂ αg(x)dx. (5.0.17)

The induced norm has the expression

‖ f‖Hm =
(

∑
|α|≤m

‖∂ α f‖2
L2

)1/2
. (5.0.18)

With this Hm(Ω) is a Hilbert space. The subspace Hm
0 (Ω) is defined as

the closure of C∞
0 (Ω), that clearly is a Hilbert space. By inspection of the

norms, there are bounded, hence continuous maps

∂
α : Hm(Ω)→ Hm−|α|(Ω), for |α| ≤ m. (5.0.19)

5.1. Examples of orthonormal bases.

Some of the elementary functions provide basic examples of orthonor-
mal bases. Eg one has

PROPOSITION 5.1.1. The Hilbert space L2(0,π) has an orthonormal
basis (en)n∈N0 consisting of

e0 ≡ 1√
π
, en =

√
2
π

cos(nt), for n ∈ N. (5.1.1)
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Indeed, orthonormality is easy to derive from the periodicity and Euler’s
identities (do it!). It remains to show that (en)n∈N0 is total in L2(0,π), and
for this it suffices by density to approximate an arbitrary f ∈C([0,π]). But
to g(t) = f (arccos t) and ε > 0, Weierstrass’ approximation theorem (2.3.2)
furnishes a polynomial p = ∑

N
j=0 a jt j such that |g− p|< επ−1/2 on [−1,1];

thence

| f (t)−
N

∑
j=0

a j(cos t) j|< επ
−1/2, for t ∈ [0,π]. (5.1.2)

Here Euler’s identities yield that (cos t) j = ∑
j
k=− j bkeikt for scalars satisfy-

ing bk = b−k , whence (cos t) j is in E j = span(e0, . . . ,e j). Then p◦cos is in
EN , and ‖ f − p◦ cos‖ < ε in L2(0,π) as desired.

Similarly the sine function gives rise to an orthonormal basis.

PROPOSITION 5.1.2. The Hilbert space L2(0,π) has an orthonormal

basis (en)n∈N given by en(x) =
√

2
π

sin(nx) for n ∈ N.

The orthonormality is verified as for the cosines; but that the sequence
is total follows at once from the totality of the cosines: if f ⊥ span(en), then
( f |en ) =

∫
π

0 f (x)sin(nx)dx = 0 for all n; this yields

( f sin | cos(n·)) =
∫

π

0
f (x)sin(x)cos(nx)dx

= ( f | 1
2 sin((n+1)·))− ( f | 1

2 sin((n−1)·)) = 0
(5.1.3)

Since {0} = span(cos(n·))⊥ , this gives f sin = 0, hence f = 0 a.e. There-
fore (en) is total.

5.2. On Fourier series

It is known from elementary calculus that eg f (x) = cos2(x)sin(3x) may
be resolved into a sum of oscillations with frequencies 1

2π
, 3

2π
and 5

2π
, sim-

ply by use of Euler’s identities:

f (x) = cos2(x)sin(3x) = 1
4 sin(5x)+ 1

2 sin(3x)+ 1
4 sinx. (5.2.1)

This way, a harmonic or Fourier analysis of f is obtained.

The classical claim of J. Fourier (made around 1820?!) is that any func-
tion f on the interval [−π,π] may expressed as an infinite series of har-
monic functions, namely

f (x) = A0
2 +

∞

∑
n=1

(An cos(nx)+Bn sin(nx)) (5.2.2)
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with the coefficients

An = 1
π

∫
π

−π

f (y)cos(ny)dy for n = 0,1,2, . . . (5.2.3)

Bn = 1
π

∫
π

−π

f (y)sin(ny)dy for n = 1,2, . . . . (5.2.4)

Later as the notion of functions was crystallised, it became increasingly
important to clarify Fourier’s claim.

It is quite remarkable that his assertion is true for functions as general
as those in the class L2(−π,π) (and similarly in dimensions n > 1).

5.2.1. The one-dimensional case. The results on orthonormal bases of
sines and cosines on [0,π] lead to the following main result. It is formu-
lated for the Hilbert space L2(−π,π; 1

2π
m1), where the one-dimensional

Lebesgue measure m1 is normalised for convenience. Hence ( f |g) =
1

2π

∫
π

−π
f (x)g(x)dx is the inner product of f , g.

THEOREM 5.2.1. The functions en(x) = einx , with n ∈ Z, constitute an
orthonormal basis for L2(−π,π; 1

2π
m1), and for every f in this space,

f =
∞

∑
n=−∞

cnen (5.2.5)

with coefficients cn = ( f |en ) = 1
2π

∫
π

−π
f (y)e− iny dy for n ∈ Z.

PROOF. It is straightforward to see that the sequence is orthonormal,
for by the periodicity of ei(k−n)x/(k−n) for k 6= n,

(ek |en ) = 1
2π

∫
π

−π

ei(k−n)y dy = δkn. (5.2.6)

It therefore suffices to see that {en | n ∈ Z} is a total subset, which follows
if every f in L2(−π,π) satisfies

f = lim
n→∞

n

∑
k=−n

( f |ek )ek. (5.2.7)

(This is the meaning of (5.2.5).)
First the case of an even f is considered, ie f (x) = f (−x). For such f

it holds that Bn = 0 for every n ∈ N, for the substitution y =−x leads to∫ 0

−π

f (y)sin(ny)dy =−
∫

π

0
f (x)sin(nx)dx. (5.2.8)

Classically f is therefore assigned the Fourier series

f (x) = A0
2 +

∞

∑
n=1

An cos(nx). (5.2.9)

However, for x ∈ [0,π] this holds as an identity in L2(0,π; 2
π

m1). Indeed,
in view of Proposition 5.1.1 the functions g0(x) = 1√

2
and gn(x) = cos(nx)
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with n ∈ N for an orthonormal basis, so since f is even,

f (x) =
∞

∑
n=0

( f |gn )gn(x)

= 1
π

∫
π

−π

f (y)dy
1
2

+
∞

∑
n=1

( 1
π

∫
π

−π

f (y)cos(ny)dy
)
· cos(nx)

= A0
2 +

∞

∑
n=1

An cos(nx).

(5.2.10)

Actually (5.2.9) even holds in L2(−π,π; 1
2π

m1), for if sn denotes the nth

partial sum on the right hand side of (5.2.9),

‖ f − sn‖2
L2(−π,π) ≤ ‖ f − sn‖2

L2(0,π)↘ 0. (5.2.11)

(For the inequality one may use that | f − sn|2 has the same integral on
[−π,0] and [0,π], since f and the cosines are even.)

Using a completely analogous argument, and that L2(0,π; 2
π

m1) has an-
other orthonormal basis given by (sin(n·))n∈N , cf Proposition 5.1.2, it is
seen that for odd functions, ie f (x) =− f (−x), all the An vanish and

f =
∞

∑
n=0

Bn sin(n·) in L2(−π,π; 1
2π

m1). (5.2.12)

Now any function f may be written f = f1 + f2 where f1(x) := ( f (x) +
f (−x))/2 is even and f2(x) := ( f (x)− f (−x))/2 is odd, and the above
analyses apply to these terms. Chosing new scalars

Cn = 1
2(An− iBn) for n ∈ N0,

C−n = 1
2(An + iBn) for n ∈ N,

(5.2.13)

Euler’s formula leads to
f = f1 + f2

= A0
2 +

∞

∑
n=1

(An cos(n·)+Bn sin(n·))

= A0
2 +

∞

∑
n=1

(Cnein·+C−ne− in·) = lim
n→∞

n

∑
k=−n

Ckeik·.

(5.2.14)

Since insertion of (5.2.3) and (5.2.4) into (5.2.13) shows that Cn = cn for
every n ∈ Z, (5.2.14) proves (5.2.7), hence the theorem. �

Observe that the classical Parseval’s equation for Fourier series now is
a gratis consequence of Theorem 4.2.5:

1
2π

∫
π

−π

| f (x)|2 dx =
∞

∑
n=−∞

|cn( f )|2. (5.2.15)

Here cn( f ) = ( f |en ), but the main change is that as the index set for the
basis vectors, Z must now be used instead of N. (Here cn( f ) := ( f |en ).)
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In addition, Proposition 4.2.3 shows that the sequence (cn( f )) is in
`2(Z) for every f ∈ L2(−π,π), and that conversely any (αn) in `2(Z)
equals the Fourier coefficients of some function g ∈ L2(−π,π); indeed,
g = ∑αnen by Proposition 4.2.3. (Actually this is just an example of the
unitary equivalence mentioned in Theorem 4.2.6!)

5.2.2. Fourier series in higher dimensions. Using the above results
it is now possible to deduce the corresponding facts in n dimensions. So
consider the cube Q =]−π,π]n and the corresponding Hilbert space L2(Q)
(the Lebegue measure mn is now tacitly normalised by (2π)−n).

It is easy to see that there is an orthonormal sequence of functions

ek(x) = eik·x = ei(k1x1+···+knxn) (5.2.16)

with x = (x1, . . . ,xn)∈Q and a ‘multi-integer’ k = (k1, . . . ,kn)∈Zn . In fact
for k, m ∈ Zn ,

(ek |em ) = 1
(2π)n

n

∏
j=1

∫
π

−π

ei(k j−m j)x j dx j = δk1m1 . . .δknmn = δkm. (5.2.17)

This system is moreover an orthonormal basis. Indeed, assume that f ∈
L2(Q) is orthogonal to ek for every k ∈ Zn . Since L2(Q) ⊂ L1(Q), the
below auxiliary function is well defined (a.e.) by Fubini’s theorem,

g(xn) =
∫
]−π,π]n−1

f (x1,...,xn−1,xn)
exp(i(k1x1+···+kn−1xn−1))(2π)n d(x1, . . . ,xn−1). (5.2.18)

Moreover, it is in L2(−π,π) because Hölder’s inequality gives that

|g(xn)| ≤ (
∫
| f (x1, . . . ,xn−1,xn)|2 d(x1, . . . ,xn−1))1/2, (5.2.19)

where the right hand side is quadratic integrable. However, by the identity
above, (g |eikn· ) = ( f |ek ) = 0. Then the results for dimension 1 give that
g ≡ 0. Hence f (·,xn) is orthogonal to all the exponentials in n−1 dimen-
sions. Repeating this argument, it is seen that for fixed x2 ,. . . ,xn ∈ ]−π,π],
the function f (·,x2, . . . ,xn) is 0 in L2(−π,π); by Fubini ‖ f‖ = 0 in L2(Q),
whence f = 0.

Thereby the following generalisation of Theorem 5.2.1 is an immediate
consequence of the general Hilbert space theory:

THEOREM 5.2.2. The functions ek(x) = eik·x , with k ∈Zn , constitute an
orthonormal basis for L2(Q), where Q =]−π,π]n , and for every f in this
space,

f = ∑
k∈Zn

ckek (5.2.20)

with coefficients ck = ( f |ek ) = (2π)−n ∫
Q f (y)e− ik·y dy for k ∈ Z. The se-

quence (ck) is in `2(Zn), and Parseval’s identity holds.
Conversely, to any (ck) ∈ `2(Zn) there exists a unique function f in

L2(Q) having (ck) as its Fourier coefficients.
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The convergence in (5.2.20) means that for any ε > 0 there exists a finite
set K ⊂ Zn such that

‖ f − ∑
k∈K

ckek‖L2(Q) < ε. (5.2.21)

EXAMPLE 5.2.3. For the subspace H1(Q) of L2(Q), introduced in Ex-
ample 5.0.5 at least if we now take Q =]− π,π[n , it is natural to ask for
characterisations in terms of Fourier series.

However, this is easier to carry out for the subspace

H1(T) = { f ∈ H1(Q) | ∀ j = 1, . . . ,n :

x j = 0 =⇒ f (x+πe j) = f (x−πe j)}. (5.2.22)

The reason is that any such f may be extended to a 2π -periodic function in
all variables without loosing the H1-property (whereas such extensions of
functions in H1(Q) would have jump discontinuities at the boundary of Q).
Observe, however, that there is an important technical remnant, namely to
account for the fact that the elements of H1(T) are so regular that the values
at x±πe j may be calculated in an unambiguous way.

We shall abstain from that here, and just mention the resulting charac-
terisation instead. Indeed, defining h1(Zn) ⊂ `2(Zn) to be the subspace of
sequences (ck) fulfilling

( ∑
k∈Zn

(1+ k2
1 + · · ·+ k2

n)|ck|2)1/2 < ∞, (5.2.23)

then u ∈H1(T) holds precisely when its Fourier coefficients (ck) belong to
h1(Zn). And ‖u‖H1 equals the left hand side of the above inequality. Proof
of this is given later.

On these grounds, Hilbert space theory is customarily deemed the natu-
ral framework for Fourier series.





CHAPTER 6

Operators on Hilbert spaces

6.1. The adjoint operator

As an application of the notion of adjoint operators, one can give the
following characterisation of orthogonal projections.

PROPOSITION 6.1.1. Let P∈B(H). Then P is an orthogonal projection
onto a closed subspace M of H if and only if P∗ = P2 = P, that is if P is a
self-adjoint idempotent.

In the affirmative case M = P(H) = Z(I−P) = {x ∈ H | Px = x}, so
H = P(H)⊕Z(P).

PROOF. That the orthogonal projection P onto a closed subspace M of
H is a bounded, self-adjoint and idempotent operator is easy to see from the
definition of P.

Conversely, if P = P∗ = P2 holds for some P ∈ B(H), then the identity
I = P+(I−P) shows that

∀x ∈ H : x ∈ P(H)+(I−P)(H). (6.1.1)

Now it is straightforward to verify that also I−P is a self-adjoint idempo-
tent. Using this, both subspaces P(H), (I−P)(H) are seen to be closed: if
xn→ x in H for a sequence (xn) in eg P(H), then xn = Pxn→Px, so x = Px.
They are ortogonal since P∗(I−P) = P−P2≡ 0, so H = P(H)⊕(I−P)(H)
in view of (6.1.1). Since P = P2 , it also follows from (6.1.1) that P is the
orthogonal projection onto P(H). The remaining facts are uncomplicated
to verify. �

The following formula is sometimes useful.

LEMMA 6.1.2. If T ∈ B(H) is self-adjoint, ie T ∗ = T , then

‖T‖ = sup
{
|(T x |x)|

∣∣ x ∈ H, ‖x‖ = 1
}
. (6.1.2)

PROOF. If MT denotes the supremum in (6.1.2), it follows from Cauchy-
Schwarz’ inequality that MT ≤ ‖T‖ .

Whenever T x 6= 0 it is clear that ‖y‖ = ‖x‖ by setting y = s−1T x for
s = ‖T x‖/‖x‖ . Then a polarisation and the Parallelogram Law give that

4‖T x‖2 = 2(T x |T x)+2(T T x |x) = 2s((T x |y)+(Ty |x))
= s((T (x+ y) |x+ y)− (T (x− y) |x− y))

≤ sMT (‖x+ y‖2 +‖x− y‖2)

= 2sMT (‖x‖2 +‖y‖2) = 4sMT‖x‖2.

(6.1.3)

37
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Therefore ‖T x‖ ≤MT‖x‖ for all x, so ‖T‖ ≤MT . �

6.2. Compact operators

6.2.1. Preliminaries. The next result is often important; it states that
for subspaces X of finite dimension one need only consider the coordinates
with respect to a fixed basis of X (as we would like to), even when it comes
to topological questions.

LEMMA 6.2.1. Let X be a finite-dimensional subspace of a normed vec-
tor space V over F, say with dimX = n ∈ N. Then every linear bijection
Φ : Fn→ X is a homeomorphism, and X is closed in V .

PROOF. Any Φ of the mentioned type has the form (α1, . . . ,αn) 7→
α1x1 + · · ·+ αnxn for some basis (x1, . . . ,xn). However, using continuity
of the vector operations, induction after n gives that Φ is continuous.

Φ−1 is continuous if and only if Φ(O) is open in X for every open set
O ⊂ Fn . By the linearity it suffices to see that Φ(B) is a neighbourhood of
0, when B is the open unit ball of Fn . But S := {α ∈Fn |α2

1 + · · ·+α2
n = 1}

is compact, and so is Φ(S) by the continuity of Φ. Combining this with the
Hausdorff property of X gives a ball C centered at 0 such that C∩Φ(S) = /0.
Now C⊂Φ(B) follows, for if C 3 c = Φ(α) with ‖α‖ ≥ 1, the continuous
map t 7→ ‖tα‖ attains the value 1 for some t0 ∈ ]0,1], so the convexity of C
entails the contradiction t0c ∈C∩Φ(S).

Using that V is Hausdorff, a sequence in X cannot converge to a point in
V \X , for its image under Φ−1 converges in Fn . Consequently X = X . �

Notice that for X = V = Fn the lemma gives that all the norms ‖x‖p =
(∑n

j=1 |x j|p)1/p with 1≤ p < ∞ and the sup-norm ‖x‖∞ give the same topol-
ogy (which can also be seen directly), and that moreover the same is true
for any norm on Fn .

The result of the lemma holds in a much wider context too, for it suf-
fices to presuppose only that V is a Hausdorff topological vector space.
(The proof only needs to have the ball C replaced by another type of neigh-
bourhood of 0 in which tC ⊂C for scalars with |t| ≤ 1.)

The rank of a linear map T : V →W is defined as rankT = dimT (V ).
In analogy with Lemma 6.2.1, one could wonder whether operators of finite
rank are necessarily bounded. But this is not the case, for counterexamples
exist already when rankT = 1 as seen in the specific construction given
below (this also elucidates why a basis U is required to fulfil V = span U
rather than V = spanU ):

Let (en) denote the canonical orthonormal basis in `2(N); then `2 \
span(en) 6= /0 because it contains eg (n−1)n∈N , and by Zorn’s lemma there
exists a maximal linearly independent set of the form

{
en
∣∣ n ∈ N

}
∪
{

vi
∣∣

i ∈ I
}

; this is a Hamel basis of `2 , cf Remark 3.3.4, so that every v ∈ `2
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may be written
v = ∑

n∈N
λnen +∑

i∈I
µivi. (6.2.1)

Defining ϕ : `2→ C by letting ϕv = ∑ µi , it is clear that ϕ is a linear func-
tional which is nonzero on every vi . Moreover, Z(ϕ)⊃ span(en), and since
the latter set is dense, ϕ is discontinuous on `2 .

6.2.2. Compact operators. A linear operator is bounded if and only if
it maps the unit ball to a bounded set or (the reader should verify that it is
equivalent) if and only if T maps every bounded set to a bounded set. To get
a subclass of operators with stronger properties one could therefore require
that every bounded set should be sent into a compact set:

DEFINITION 6.2.2. Let T : V →W be a linear operator between normed
spaces V and W . Then T is said to be compact if every bounded set A⊂V
has an image with compact closure (ie if T (A) is compact in W ).

Notice that T is bounded and hence continuous, if it is compact. (It is a
rather stronger fact that a compact operator, after restriction to say a ball of
its domain, is continuous not only with respect to the induced norm topol-
ogy,(as just observed), but also with respect to the so-called weak topology.
Perhaps for these reasons, compact operators are synonymously called com-
pletely continuous.)

As an example, the identity I is not a compact operator in any infinite di-
mensional Hilbert space H , for an orthonormal sequence is never a Cauchy
sequence, hence cannot have convergent subsequences. But the inclusion
operator C1([0,1]) ↪→C([0,1]) is compact (although this requires too many
efforts to be shown here). Similarly, H1(Ω) ⊂ L2(Ω) is a compact em-
bedding when Ω ⊂ Rn is bounded; cf Example 5.0.5–5.2.3 and the proof
further below.

A simpler example concerns the operators T : V →W of finite rank.

LEMMA 6.2.3. Let T ∈ B(V,W ) be an operator of finite rank between
normed spaces V , W . Then T is compact.

PROOF. There is a linear homeomorphism Φ : T (V ) → Fn for some
n ∈N, and T (V ) is closed in W . Given a bounded set A⊂V it follows that
T (A) ⊂ T (V ); hence Φ(T (A)) is well defined, it is bounded since T (A) is
bounded, and closed in Fn , ie compact. Since Φ−1 is continuous this yields
the compactness of T (A), and eventually also of T . �

More generally, there is a convenient way to write down numerous op-
erators, in fact, one for each sequence (λn). Indeed, let (en) be an orthonor-
mal basis for a Hilbert space H , and consider for each sequence (λn) in F
the operator T in H given by the expression

T x =
∞

∑
n=1

λn(x |en )en, (6.2.2)
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and by its ‘maximal’ domain

D(T ) =
{

x ∈ H
∣∣ ∞

∑
n=1

λn(x |en )en converges in H
}
. (6.2.3)

Notice by insertion of x = en that every λn is an eigenvalue of the defined
T . Moreover, simple properties such as boundedness and compactness are
also easy to verify:

THEOREM 6.2.4. Under the above hypotheses, the operator T given by
the formulae (6.2.2)–(6.2.3) is densely defined and linear, and it holds that

T ∈ B(H) ⇐⇒ (λn) ∈ `∞ (6.2.4)

T is compact ⇐⇒ λn→ 0. (6.2.5)

In the affirmative case, ‖T‖B(H) = ‖(λn)‖`∞ .

PROOF. To see that D(T ) is dense, notice that T clearly is defined on
any finite linear combination of the en , hence on the dense set span(en);
linearity follows from the calculus of limits.

If |λn| ≤C for every n, then (λn(x |en )) is in `2 for all x∈H , so D(T ) =
H by Proposition 4.2.3; and T is bounded with ‖T‖ ≤ sup |λn| because

‖T x‖ ≤ (
∞

∑
n=1
|C(x |en )|2)1/2 ≤C‖x‖. (6.2.6)

Conversely, if T ∈ B(H), insertion of x = en shows that |λn| ≤ ‖T‖ .
Given that λn→ 0, there is a sequence of compact operators (they have

finite rank)
Tkx = ∑

n≤k
λn(x |en )en. (6.2.7)

T is compact because Tk→ T in B(H),

‖(T −Tk)‖2 = sup
‖x‖≤1

∑
n>k
|λn|2|(x |en )|2 ≤ sup

n>k
|λn|2↘ 0. (6.2.8)

If λn 6→ 0 there exist an ε > 0 and n1 < n2 < .. . such that |λnk |> ε for all
k. Since (enk) is orthonormal,

‖Ten j −Tenk‖
2 = ‖λn jen j −λnkenk‖

2 = |λn j |
2 + |λnk |

2 ≥ 2ε
2, (6.2.9)

so (Tenk) is not a Cauchy sequence. Therefore T ’s image of the unit ball in
H does not have compact closure, and T is thus not compact. �

Notice that T given by (6.2.2) is diagonalised in the sense that the co-
efficient in front of en only contains (x |en ), the nth coordinate of x with
respect to to basis (ek).

It will be seen later in the so-called Spectral Theorem, that every self-
adjoint, compact operator actually has the particularly nice form in (6.2.2).

As direct application of Theorem 6.2.4, this chapter is concluded with a
useful construction of a compact operator.
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EXAMPLE 6.2.5. Consider the Hilbert space `2(N) and the subspace

h1(N) = {(xk) ∈ `2(N) |∑(1+ k2)|xk|2 < ∞} (6.2.10)

(met in connection with Fourier series in Example 5.2.3). It is straightfor-
ward to see that h1 is a Hilbert space with respect to the norm

‖(xk)‖h1 = (∑(1+ k2)|xk|2)1/2. (6.2.11)

Clearly the injection h1 ↪→ `2 is continuous, for ‖(xk)‖`2 ≤ ‖(xk)‖h1 ;
but the identity I : h1→ `2 is actually even compact, and for this reason h1

is said to be compactly embedded into `2 .
The compactness follows from Theorem 6.2.4; indeed K given by

K(xk) = ((1+ k2)−1/2xk), (6.2.12)

is compact in `2 because (1+k2)−1/2→ 0 for k→∞; and K is an isometry
onto h1 , so K−1 : h1→ `2 is bounded. So, to any bounded sequence vn of
vectors in h1 , there is B > 0 for which

‖K−1vn‖`2 ≤ B for every n, (6.2.13)

and because vn = KK−1vn , where K is compact, there exists a subsequence
(vnp) converging in `2 . It follows that I is compact.





CHAPTER 7

Basic Spectral Theory

The idea behind spectral theory is that by representing the elements of
B(H) by a suitable subset of C, called the spectrum, one can get a useful
overview of the complicated behaviour such operators may have. This is
in analogy with the spectral lines used to describe the wavelengths entering
various (whitish) light rays.

However, in Linear Algebra an n×n-matrix is usually seen as an oper-
ator Cn→Cn and its spectrum consists of its complex eigenvalues (in order
that characteristic roots in C \R do not require special treatment). Hence
the above-mentioned idea is only really fruitful if spectra of complex num-
bers are allowed; and since only normal matrices are unitarily equivalent to
diagonal matrices, strong results can only be expected for certain subclasses
of B(H). Indeed, this leads one to the Spectral Theorem for self-adjoint,
compact operators in Theorem 7.2.3 below.

At no extra cost, the general definitions and basic results, even for un-
bounded operators, will be given first.

7.1. On spectra and resolvents

Let in the following H be a complex Hilbert space and T be a linear
operator in H , that is D(T ) ⊂ H . Recall that Z(T ) denotes the null-space
of T whilst R(T ) stands for its range.

It is a central notion to study the following operator Rλ (T ), which is
parametrised by certain λ ∈ C:

Rλ (T ) = (T −λ I)−1. (7.1.1)

More precisely, this is defined whenever it makes sense, so λ should be
such that T −λ I is injective and then D(Rλ (T )) = R(T −λ I).

Since T need not be everywhere defined, it might be worthwhile to write
out (7.1.1) in all details: the requirement is that

Rλ (T )(T x−λx) = x for every x ∈ D(T ) (7.1.2)

(T −λ I)Rλ (T )y = y for every y ∈ R(T −λ I). (7.1.3)

The operator Rλ (T ) is called the resolvent of T , because it (re)solves the
problem of finding, for given data y ∈ H , those x ∈ H for which

T x−λx = y. (7.1.4)
43
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Indeed, provided that λ is such that T − λ I is injective, any solution to
this equation is unique, and it exists if and only if y ∈ D(Rλ (T )); in the
affirmative case it is given by x = Rλ (T )y; cf (7.1.3).

For simplicity Rλ := Rλ (T ) when T is fixed. It is clear from the above
that Rλ exists if and only if λ is not an eigenvalue of T . However, in order
to have a name for those λ for which Rλ has nice properties, it is customary
to introduce two sets:

DEFINITION 7.1.1. 1◦ . A complex number λ belongs to the resolvent
set of T , denoted by ρ(T ), if Rλ exists, is densely defined and bounded (on
its domain R(T −λ I)).

2◦ . The spectrum of T is the complement of ρ(T ), ie σ(T ) := C\ρ(T ).

EXAMPLE 7.1.2. Even a simple case may be instructive: consider the
injection of a subspace IV : V ↪→ H , where V is dense in H (an often met
situation). Then it is clear that λ = 1 is an eigenvalue of IV because IV −
λ I ⊂ 0. In sharp contrast to this, any λ 6= 1 is in the resolvent set, Rλ (IV )
being multiplication by (1− λ )−1 on the dense set V (clearly Rλ is then
restriction to V of an element in B(H)).

For clarity it should be emphasised that Rλ for each λ ∈ ρ(T ) neces-
sarily has an extension by continuity to an operator in B(H). But when T
is closed, then Rλ itself is in B(H):

LEMMA 7.1.3. Let T be a closed linear operator in H and let λ ∈ ρ(T ).
Then Rλ is everywhere defined, ie D(Rλ ) = H.

PROOF. By the definition of resolvent set, it suffices to show that D(Rλ )
is closed. Let yn := (T −λ I)xn→ y. Since xn = Rλ yn and Rλ is bounded,
clearly (xn) is a Cauchy sequence. Hence xn → x for some x ∈ H . Since
T −λ I is closed too, x ∈D(T −λ I) with (T −λ I)x = y. Ie y∈D(Rλ ). �

Some authors specify ρ(T ) by the requirement that Rλ (T ) should be-
long to B(H); since most operators in the applications are closed (if not
bounded), this usually gives the same subset of C by the above lemma.
However, the present definition is slightly more general and flexible.

In view of Definition 7.1.1 there are three different reasons why a given
number λ could belong to σ(T ).

• Either T −λ I is not injective.
• Or T − λ I is injective but far from surjective, in the sense that

D(Rλ ) 6= H .
• Or, finally, T − λ I is injective with dense range, so that Rλ is

densely defined; but Rλ is unbounded.
In the third case the criterion for boundedness of Rλ is whether there exists
some constant cλ > 0 such that

‖(T −λ I)x‖ ≥ cλ‖x‖ for all x ∈ D(T ). (7.1.5)

Corresponding to these three possibilities, one says that λ is an eigen-
value of T , or belongs to σp(T ), the so-called point spectrum of T ; or that
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λ is in the residual spectrum of T written σres(T ); respectively that λ is in
the continuous spectrum of T , ieσcont(T ).

This gives a disjoint decomposition of σ(T ) as

σ(T ) = σp(T )∪σres(T )∪σcont(T ). (7.1.6)

One should observe that Rλ (T ) is defined on the set C\σp(T ), so that
it also makes sense as an operator in H for λ in σres(T )∪σcont(T ). The
resolvent set ρ(T ) is the smaller set where Rλ is densely defined and (7.1.5)
holds.

To demystify the notion of spectrum, it is shown now that one can read
off immediately what σ(T ) is when T is diagonalisable:

PROPOSITION 7.1.4. Let T be an operator in a Hilbert space H, with
orthonormal basis (en)n∈N , defined from a (not necessarily bounded) se-
quence (λn) in F as in Theorem 6.2.4; that is

T x =
∞

∑
n=1

λn(x |en )en. (7.1.7)

Then Λ = {λn | n ∈ N} equals the point spectrum of T , ie σp(T ) = Λ; the
residual spectrum is empty; and σcont(T ) = Λ̄\Λ. Consequently σ(T ) = Λ̄.

PROOF. Clearly Λ⊂ σp(T ), so let λ ∈ C\Λ. For every x ∈ D(T )

T x−λx =
∞

∑
n=1

(λn−λ )(x |en )en. (7.1.8)

So if T x−λx = 0, then (λ −λn)(x |en ) = 0 for every n, and this entails
x⊥ span(en), hence x = 0; so λ is not an eigenvalue, ie σp(T ) = Λ. Using
this for T ∗ , it follows for λ ∈ C\Λ that λ̄ /∈ σp(T ∗), ie Z(T ∗− λ̄ I) = (0);
whence H = R(T −λ I). This means that σres(T ) = /0.

Let cµ = inf{|µ−λ | | λ ∈ Λ} for µ ∈ C. Notice that cµ > 0 is equiv-
alent to µ /∈ Λ̄. For all x ∈ D(T ) it is seen from (7.1.8) that

‖T x−µx‖ = (∑ |λn−µ|2|(x |en )|2)1/2 ≥ cµ‖x‖. (7.1.9)

Clearly this property cannot hold for any constant c > cµ . So if µ ∈ Λ̄\Λ

it follows that µ belongs to neither σp(T ) nor σres(T ), but since cµ = 0 it
holds that µ ∈ σcont(T ) (cf (7.1.5)). Conversely, if µ is an element of the
continuous spectrum, then by (7.1.5) it holds that cµ = 0, so µ ∈ Λ̄; and
µ /∈ Λ since it is not an eigenvalue. �

It is a fascinating programme of spectral theory to prove that the spec-
trum of an operator “behaves the like the operator does”. To explain this,
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consider the following types of operators in B(H):

T self-adjoint, T ∗ = T (7.1.10)

U unitary, U∗U = UU∗ = I (7.1.11)

P projection, P2 = P (7.1.12)

T positive, (T x |x)≥ 0 for every x ∈ H. (7.1.13)

The idea is to make replacements T  λ and T ∗ λ̄ , whereby λ ∈ σ(T )
can be arbitrary. For the four cases above this would give

λ̄ = λ , ie σ(T )⊂ R (7.1.14)

λ̄λ = 1, ie σ(U)⊂ {z ∈ C | |z|= 1} (7.1.15)

λ
2−λ = 0, ie σ(P)⊂ {0,1} (7.1.16)

λ ≥ 0, ie σ(T )⊂ [0,∞[ . (7.1.17)

These inferences are actually true, but in this chapter only the first case will
be treated, for simplicity’s sake.

REMARK 7.1.5. The four types above are all normal operators; an oper-
ator N ∈ B(H) is normal if it commutes with its adjoint, ie if N∗N = NN∗ .
At first sight, it is surprising that the above replacements for a normal oper-
ator gives λ̄λ = λλ̄ , which is a tautology in all of C. But if N is normal so
is N + zI for all z ∈C so that the class of normal operators can have spectra
everywhere in C (and intuitively it is clear that if an operator class C does
not have this property, then C is not a maximal class to develop a spectral
theory for). However, for simplicity focus will be restrained to the much
smaller class of self-adjoint compact operators here.

7.1.1. The self-adjoint case. For an operator T in a Hilbert space H
to be self-adjoint it is necessary that the adjoint should be defined, whence
that D(T ) should be dense in H . Denseness of D(T ) assumed throughout
this section; clearly it then holds that

R(T −λ I)⊥ = Z(T ∗− λ̄ I) for λ ∈ C. (7.1.18)

For spectra one has the elementary observation that any eigenvalue of
a self-adjoint operator T is real, ie σp(T ) ⊂ R. Indeed, if T x = λx for a
non-trivial x, say with ‖x‖ = 1,

λ̄ = (x |λx) = (x |T ∗x) = (T x |x) = λ . (7.1.19)

Moreover, for T = T ∗ the eigenspaces are orthogonal; ie Z(T − λ I) ⊥
Z(T − µI) for λ 6= µ . For if T x = λx and Ty = µy, then λ (x |y) =
(x |T ∗y) = µ(x |y), so that x⊥ y.

Furthermore, for T = T ∗ the right hand side of (7.1.18) equals Z(T −
λ I) for every eigenvalue. This implies the fundamental facts in
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PROPOSITION 7.1.6. For a densely defined operator T in H

T = T ∗ =⇒

{
σres(T ) = /0,

σ(T )⊂ R.
(7.1.20)

PROOF. For λ /∈σp(T ) it follows from (7.1.18) that R(T−λ I) is dense,
whence σres(T ) = /0. Since T = T ∗ the number (T x |x) is always real, so
(4.1.9) gives for real β

‖T x− iβx‖2 = ‖T x‖2 +‖βx‖2 +2Reiβ (T x |x)≥ |β |2‖x‖2. (7.1.21)

This formula also applies to T −αI for α ∈ R, since this is self-adjoint;
therefore T − (α + iβ )I with α ∈ R, β 6= 0 is injective and has dense
range (since σres(T ) = /0 has just been proved) and bounded inverse. Hence
ρ(T )⊃ (C\R). �

If λ ∈ C is such that there exists a sequence (xn) in H with ‖xn‖ = 1
for every n and such that ‖T xn−λxn‖ → 0, the xn are called approximate
eigenvectors corresponding to λ , although λ need not be an eigenvalue.
But in the self-adjoint case, the approximate eigenvectors characterise the
spectrum:

PROPOSITION 7.1.7. Let T be a self-adjoint operator in a Hilbert space
H. Then λ ∈ σ(T ) if and only if there is a sequence (xn) of approximate
eigenvectors corresponding to λ .

PROOF. If such a sequence exists, then either λ ∈ σp(T ) or (7.1.2) im-
plies that Rλ is unbounded, so λ ∈ σ(T ). Conversely, given λ in σp(T ),
the claim is trivial for the sequence may be taken constantly equal to a nor-
malised eigenvector. Otherwise λ ∈ σcont(T ) (cf Proposition 7.1.6), and

0 = inf
{
‖T x−λx‖

∣∣ x ∈ H, ‖x‖ = 1
}

(7.1.22)

by (7.1.5); hence there exists (xn) as desired. �

7.1.2. Examples. First a perspective is put on linear algebra from the
present point of view. Secondly it will be seen that eg differential operators
can have spectra that are much larger sets than the spectra met in linear
algebra; indeed even σ(T ) = C is possible. Lastly, also bounded operators
may have uncountable spectra.

EXAMPLE 7.1.8. Any linear map T : Cn→ Cn may be represented by
a matrix, say with respect to the natural basis in Cn; the eigenvalues of T
are precisely the characteristic roots of the matrix. Repeating eigenvalues
according to the multiplicities, σp(T ) = {λ1, . . . ,λn }. When λ is not an
eigenvalue, T −λ I is injective and hence a surjection; moreover, Rλ (T ) is
in B(Cn), so λ is in the resolvent set then. Altogether T has pure point
spectrum and σ(T ) = {λ1, . . . ,λn } whilst ρ(T ) = C\{λ1, . . . ,λn }.
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EXAMPLE 7.1.9. Consider ∂ = d
dt with domain C1([0,1]) as an opera-

tor in H = L2(]0,1[). Clearly (∂ −λ I)eλ t = 0 for every λ ∈ C; therefore
σp(∂ ) = C so that ∂ has pure point spectrum. The resolvent set is empty,
ρ(∂ ) = /0, for the spectrum of ∂ fills the entire complex plane.

EXAMPLE 7.1.10 (The one-sided shift operator). In B(`2(N)) there is
an operator T given by

T (x1,x2,x3, . . .) = (x2,x3, . . .). (7.1.23)

For every λ ∈C and x = (xn)∈ `2 , the equation (T−λ I)x = 0 is equivalent
to the system where x j+1 = λx j for every j ∈N. If only those x with x1 = 1
are considered, then this is equivalent to

x j+1 = λ
j for every j ∈ N; (7.1.24)

the sequence defined by this is in `2 if and only if ∑
∞
j=1 |λ j−1|2 < ∞, which

is the case precisely when |λ |< 1. It follows from this analysis that λ is an
eigenvalue of T if and only if |λ |< 1; hence σp(T ) is the open unit disk in
C.

Because ‖T x‖ = ‖x‖ holds if x1 = 0, it follows that ‖T‖ = 1. As a
consequence of results proved below, σ(T ) is a closed set contained in
{z ∈ C | |z| ≤ 1}. It was found above that σ(T ) is dense in this, so σ(T )
equals the closed unit disk.

7.1.3. Spectral theory for B(H). For an operator T ∈ B(H), where H
is a Hilbert space, there are a few facts on spectra and resolvent sets that
may be established without any further assumptions. Such results are very
convenient eg for the determination of specific spectra, as seen in Exam-
ple 7.1.10 above.

Notice that since any T ∈ B(H) is closed, Rλ (T ) ∈ B(H) for every
λ ∈ ρ(T ) because of Lemma 7.1.3.

PROPOSITION 7.1.11. Let H be a Hilbert space and T ∈ B(H). Then
the resolvent set of T is an open subset of C and the map ρ(T )→ B(H)
given by λ 7→ Rλ (T ) is continuous in the norm topology of B(H).

PROOF. If ρ(T ) = /0, it is open; so let µ ∈ ρ(T ). Then Rµ ∈ B(H) and
(T −µI)Rµx = x for every x ∈ H . Therefore every λ ∈ C gives

T −λ I = T −µI− (λ −µ)I = (T −µI)(I− (λ −µ)Rµ). (7.1.25)

Here the right hand side has an inverse in B(H) if both factors have that; by
the Neumann series this is the case if

‖(λ −µ)Rµ‖ < 1. (7.1.26)

This holds for all λ such that |λ−µ|< ‖Rµ‖−1 , ie in a ball around µ . Thus
ρ(T ) is shown to consist of interior points only.
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When |λ−µ|< ‖Rµ‖−1 , one can invert both sides of the identity above
and subtract Rµ ; in this way,

‖Rλ −Rµ‖ = ‖
∞

∑
k=1

(λ −µ)kRk+1
µ ‖ ≤

|λ −µ|‖Rµ‖2

1−|λ −µ|‖Rµ‖
. (7.1.27)

This implies that ‖Rλ −Rµ‖ → 0 for λ → µ , as claimed. �

One can also prove that λ 7→ Rλ is holomorphic (in a specific sense),
but details are omitted here.

It is easy to imagine that boundedness of an operator T on H should
have consequences for the spectrum of T ; eg it would be natural to expect
that σ(T ) must be bounded for bounded T . But more than that holds:

PROPOSITION 7.1.12. Let T ∈ B(H) for some Hilbert space H. Then
σ(T ) is a compact set in C and it is contained in the closed ball of radius
‖T‖ and centre 0.

PROOF. In view of Proposition 7.1.11, compactness of σ(T ) follows if
it can be shown to be bounded. So it suffices to show that every λ with
|λ | > ‖T‖ is in ρ(T ). But for such λ the operator T −λ I = −λ (I− 1

λ
T )

has a bounded inverse, since 1
λ

T has norm less than 1. �

The ball referred to in this result is often called the norm ball of T .
There is another natural ball in C to consider for T ∈ B(H), namely the
smallest ball centred at 0, which contains σ(T ). To make this precise we
need

DEFINITION 7.1.13. For an operator T in a Hilbert space H , the spec-
tral radius of T is the number

r(T ) = sup{|λ | | λ ∈ σ(T )}. (7.1.28)

For T ∈B(H) it is seen from Proposition 7.1.12 that r(T )≤‖T‖ . More-
over, the supremum is attained because σ(T ) is compact, so B(0,r(T )) ⊃
σ(T ); no smaller ball has this property, whence B(0,r(T )) is the smallest
ball containing the spectrum of T , as desired. Ie

r(T ) = inf{µ > 0 | σ(T )⊂ B(0,µ)}. (7.1.29)

REMARK 7.1.14. For an operator T in B(H) that is normal, ie T ∗T =
T T ∗ , it is a cornerstone of the theory that the two numbers are equal:

T is normal =⇒ r(T ) = ‖T‖. (7.1.30)

This result has many applications, eg in the spectral theorem of normal
operators (and also in applied mathematics).

It would however lead too far to prove this here. But for self-adjoint
compact operators, it will be proved as a substitute in the next section that
either ±‖T‖ is an eigenvalue (implying the above formula for such opera-
tors). Using this it is possible to give a relatively elementary proof of the
spectral theorem for such operators anyway.
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7.2. Spectra of compact operators

The main goal of this section is to prove the Spectral Theorem of com-
pact, self-adjoint operators on Hilbert spaces.

It will be clear further below that compact self-adjoint operators have
spectra consisting mainly of eigenvalues. Therefore it is natural to observe
already now that these (except possibly for 0) always have finite multiplic-
ity.

PROPOSITION 7.2.1. Let T be a compact operator on a Hilbert space
H. For every eigenvalue λ 6= 0 the corresponding eigenspace

Hλ =
{

x ∈ H
∣∣ T x = λx

}
(7.2.1)

has finite dimension, ie dimHλ < ∞.

PROOF. Assuming that Hλ has a sequence of linearly independent vec-
tors, there is even an orthonormal sequence (xn) in Hλ . By Pythagoras,
‖xn+k− xn‖ =

√
2, and since T |Hλ

just multiplies by λ 6= 0, the sequence
(T xn) has no fundamental subsequences. Therefore T is not compact. �

The next result is essential for the proof of the Spectral Theorem. It
holds quite generally, cf Remark 7.1.14, but in the context of compact op-
erators there is a rather elementary proof.

PROPOSITION 7.2.2. When T is a compact, self-adjoint operator on a
Hilbert space, then the spectral radius formula is valid, that is

r(T ) = ‖T‖, (7.2.2)

for either λ = ‖T‖ or λ =−‖T‖ is an eigenvalue of T . Moreover,

‖T‖ = sup
{
|(T x |x)|

∣∣ x ∈ H, ‖x‖ = 1
}

(7.2.3)

and the supremum is attained for an eigenvector in (at least) one of the
spaces H±‖T‖ .

PROOF. The expression for ‖T‖ was shown in Lemma 6.1.2, and it
suffices to show that the supremum is attained in the claimed way, for then
σ(T ) contains one of ±‖T‖ , so that ‖T‖ ≤ r(T ).

Take first a normalised sequence (xn) such that |(T xn |xn )| → ‖T‖ .
Then (T xn |xn ) has an accumulation point in {−‖T‖,‖T‖ }. Denoting any
of these by λ and extracting a subsequence (yn) for which (Tyn |yn )→ λ ,
it is seen that

‖Tyn−λyn‖2 = ‖Tyn‖2 + |λ |2−2Reλ (Tyn |yn )

≤ 2λ
2−2λ (Tyn |yn )↘ 0. (7.2.4)

Therefore (yn) is a sequence of approximate eigenvectors corresponding to
λ , whence λ ∈ σ(T ).

It follows that λ is an eigenvalue; for T = 0 this is trivial, so assume that
λ > 0. Because T is compact, it may be assumed that (yn) is such that (Tyn)
converges. However, lim(Tyn− λyn) = 0 so also (yn) converges, say to
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some z∈H . By continuity ‖z‖= 1 and T z = λ z, so λ is an eigenvalue; and
(T z |z) = λ so that the supremum is a maximum in the claimed way. �

THEOREM 7.2.3 (Spectral Theorem for Compact Self-adjoint Opera-
tors). Let H be a separable Hilbert space and T ∈ B(H) a compact, self-
adjoint operator. Then H has an orthonormal basis (e j) j∈J , with index set
J ⊂ N, of eigenvectors for T with corresponding eigenvalues λ j ∈ R. This
means that

∀x ∈ H : x = ∑
j
(x |e j )e j ∧ T x = ∑

j
λ j(x |e j )e j. (7.2.5)

In the affirmative case either dimH < ∞, or it holds that λ j → 0 and
σ(T ) = {0}∪{λ j | j ∈ N}.

For H of finite dimension, the statement is clearly that any T = T ∗ has

a diagonal matrix

(
λ1 0

. . .
0 λn

)
with respect to a certain basis.

REMARK 7.2.4. When H is infinite dimensional, T can either have fi-
nite rank or the non-zero λ j form a sequence which may be numbered such
that

|λ1| ≥ |λ2| ≥ · · · ≥ |λ j| ≥ · · ·> 0. (7.2.6)
With this convention (7.2.5) would not be valid if Z(T ) 6= (0) (the eigen-
value λ = 0 will not be counted by (7.2.6)). As a remedy one can use
H = Z(T )⊕Z(T )⊥ to add a vector x0 ∈ Z(T ) to the expansion of x, for in
T x = ∑ j λ j(x |e j )e j only the λ j 6= 0 need enter.

PROOF. 1◦ . The last claim is a consequence of Proposition 7.1.4.
2◦ . Notice that if Q⊂ H is a closed, T -invariant subspace, then T |Q is

both self-adjoint and compact in B(Q). Indeed, (T x |y) = (x |Ty) holds in
particular for x, y ∈ Q, and if B ⊂ Q is a bounded set then T (B) ⊂ Q∩K
for some compact set K ⊂ H ; and Q∩K is compact since Q is closed.

3◦ . Consider the case in which, for some n ∈ N, there are eigen-
values |λ1| ≥ · · · ≥ |λn| with orthonormalised eigenvectors e1 ,. . . ,en to-
gether with closed, T -invariant subspaces Q1 ⊃ ·· · ⊃ Qn fulfilling Qk =
span(e1, . . . ,ek)⊥; and moreover, for k = 1,. . . ,n,

|λk|= max
{
|(T x |x)|

∣∣ x ∈ Qk−1, ‖x‖ = 1
}
. (7.2.7)

Observe that with Q0 = H this actually holds for n = 1, since firstly Propo-
sition 7.2.2 shows that (λ1,e1) exists and fulfils (7.2.7), secondly Q1 =
{e1 }⊥ is T -invariant because (T q |e1 ) = λ1(q |e1 ) = 0 holds for q ∈ Q1 .

Now Qn = {0} would imply H = span(e1, . . . ,en), and then (7.2.5)
would be evident. And if Qn 6= {0}, Proposition 7.2.2 applies to T |Qn in
view of 2◦ , and this gives a pair (λn+1,en+1) in R×Qn fulfilling (7.2.7)
for k = n + 1 and Ten+1 = λn+1en+1 , ‖en+1‖ = 1. Then the subspace
Qn+1 = span(e1, . . . ,en+1)⊥ is closed and T -invariant, and (7.2.7) implies
that |λn+1| ≤ |λn| while (e1, . . . ,en+1) is orthonormal (since en+1 ∈ Qn).
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4◦ . For dimH = ∞ one may by 3◦ define λn , en inductively so that
(|λn|) is a decreasing, non-negative hence convergent sequence. But λn =
‖Ten‖ → 0, because T is compact. σ(T ) is closed so it contains the limit
0.

5◦ . The main case is when |λn| > 0 for all n ∈ N. Then H = M⊕M⊥

for M = span{en | n ∈ N}. Here M⊥ = Z(T ), for since M⊥ ⊂ ∩nQn it
holds for any y ∈M⊥ that

∀n ∈ N : ‖Ty‖ ≤ ‖T‖B(Qn)‖y‖ ≤ |λn+1|‖y‖ ↘ 0, (7.2.8)

so T |M⊥ = 0; conversely any z ∈ Z(T ) equals m+m⊥ for m ∈M and m⊥ ∈
M⊥⊂ Z(T ), and here m = 0 because m = ∑αnen yields 0 = T z = ∑λnαnen
so that λnαn = 0 for all n.

Since M⊥ is separable (it is closed), it has a countable orthonormal basis
{ f1, f2, . . .}. The orthonormal set {e1, f1,e2, f2, . . .} is a basis for H , for if
x = m+ z with m ∈M and z ∈ Z(T ), then m = ∑αnen and z = ∑βn fn; then
the triangle inequality gives

x = m+ z = lim
n→∞

n

∑
j=1

(α je j +β j f j). (7.2.9)

(It is understood that the terms β j f j only occur for j ≤ dimM⊥ .) Corre-
sponding to this basis there are the eigenvalues {λ1,0,λ2,0, . . .}. Renu-
merating both this and the basis for H one obtains (λn)n∈N and (en)n∈N .
The first part of (7.2.5) has just been proved above, but for x ∈ H ,

T (
∞

∑
j=1

(x |e j )e j) = lim
n→∞

n

∑
j=1

λ j(x |e j )e j =
∞

∑
j=1

λ j(x |e j )e j, (7.2.10)

so also the second part of (7.2.5) holds.
6◦ Finally, T has finite rank if and only if there is some N such that

λn = 0 for n > N . One may then proceed as in 5◦ with the modification that
M should equal span{e1, . . . ,eN }; details are left for the reader. �

It is clear now that (if the case dimH < ∞ is excluded) a self-adjoint,
compact operator T on H always has 0 as a very special point of it spec-
trum: indeed, the eigenvalues λ 6= 0 are isolated and have finite-dimensional
eigenspaces Hλ , by Proposition 7.2.1 — but 0 has infinite multiplicity if
dimZ(T ) = ∞, eg if rankT is finite, and in any case it is an accumulation
point since λn→ 0, also if Z(T ) = (0). Therefore the point 0 has a character
rather different from the rest of σ(T ) (it belongs to σess(T ), the so-called
essential spectrum of T ).

In view of this the Spectral Theorem conveys two messages, one about
the structure of σ(T ) and the second being that such T may be diago-
nalised; cf (7.2.5).

The Spectral Theorem has various generalisations, eg a version for nor-
mal operators T ∈ B(H), but in such cases σ(T ) is usually uncountable, so
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that the sum in (7.2.5) needs to be replaced by certain integrals. The reader
may consult the literature for this.

EXAMPLE 7.2.5. As an application of the Spectral theorem, one can for
a compact, self-adjoint operator T ∈ B(H) discuss the solvability of

(T −λ I)x = y (7.2.11)

for given data y ∈ H . The interesting case is dimH = ∞, and additionally
λ 6= 0 is assumed (for even if T−1 exists it is unbounded).

In the notation of Theorem 7.2.3, (7.2.11) is equivalent to
∞

∑
n=1

(λn−λ )(x |en )en =
∞

∑
n=1

(y |en )en, (7.2.12)

hence to
∀n ∈ N : (λn−λ )(x |en ) = (y |en ). (7.2.13)

Since ( 1
λn−λ

) is a bounded sequence for λ /∈ σ(T ) and ((y |en ))∈ `2 , equa-
tion (7.2.11) is therefore uniquely solved by

x = ∑
λn 6=λ

(y |en )
λn−λ

en. (7.2.14)

This reflects the solution formula x = Rλ (T )y, valid for λ ∈ ρ(T ).
For λ ∈ σ(T ) \ {0} it is necessary for solvability of (7.2.11) that y ∈

R(T −λ I), ie y ∈ Z(T − λ I)⊥; with Z(T − λ I) = span(ei1 , . . . ,eiN ) this
means

(y |ei j ) = 0 for j = 1, . . . ,N. (7.2.15)
This condition is also sufficient, for the right hand side of (7.2.12) is then
a sum over n /∈ { i1, . . . , iN }, ie over λn 6= λ , so that (7.2.14) also defines a
solution of (7.2.11) in this case (seen by simple insertion). This reflects the
invertibility of T −λ I on Z(T −λ I)⊥ .

The result in (7.2.14) is remarkable because it is a solution formula for
the “infinitely many equations with infinitely many unknowns” in (7.2.11).
(Notice that the discussion does not carry over to λ = 0, because the se-
quence ( 1

λn−λ
) is unbounded then.)

The reader may have noticed that the question of the closedness of
R(T −λ I) not only appeared implicitly above, but also disappeared again.
This indicates that the next statement should be true.

LEMMA 7.2.6. Let T = T ∗ be a compact operator on a Hilbert space
H and let λ 6= 0 be an eigenvalue. Then R(T −λ I) is closed in H.

PROOF. cλ := min{|µ − λ | | µ ∈ σ(T ) \ {λ}} > 0 since λ is not an
accumulation point of σ(T ). For a Cauchy sequence (yk) in R(T −λ I), let
(xk) be defined by means of (7.2.14). Then

‖xk− xm‖2 ≤ c−2
λ

∞

∑
n=1
|(yk− ym |en )|2 = c−2

λ
‖yk− ym‖2, (7.2.16)

so that xk converges to some x in H and yn→ (T −λ I)x. �
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Using this lemma and that H = R(T )⊕Z(T ∗), one can now most easily
derive a famous result.

EXAMPLE 7.2.7 (Fredholm’s Alternative). Let T be a self-adjoint, com-
pact operator on a separable Hilbert space H . For given data y ∈ H and
λ 6= 0, uniqueness of the solutions to

(T −λ I)x = y (7.2.17)

implies the existence of a solution x ∈ H . (This is the case if λ ∈ ρ(T ).)
Alternatively there are non-trivial solutions to the homogeneous equa-

tion (T −λ I)z = 0, and then there exist solutions x ∈ H of (7.2.17) if and
only if y⊥ Z(T −λ I). In the affirmative case the complete solution equals
x0 + Z(T −λ I) for some particular solution x0 of (7.2.17). (This holds for
λ ∈ σ(T ).)

Nowadays this conclusion is rather straightforward, but it was estab-
lished by Fredholm for integral operators around 1900, decades before the
notion of operators (not to mention their spectral theory) was coined in the
present concise form.

7.3. Functional Calculus of compact operators

Using the Spectral Theorem, it is now easy to give a precise meaning to
functions f (T ) of certain operators.

In order to do so, let B(σ(T )) denote the sup-normed space of bounded
functions σ(T )→ C.

THEOREM 7.3.1. Let T be a self-adjoint, compact operator on a sep-
arable Hilbert space H with an orthonormal basis (en) of H consisting of
eigenvectors of T , corresponding to eigenvalues λn in σ(T ).

Then there is an operator f (T ) in B(H) defined for arbitrary functions
f ∈ B(σ(T )) by

f (T )x = ∑
n

f (λn)(x |en )en. (7.3.1)

The map f 7→ f (T ) has the properties

‖ f (T )‖B(H) = ‖ f‖B(σ(T )) (7.3.2)

f (T )∗ = f̄ (T ) (7.3.3)

(λ f + µg)(T ) = λ f (T )+ µg(T ) (7.3.4)

f ·g(T ) = f (T )g(T ) (7.3.5)

for arbitrary f , g ∈ B(σ(T )) and λ , µ ∈ F.
For infinite dimensional H and f ∈ B(σ(T )),

f (T ) is compact ⇐⇒ lim
t→0

f (t) = 0 ∧ [ f (0) = 0 if dimZ(T ) = ∞].

(7.3.6)
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Since B(σ(T )) is a Banach algebra with involution (complex conju-
gation, f 7→ f̄ ), the content is that the map f 7→ f (T ) is an isometric ∗-
isomorphism of B(σ(T )) on a subalgebra of B(H).

PROOF. That f (T ) is well defined by (7.3.1) was seen earlier in Theo-
rem 6.2.4. When dimH = ∞ the Spectral Theorem gives λn→ 0 for n→∞,
and the criterion for compactness is that f (λn)→ 0. So if f (T ) is com-
pact limt→0 f (t) = 0 by the finite multiplicity of eigenvalues λn 6= 0; and
f (0) = 0 if dimZ(T ) = ∞, for ( f (λn)) accumulates at f (0) then. Con-
versely any ball centred at 0∈C contains f (λn) eventually, under the stated
conditions.

The relation (7.3.2) follows from Theorem 6.2.4, and (7.3.4) is derived
from (7.3.1) by the calculus of limits. Concerning (7.3.3), note that Parse-
val’s identity and continuity of the inner product entails

( f (T )x |y) = ∑ f (λn)(x |en )(y |en ) = (x | f̄ (T )y). (7.3.7)

Moreover, since f (λn)g(λn) = f ·g(λn),

f (T )g(T )x = ∑ f (λn)(g(T )x |en )en

= ∑ f ·g(λn)(x |en )en = f ·g(T )x, (7.3.8)

so the multiplicativity follows. �

To elucidate the efficacy of the functional calculus, it should suffice to
note that it immediately gives the solution formula (7.2.14). Indeed, for
λ 6= 0 the function

f (t) =

{
1

t−λ
for t ∈ σ(T ), t 6= λ ,

0 for t = λ (void for λ ∈ ρ(T )),
(7.3.9)

belongs to f ∈ B(σ(T )), and if x = f (T )y for some y ⊥ Z(T −λ I), then
(7.3.1) amounts to (7.2.14) and in addition

(T −λ I)x = ∑
λn 6=λ

f (λn)(y |en )(λn−λ )en = y (7.3.10)

so that x = f (T )y solves (7.2.11) (obviously uniquely for λ ∈ ρ(T )).

Since it is clear from (7.3.1) that each f (λn) is an eigenvalue of f (T ),
it is not surprising that the image of f , that is f (σ(T )), is closely related to
the spectrum of f (T ):

COROLLARY 7.3.2 (The Spectral Mapping Theorem). Under hypothe-
ses as in Theorem 7.3.1,

σ( f (T )) = f (σ(T )) (7.3.11)

for all continuous f , that is for f ∈C(σ(T )).

It should be mentioned that if σ(T ) is a finite set, any function σ(T )→
C is automatically both bounded and continuous, so that the continuity as-
sumption on f would be void.
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PROOF. For λ /∈ f (σ(T )) the function g(t) = ( f (t)−λ )−1 belongs to
C(σ(T )), so λ ∈ ρ( f (T )) since (7.3.5) gives eg

g(T )( f (T )−λ I) = g · ( f −λ )(T ) = I. (7.3.12)

Together with the observation before the corollary this shows that

f (σp(T ))⊂ σ( f (T ))⊂ f (σ(T )). (7.3.13)

The case σ(T ) = σp(T ) is now obvious. Otherwise σ(T ) = {0}∪σp(T ),
in which case λn→ 0. Then f (λn)→ f (0) by the continuity, whence

f (σ(T )) = f (σp(T ))∪{ f (0)}= f (σp(T )). (7.3.14)

Since σ( f (T )) is closed, these formulae imply that σ( f (T )) = f (σ(T )).
�

It is clear that the assumption that f should be continuous is essential
for the Spectral Mapping Theorem, for if

T (x1,x2, . . .) = (x1, . . . ,
xn
n , . . .) on `2, (7.3.15)

then σ(T ) = {0}∪{ 1
n | n ∈ N} so that f = 1]0,∞[ gives

f (σ(T )) = {0,1} 6= {1}= σ(I) = σ( f (T )). (7.3.16)

The theory extends in a natural way to so-called normal compact opera-
tors, but it requires more techniques. The interested reader is referred to the
literature, eg [Ped89].

7.4. The Functional Calculus for Bounded Operators

For a bounded, self-adjoint operator T ∈B(H) there is also a functional
calculus as exposed in eg. [RS80, Thm. VII.1].

For this one should note that inside C(σ(T )) the set P , consisting of all
restrictions of polynomials to σ(T ), is a dense set. This was seen in [Ped00]
in case σ(T ) is an interval of R; more generally, σ(T )⊂R since T is self-
adjoint, and any continuous function f on σ(T ) can then be extended to an
interval (by Tietze’s theorem [Ped89, 1.5.8]) and thereafter approximated.
(One can also apply the general Stone–Weierstrass theorem, although this
requires more efforts to establish first.)

In this set-up, the Spectral Mapping Theorem (7.3.2) is still valid, how-
ever the proof is omitted in [RS80] so one is given here:

PROPOSITION 7.4.1. For a self-adjoint operator T ∈ B(H),

σ( f (T )) = f (σ(T )) (7.4.1)

for all f ∈C(σ(T )).
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PROOF. σ( f (T )) ⊂ f (σ(T )) follows since (7.3.12) also holds here.
Given that λ = f (µ) for some µ ∈ σ(T ), approximative eigenvectors are
contructed as follows. To each ε > 0 there is a polynomial P such that
| f (x)−P(x)| ≤ ε/3 for all x ∈ σ(T ). One can assume that f and P are
real-valued for otherwise the following argument applies to the real and
imaginary parts. Because (7.4.1) is known to hold for f = P, the number
P(µ) is in σ(P(T )). Since P is real, P(T )∗ = P(T ) and there is then (cf.
the lectures) a unit vector x so that

‖(P(T )−P(µ)I)x‖ ≤ ε/3. (7.4.2)

Since f 7→ f (T ) is isometric, this leads to the conclusion that ‖( f (T )−
λ I)x‖ ≤ 2ε/3+‖(P(T )−P(µ)I)x‖ ≤ ε . Hence λ ∈ σ( f (T )). �





CHAPTER 8

Unbounded operators

The purpose of this chapter is to take a closer look at the unbounded
operators on Hilbert spaces and to point out some features that are useful
for the applications to classical problems in Mathematical Analysis.

8.1. Anti-duals

For a topological vector space V , the space of continuous linear func-
tionals is denoted by V ′ . A functional ϕ : V → F is called conjugate (or
anti-) linear if ϕ is additive and for all α ∈ F and x ∈V ,

ϕ(αx) = ᾱϕ(x). (8.1.1)

The anti-dual space V ∗ consists of all anti-linear functionals on V ; it is
handy in the following.

Clearly V ∗ is a subspace of the vector space F (V,F) of all maps V→F.
Instead of redoing functional analysis for the anti-linear case, it is usually
simpler to exploit that the involution on F (V,F) given by f 7→ f̄ (complex
conjugation) maps the dual space V ′ bijectively onto V ∗ .

Using 〈 ·, · 〉 to denote also the action of anti-linear functionals, by defi-
nition of ϕ̄ ,

〈v, ϕ 〉= 〈v, ϕ̄ 〉 for all v ∈V, ϕ ∈V ∗. (8.1.2)

On the space V ∗ each vector v ∈V defines the functional ϕ 7→ ϕ(v), so that
V ⊂ (V ∗)′ . Hence it is natural to write (with interchanged roles)

ϕ(v) = 〈ϕ, v〉 for ϕ ∈V ∗, v ∈V. (8.1.3)

Using this for a Hilbert space H , it is easily seen that
• H∗ endowed with ‖ϕ‖ = sup{|〈x, ϕ 〉| | x ∈ H, ‖x‖ ≤ 1} is a Ba-

nach space isometrically, but anti-linearly isomorphic to H ′;
• there is a linear, surjective isometry Φ : H→ H∗ fulfilling

〈Φ(x), y〉= (x |y) for all x,y ∈ H. (8.1.4)

• H∗ is a Hilbert space since (ξ |η )H∗ := (Φ−1(ξ ) |Φ−1(η))H is
an inner product inducing the norm. H and H∗ are unitarily equiv-
alent hereby.

For each operator T ∈ B(H1,H), where H1 and H are two Hilbert
spaces over F, there is a unique T× ∈ B(H∗,H∗1 ) such that

〈T×x, y〉= (x |Ty) for x ∈ H, y ∈ H1. (8.1.5)
59
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Indeed, when T ∗ ∈ B(H,H1) is the usual Hilbert space adjoint of T and Φ1
is the isomorphism H1→ H∗1 , it holds for all x ∈ H , y ∈ H1 that (x |Ty) =
(T ∗x |y) = 〈Φ1(T ∗x), y〉; thus T× is uniquely determined as Φ1 ◦T ∗ .

8.2. Lax–Milgram’s lemma

Although unbounded operators on a Hilbert space in general are difficult
to handle, they are manageable when defined by sesqui-linear forms, for
there is a bijective correspondence (explained below) between the bounded
sesqui-linear forms on H and B(H); this allows one to exploit the bounded
case at the expense of introducing auxiliary Hilbert spaces.

In this direction Lax–Milgram’s lemma is the key result. There are,
however, several conclusions to be obtained under this name. But it all
follows fairly easily with just a little prudent preparation.

Let H be a fixed Hilbert space in the sequel. It is fruitful to commence
with the following three observations:

(I) It is useful to consider Hilbert spaces V densely injected into H ,

V ↪→ H densely, (8.2.1)

meaning that V is a dense subspace of H , that V is endowed with
an inner product ( · | ·)V such that V is complete and that there
exists a constant C fulfilling

‖v‖V ≥C‖v‖H for all v ∈V. (8.2.2)

(Ie, the inclusion V ⊂ H is algebraic, topological and dense.)
For example, when T is a densely defined, closed operator in

H , then V = D(T ) (with the graph norm) is a Hilbert space densely
injected into H .

(II) It is convenient to consider the anti-duals H∗ and V ∗ , for this gives
a linear isometry A : V →V ∗ such that

〈Av, w〉= (v |w)V for all v,w ∈V, (8.2.3)

identifying any v ∈ V with a functional in V ∗ . (In Example 8.2.3
below, A = −∆ that is linear, so the anti-linear isometry V → V ′

would be less useful.)
(III) To every sesqui-linear form s : V ×V → F which is bounded, ie

for some constant c

|s(v,w)| ≤ c‖v‖V‖w‖V for all v,w ∈V, (8.2.4)

there is a uniquely determined S ∈ B(V,V ∗) such that

s(v,w) = 〈Sv, w〉 for all v, w in V . (8.2.5)

Here s↔ S is a bijective correspondence, and ‖S‖ is the least pos-
sible c in (8.2.4).
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In connection with (I), note that when I : V ↪→ H densely, then

H∗ ↪→V ∗ densely. (8.2.6)

Indeed, applying (8.1.5) to the map I in (8.2.1), the adjoint I× is injective
and has dense range (as the reader should verify) in view of the formula

〈 I×x, v〉V ∗×V = (x | Iv)H = (x |v) for x ∈ H, v ∈V. (8.2.7)

Here H∗ is identified with H for simplicity’s sake; this gives also the very
important structure

V ⊂ H ⊂V ∗. (8.2.8)
One can therefore, to any s as in (III) above and the corresponding operator
S ∈ B(V,V ∗), define the associated operator T in H by restriction:

D(T ) = S−1(H) =
{

v ∈V
∣∣ Sv ∈ H

}
,

T = S|D(T ).

}
(8.2.9)

It is easy to see that (8.2.9) coincides with T as the operator given by

D(T ) =
{

u ∈V
∣∣ ∃x ∈ H∀v ∈V : s(u,v) = (x |v)H

}
Tu = x.

}
(8.2.10)

In these lines, the notation in the latter is explained by the former. Note that
by the density of V in H , any x with the above property is unique, so that
u 7→ x is a well defined map T .

To check that (8.2.10) coincides with (8.2.9), note in one direction that
for u ∈ D(T ) there is some x ∈ H so that Su = I×x, whence for v ∈ V , by
(8.2.7),

s(u,v) = 〈Su, v〉= 〈 I×x, v〉= (x |v)H . (8.2.11)
The other inclusion is shown similarly.

In general T above is an unbounded operator in H . It is called the
operator associated with the triple (H,V,s), or the Lax–Milgram-operator
adjoined to (H,V,s). Moreover, T is also said to be variationally defined,
because the definition in (8.2.10) occurs naturally in the calculus of varia-
tions (where the goal is to find extrema of specific examples of s).

It is customary, when referring to triples (H,V,s), to let it be tacitly
assumed that V is densely injected into H and that s is bounded on V .

Thus motivated, a few properties of sesqui-linear forms are recalled.
First of all there is to any form s on V an adjoint sesqui-linear form s∗

defined by
s∗(v,w) = s(w,v) for v,w ∈V. (8.2.12)

s itself is called symmetric if s≡ s∗; for F = C this takes place if and only
if s(v,v) is real for all v ∈V (by polarisation). Moreover, s gives rise to the
forms

sRe(v,w) = 1
2(s(v,w)+ s∗(v,w)) (8.2.13)

sIm(v,w) = 1
2i(s(v,w)− s∗(v,w)) (8.2.14)
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that are both symmetric (but may take complex values outside the diagonal,
whence the notation is a little misleading).

Using (III) on s∗ , there is a unique S̃ ∈ B(V,V ∗) such that for v, w ∈V ,

s∗(v,w) = 〈 S̃v, w〉. (8.2.15)

Applying (8.2.10) to the operator T̃ defined from (H,V,s∗), it follows
when T is densely defined that

T̃ ⊂ T ∗. (8.2.16)

In fact, for all v ∈ D(T ), u ∈ D(T̃ ), (T v |u) = s(v,u) = s∗(u,v) = (v | T̃ v).
The form s is said to be V -elliptic if there exists a constant c0 > 0 such

that

Res(v,v)≥ c0‖v‖2
V for all v ∈V ; (8.2.17)

s is V -coercive if there exist c0 > 0 and k ∈ R such that

Res(v,v)≥ c0‖v‖2
V − k‖v‖2

H for all v ∈V (8.2.18)

Notice that these properties carry over to the adjoint form s∗ and to sRe ,
with the same constants.

To elucidate the strength of these concepts, note that in case (8.2.17)
holds, it follows from Cauchy–Schwarz’ inequality that

‖Tu‖H ≥ c0C‖u‖V for u ∈ D(T ). (8.2.19)

So then T is necessarily injective and the range R(T ) is closed in H (as
seen from (8.2.10)). Coerciveness gives operators that are only slightly less
well behaved, and this class furthermore absorbs most of the perturbations
of elliptic forms one naturally meets in the study of partial differential equa-
tions.

V -elliptic forms give rise to particularly nice operators:

PROPOSITION 8.2.1. When (H,V,s) is such that s is V -elliptic, then the
associated operator T extends to a linear homeomorphism S : V →V ∗ .

PROOF. If s(·, ·) is elliptic and symmetric, it is an inner product on V .
This gives a new Hilbert space structure on V , for completeness in the norm√

s(v,v) is clear because it is equivalent to ‖ · ‖V (by the boundedness of s
and (8.2.17)). Hence S is the linear isometry that identifies V and V ∗ .

In the non-symmetric, elliptic case one has

‖Sv‖V ∗ ≥ c0‖v‖V for all v ∈V, (8.2.20)

so that S is injective and has closed range. But since S̃ is injective by a
similar argument, the formula

〈Su, v〉= s∗(v,u) = 〈 S̃v, u〉, for u,v ∈V, (8.2.21)

implies that R(S)⊥ = {0}. Therefore R(S) = V , and by the open mapping
theorem S−1 is continuous. �
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One should observe from the proof, that for a symmetric, elliptic form
s, the operator S may be taken as the well-known isometric isomorphism
between V and V ∗; this only requires a change of inner product on V , which
leaves the Banach space structure invariant, however.

When discussing the induced unbounded operators on H , the coercive
case gives operators with properties similar to those in the elliptic case;
cf the below result. Note however, the difference that only the elliptic case
yields operators that extend to homeomorphisms from V to V ∗ by the above
proposition.

The next result is stated as a theorem because of its fundamental impor-
tance for the applications of Hilbert space theory to say, partial differential
operators. For the same reasons all assumptions are repeated.

THEOREM 8.2.2 (Lax–Milgram’s lemma). Let the triple (H,V,s) be
given with complex Hilbert spaces V and H, with V ↪→ H densely, and
with s a bounded sesqui-linear form on V . Denote by T the associated
operator in H. When s is V -coercive, ie fulfils (8.2.18), then T is a closed
operator in H with D(T ) dense in V (hence dense in H too) and with lower
bound m(T ) >−k; in fact

{λ | Reλ ≤−k} ⊂ ρ(T ) (8.2.22)

so that T −λ I is a bijection from D(T ) onto H whenever Reλ ≤−k.
Furthermore, the adjoint T ∗ is operator associated with s∗ . If s is sym-

metric, then T is self-adjoint and ≥−k.

PROOF. Consider first k = 0, the elliptic case, and let S : V → V ∗ be
the homeomorphism determined by s. Because H is dense in V ∗ , it is
carried over to a dense set (=D(T )) in V by S−1 . Since S extends T , it is
straightforward to check that T is closed (using (8.2.6)). Now T ∗ is well
defined and T ∗⊃ T̃ as seen above. But T ∗ is injective, since the surjectivity
of S entails R(T ) = H , and T̃ is surjective by the same argument applied to
s∗ . Therefore T ∗ = T̃ , showing the claim on T ∗ .

Because (Tu |u)H = s(u,u) for u ∈ D(T ), it is clear from (8.2.17) that
m(T ) and m(T ∗) both are numbers in [c0C2,∞[ when C is the constant in
(8.2.2). Since c0C2 > 0 this yields the inclusion for the resolvent set in
(8.2.22) for the case k = 0; thence the statement after (8.2.22).

For k 6= 0 the form s(·, ·)+k( · | ·)H is elliptic, so the above applies to the
first term in the splitting T = (T +kI)−kI . The conclusions on the domain,
the closedness, the adjoint and the resolvent set of T are now elementary to
obtain. �

Note that the proof gives a bit more than stated, namely

m(T ), m(T ∗)≥−k + c0C2. (8.2.23)
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EXAMPLE 8.2.3. When the triple (V,H,s) is considered for the Hilbert
spaces

H = L2(Ω) (8.2.24)

V = H1
0 (Ω) (8.2.25)

and the sesquilinear form is taken as follows (for u = v it is the so-called
Dirichlét integral)

s(u,v) =
n

∑
j=1

(∂x ju |∂x jv)L2(Ω) =
∫

Ω

(∂1u∂1v+ · · ·+∂nu∂nv)dx (8.2.26)

it is straightforward to see that s is elliptic on V (by use of Poincare’s in-
equality).

The associated operator is the so-called Dirichlét realisation −∆D of
the Laplace operator. This means that as an unbounded operator in L2(Ω),
a function u is in D(−∆D) if and only if it belongs to H1

0 (Ω) and for some
f in L2(Ω) it fulfils

−∆u = f in Ω (8.2.27)

u|∂Ω = 0 on ∂Ω. (8.2.28)

Then f =−∆D u by definition.
The solution operator for this boundary value problem is −∆

−1
D . By

Proposition 8.2.1, this extends to H−1(Ω), and in fact −∆D equals the ab-
stract isomorphism between H1

0 (Ω) and its anti-dual H−1(Ω), when the
Hilbert space structure is suitably chosen.



CHAPTER 9

Further remarks

9.1. On compact embedding of Sobolev spaces

Below follows a proof of the fact that the first-order Sobolev space
H1(Ω) is compactly embedded into L2(Ω), provided Ω⊂ Rn is a bounded
open set — a cornerstone result in the analysis of boundary problems of dif-
ferential equations. Although one can go much further with results of this
type (with the necessary technical preparations), we stick with this single
result here, partly because it often suffices, partly because the reader should
be well motivated to see a short proof of such an important, non-trivial re-
sult.

As a useful preparation, let us show the claim in Example 5.2.3, that
functions u in H1(T), interpreted as the periodic subspace of H1(Q) for
Q =]−π,π[n , are characterised by their Fourier coefficients.

For a more precise statement, recall first that the Fourier transformation

Fu = (ck)k∈Zn , with ck = (u |ek ), (9.1.1)

is an isometry L2(Q)→ `2(Zn). Secondly there is the Hilbert space h1(Zn)
of those sequences (xk) in `2(Zn) for which

‖(xk)‖h1 := ( ∑
k∈Zn

(1+ k2
1 + · · ·+ k2

n)|xk|2)1/2 < ∞; (9.1.2)

cf Example 6.2.5. Now the claim is that any (ck) in `2 is in F (H1(T)) if
and only if the sum in (9.1.2) is finite; and this is a consequence of

LEMMA 9.1.1. There is a commutative diagram

H1(T) I−−−→ L2(Q)

F

y yF

h1(Zn) −−−→
I

`2(Zn),

(9.1.3)

where F is an isometry in both columns

PROOF. By repeated use of Parseval’s identity,

‖u‖2
H1 = ∑(|ck|2 + |(D1u |ek )|2 + · · ·+ |(Dnu |ek )|2), (9.1.4)

so it follows that ‖Fu‖h1 = ‖u‖H1 if and only if

(D ju |ek ) = k jck for all j = 1, . . . ,n; k ∈ Zn. (9.1.5)
65
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To show this, it is clear for u ∈ C∞(Q) that, with the splitting x = (x′,xn)
and Q′ =]−π,π[n−1 ,∫

Q′
− i(−1)kn

eik′·x′ (u(x′,π)−u(x′,−π))dx′ =
∫

Q
Dn(uek)dx

= (Dnu |ek )− (u |kek )
(9.1.6)

If an arbitrary u ∈ H1(T) is approximated in H1(Q) by a sequence um in
C∞(Q), this identity applies to each um; since um → u and Dnum → Dnu
in the topology of L2 one may pass to the limit on the right hand side, and
by continuity of the trace operators also the left hand side converges for
m→ ∞; there the limit is zero. This shows (9.1.5) for j = n; the other
values of j are analogous.

By the above, F is isometric and hence injective on H1(T); but any
(ck) in h1 defines a function u ∈ L2(Q) with D ju = ∑k jckek (by continuity
of D j in D ′), and here the right hand side is in L2 . �

The reader should observe that the embedding of H1(T) into L2(Q) in
the first row of (9.1.3) is compact; this follows from the diagram and the
earlier result that h1 ↪→ `2 is compact; cf Example 6.2.5.

That also the larger space H1(Q) is compactly embedded into L2(Q) is
now a consequence of

THEOREM 9.1.2. For every bounded open set Ω ⊂ Rn the embedding
H1(Ω) ↪→ L2(Ω) is a compact operator.

PROOF. Clearly Ω ⊂ ]−R,R[n =: QR for all sufficiently large R > 0.
The above carries over to this cube if on the torus TR = Rn/QR one consid-
ers ek(x) = cR exp(2π ik · x/R) for some suitable cR; so H1(TR) ↪→ L2(QR)
is compact also for such R.

Given any bounded sequence in H1(Ω) with Ω⊂QR , it may be taken as
restriction of a sequence in H1(Q3R), for which the supports are contained
in Q2R , so that the sequence is in H1(T3R). Therefore there exists a sub-
sequence converging in L2(Q3R), and a fortiori the restricted subsequence
converges in L2(Ω).

�



CHAPTER 10

Topological Vector Spaces

As a generalisation of Hilbert and Banach spaces, one speaks of a topo-
logical vector space if the operations on vectors are continuous. This is
practical both for spaces of smooth functions, like C∞(Rn), and for weak∗-
topologies of duals.

10.1. Basic notions

As a convenient convention, the Hausdorff property is taken as a part of
the definition, where the field is F = R or F = C:

DEFINITION 10.1.1. A topological vector space E (over F) is a vector
space which is equipped with a Hausdorff topology τ with respect to which
the compositions

E×E +−→ E, F×E ·−→ E (10.1.1)
are continuous (when the domains have the product topologies).

In the sequel E denotes an arbitrary topological vector space (formally
it is pair (E,τ)).

As the basic simplification, the topology is shown to be translation and
scaling invariant.

LEMMA 10.1.2. Let E be a topological vector space, a ∈ E and λ ∈
F\{0}. Then the maps Ta , Mλ : E→ E given by

Tax = x−a, Mλ x = λx (10.1.2)

are linear homeomorphisms with inverses T−a and M1/λ .

PROOF. An exercise. (Use the continuity in Definition 10.1.1.) �

Paraphrasing the lemma, O ⊂ E is open if and only if a + O ∈ τ , or if
and only if λO ∈ τ . Because of this, it is for most purposes regarding E
enough to know the open sets containing 0.

As usual, a set U ⊂ E is a neighbourhood of a point x in E if there is an
open set G, that is G ∈ τ , such that x ∈ G ⊂U . Neighbourhoods can have
useful properties, such as those in the following

DEFINITION 10.1.3. A set S⊂ E is said to be
• convex if λS +(1−λ )S⊂ S whenever 0≤ λ ≤ 1;
• balanced if λS⊂ S for all λ ∈ F with |λ | ≤ 1;
• bounded if every neighbourhood U of 0 after scaling contains S,

that is, S⊂ tU for some t > 0.
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The space E is called locally convex, if 0 has neighbourhood basis of con-
vex sets.

It is easy to see that eg every singleton {x} ⊂ E is bounded (use conti-
nuity of scalar multiplication). If E is normed, this notion of boundedness
gives back the usual one.

Obviously the open unit ball in F is convex and balanced. Similarly for
any normed space. In a topological vector space E , one may therefore, in
the absence of a norm, try to let the convex, balanced 0-neighbourhoods
play the main role.

This turns out to be possible at least when E is locally convex; cf the
last part of the next result.

PROPOSITION 10.1.4. Let E be a topological vector space with an ar-
bitrary 0-neighbourhood V .

• There exist a balanced 0-neighbourhood W such that W +W ⊂V .
• If V is convex, there is a convex, balanced 0-neighbourhood W

such that W ⊂V .
If E is locally convex, there is to every 0-neighbourhood U an open, convex,
balanced set W such that W +W ⊂U .

PROOF. (to be continued) �

Note that in a topological vector space E , every balanced open set is
necessarily a neighbourhood at the origin in E . Moreover, every subspace
Fx with x 6= 0 is unbounded (by the proposition there is a balanced open set
U 63 x, so that λx /∈U for |λ | ≥ 1).

To explain the usefulness of convex, balanced open sets V , one may
conveniently introduce the map µV : E→ [0,∞[ given by

µV (x) = inf{ t > 0 | x ∈ tV }. (10.1.3)

In a vague way, this measures V (its ‘thickness‘) in the direction of x, as in
case E = R2 with V as the unit ball one has µV (x) = |x|.

This is a valid analogy, inasmuch as µV is a Minkowski functional when
V is convex — and if V is balanced as well, it yields a seminorm:

LEMMA 10.1.5. On a topological vector space E, the map V 7→ µV (cf
(10.1.3)) is a bijective correspondence between the convex, balanced open
sets V and the continuous seminorms p on E. Moreover,

V = {x ∈ E | µV (x) < 1}. (10.1.4)

PROOF. That p = µV is a Minkowski functional is shown as in [Ped89,
2.4.6]. So to see that p is a seminorm, it suffices that p(λx) = p(x) when
|λ | = 1; but x ∈ λ−1tV ⇐⇒ x ∈ tV when V is balanced, so this is clear.
(10.1.4) is also shown in [Ped89, 2.4.6], so p is continuous: when xα is a
net converging to x, then eventually xα − x is in the 0-neighbourhood εV ,
which yields

|p(xα)− p(x)| ≤ p(xα − x) < ε. (10.1.5)
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Conversely, for a given seminorm p : E → R it is straightforward to
see that U = p−1( ]− 1,1[ ) is a convex, balanced set, that is open as p is
continuous. By (10.1.4) the map p 7→V is a left inverse of V 7→ µV ; and µU
gives back p: this is trivial for p(x) = 0, and else x ∈ (p(x)+ε)U for ε > 0
so that µU(x)≤ p(x); non-validity for ε = 0 yields p(x)≤ µU(x). �

The analogy is not always reliable, however, in particular not when
µV (x) = 0: when x 6= 0 the following properties are clearly equivalent,

• µV (x) = 0,
• 1

s x ∈V for all s > 0,
• V contains the subspace Fx.

But in this case, V is unbounded; cf the above. That is, if V is bounded,
then necessarily µV is a norm on E .

Conversely, if µV is a norm, then V is bounded at least if the topology
induced by µV on E is identical to the given one; cf the next result. In
general a topological vector space (E,τ) is said to be normable, if there is
a norm on E such that the induced topology is τ .

PROPOSITION 10.1.6. A topological vector space E is normable if and
only if there is a convex, balanced open set V which is bounded.

PROOF. If V is a bounded set as stated, then µV is a norm on E (as
noted above); moreover, the balls B(0, 1

n) = µ
−1
V ([0, 1

n [ ) = x + 1
nV yield a

neighbourhood basis at x not just in the norm topology σ , but also in τ as
V is bounded. Therefore O ∈ τ ⇐⇒ O ∈ σ ; thence τ = σ .

Conversely, if (E,τ) is normable with norm p(x), let U = p−1( ]−1,1[ )
as in Lemma 10.1.5. The balls B(0, 1

n) = 1
nU provide a neighbourhood basis

at 0 (as the identity is σ -τ -continuous). So to every neighbourhood W at 0
it holds for some n that U ⊂ nW . Therefore V = U is a convex, balanced
and bounded open set in E . �

So, for general topological vector spaces E one has to accept the pecu-
liarities of the seminorms µV .

10.2. Locally convex spaces

For a given vector space E it is often easy to give E the structure of
a locally convex topological vector space; this only requires a sufficiently
rich family of seminorms on E .

More precisely, when P is a family of seminorms that separates points
in E (ie, if x 6= 0 then p(x) > 0 for some p ∈P ), then E can be given the
initial topology for the family

(p(·− y))y∈E, p∈P . (10.2.1)

This is by definition the weakest topology on E that makes all these maps
p(·− y) : E→ R continuous. For this one has the fundamental
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THEOREM 10.2.1. Let E be a vector space over F having a separating
family of seminorms P . With the above topology, E is a locally convex
topological vector space, in which a basis for the neighbourhoods at 0 con-
sists of the convex, balanced open sets⋂

j=1,...,N

{
x ∈ E

∣∣ p j(x) < ε
}
, (10.2.2)

whereby {p1, . . . , pN} ⊂P is a finite subfamily and ε > 0.
Moreover, a net xλ converges to x in E if and only if p(xλ − x)→ 0 for

all p ∈P . A subset S⊂ E is bounded in E if and only if the image p(S) is
so in F for all p ∈P .

PROOF. See [Ped89, 2.4.2]. �

Conversely one could ask whether every topological vector space E
arises from seminorms in this way.

This is easily confirmed when (E,τ) is locally convex (which is nec-
essary), for if V then denotes the collection of convex, balanced open sets
V ⊂ E , there is via Lemma 10.1.5 a family of seminorms (µV )V∈V . This
is separating (as E \ {x} is a 0-neighbourhood of x 6= 0), so according to
Theorem 10.2.1 it gives rise to a topological vector space (E,σ); because
both topologies have V as a basis for the 0-neighbourhoods, σ = τ .

As a preparation, a classic fact on convex sets is recalled.

LEMMA 10.2.2. Let C0 , C1 ⊂ E be convex subsets of a vector space E.
Then the set

C =
⋃

0≤t≤1

(tC0 +(1− t)C1) (10.2.3)

of their convex combinations is also convex.

PROOF. If x = s0x0 + s1x1 and y = t0y0 + t1y1 are in C (ie, x0,y0 ∈C0 ,
x1,y1 ∈C1 whilst the s j, t j ≥ 0 with s0 + s1 = 1 = t0 + t1) and λ0 + λ1 = 1
for λ0,λ1 > 0, clearly C0 +C1 contains

λ0x+λ1y = (λ0s0x0 +λ1t0y0)+(λ0s1x1 +λ1t1y1). (10.2.4)

Setting µ j = λ0s j +λ1t j , gives µ0 + µ1 = 1 while the µ j ≥ 0. If a µ j = 0,
then s j = t j = 0 and convexity applies; else the parentheses above belong
to µ0C0 and µ1C1 , respectively, so that λ0x+λ1y ∈ µ0C0 + µ1C1 ⊂C. �

In addition to Lemma 10.1.5, there is a much more specific analysis:

PROPOSITION 10.2.3. Let E be a locally convex topological vector
space with a subspace M, that is given the topology induced by E. Then
one has:

(i) To each convex, balanced 0-neighbourhood U ⊂M, there is a con-
vex balanced 0-neighbourhood V ⊂ E such that

U = V ∩M. (10.2.5)

One can take V open if U is open in M.
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(ii) If p0 : M→R is an arbitrary continuous seminorm, then p0 = p|M
for some continuous seminorm p : E→ R.

Moreover, to each given point x0 ∈ E \M, one can in addition arrange that
x0 /∈V and that p(x0)≥ t0 for any prescribed value t0 > 0.

PROOF. In case (i), there is by assumption an open set G of E such that
G∩M ⊂U . Since E is locally convex, there is a convex, balanced open set
W such that W ⊂ G, whence W ∩M ⊂U .

Now V =
⋃

0≤t≤1(tW +(1−t)U) yields V ∩M =U , for every x∈V ∩M
is of the form x = tw +(1− t)u for some w ∈W , u ∈U ; whereby x ∈U
for t = 0, else w = t−1(x +(t− 1)u) shows that w ∈W ∩M ⊂U , so that
x ∈ tU +(1− t)U ⊂U . Moreover:

V is convex according to Lemma 10.2.2, and balanced as U , W are so.
V is a neighbourhood of 0 since V ⊃ V ′ =

⋃
0<t≤1∪u∈U T(t−1)u(tW ),

where V ′ is open in E . Actually V = V ′∪U , so V = V ′ is open when U is
open in M , for U ⊂V ′ follows as U =

⋃
0≤s<1 sU then. This shows (i).

For a seminorm p0 as in (ii), the preimage U = p−1
0 ( ]−1,1[ ) is convex,

balanced and open in M and p0 = µU by Lemma 10.1.5. Then the set V
from (i) gives a continuous seminorm µV : E→ R fulfilling µV (x) = p0(x)
for x ∈M (as x ∈ tV implies t−1x ∈V ∩M = U ). So p = µV will do for (ii).

When x0 /∈ M , then −x0 + E \M is a neighbourhood of 0 in E , so in
the proof of (i) one can just take W ⊂G∩ (−x0 +E \M). In fact, x0 +W is
contained in E \M , hence disjoint from the subset U ⊂M , so x0 /∈V .

Hence p(x0) = µV (x0) > 1, that suffices for 0 < t0 ≤ µV (x0). If t0 >
µV (x0) one may define V0 analogously from U and the smaller W0 = 1

t0
W ,

in order to let p = µV0 . Indeed, for s so large that x0 ∈ sV0 then s > t0 (as
else x0 ∈ t s

t0
W +(1− t)sU ⊂W +M); whence p(x0) = µV (x0)≥ t0 . �

10.3. Derived topological vector spaces

Given a topological vector space E , or rather (E,τ), it is a basic exercise
to see that every subspace M ⊂ E is a topological vector space, when M is
endowed with the relative topology M∩ τ .

As a further step in this direction, the closure M is also a subspace,
hence a topological vector space in its relative topology.

Moreover, given a family (Eα ,τα)α∈A of topological vector spaces over
the same field F, their product space

E = ∏
α∈A

Eα (10.3.1)

is a topological vector space when endowed with the product topology (and
componentwise vector operations). Indeed, this follows from the fact that a
net converges in E if and only if, for every α ∈ A, its component after Eα

converges; and the Hausdorff property is inherited from the Eα .
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10.3.1. Inductive limits. The theory of the previous sections has im-
portant applications to the situation in which a vector space X has an as-
cending chain of exhausting subspaces E j . That is,

E1 ⊂ E2 ⊂ ·· · ⊂ E j ⊂ ·· · ⊂
∞⋃

j=1

E j = X . (10.3.2)

Here all inclusions are assumed to be strict. Each E j is thought to be a
topological vector space with a locally convex topology τ j , that moreover
is assumed to be the topology induced on E j by τ j+1 . Then the injection
I jk of E j into Ek is continuous for all j < k.

To give X the structure of a locally convex topological vector space,
it is natural to take the topology τ on X to be the final topology for the
injections I j : E j → X . By definition this is strongest topology that gives
continuity of all the I j (cf the following diagram). Hence τ consists exactly
of the subsets Z ⊂ X for which the preimage I−1

j (Z) = E j∩Z belongs to τ j
for every j ≥ 1.

E1
... ↘

E j
I j−→ X T−→ Y

...

(10.3.3)

As an advantage of this, every map T : X → Y will be continuous (for a
given topology on Y ) if and only if the pervading maps T ◦ I j , j ∈ N, are
continuous.

However, it is not a priori clear that this construction is compatible with
the vector space structure on X . But this is the content of the following
theorem, where the proof shows that the above inductive limit topology on
X is also induced by a separating family of seminorms:

THEOREM 10.3.1. Under the above assumptions, X is a locally convex
topological vector space when equipped with the inductive limit topology.
Moreover,

(i) The topology induced by τ on E j is precisely τ j , for j ≥ 1.
(ii) A subset B⊂ X is bounded if and only if B is contained in E j0 for

some j0 ≥ 1 and is bounded there.
(iii) A sequence (xn) in X is convergent with limit x if and only if it

is contained together with its limit in E j0 for some j0 ≥ 1 and
converges to x in E j0 .

REMARK 10.3.2. Every continuous seminorm p j : E j→R extends to a
continuous seminorm p j+1 on E j+1 , according to Proposition 10.2.3. And
one may inductively pick continuous seminorms pk : Ek → R such that
pk|Ek−1 = pk−1 for all k > j. It is seen at once that this induces a map,
indeed a seminorm,

p : X → R. (10.3.4)
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This is necessarily τ -continuous because the pervading maps p ◦ Ik = p|Ek

are continuous for all k ≥ 1; cf (10.3.3).
However, a more precise use of Proposition 10.2.3 shows that the con-

vex, balanced open sets Vk (appearing implicitly as p−1
k ( ]− 1,1[ ) above)

can be adapted to subsets G ⊂ X as follows: Whenever G ⊂ X contains 0
and each E j∩G is in τ j , the Vj ∈ τ j may inductively be chosen so that

Vj ⊂ E j∩G, Vj+1∩E j = Vj. (10.3.5)

Indeed, one may take a convex, balanced open set Wj+1 ⊂ E j+1 ∩G and
apply the proof of Proposition 10.2.3 to the set

Vj+1 =
⋃

0≤t≤1

(tWj+1 +(1− t)Vj). (10.3.6)

The union V :=
⋃

Vj is convex, balanced and even open in τ , for the corre-
sponding seminorm p = µV restricts for every j to µV j , which is continuous
on E j ; cf (10.3.3). As V ⊂ G, such G are neighbourhoods at 0 in X .

The proof departs from seminorms with the above restriction property.

PROOF. Let P denote the family of seminorms p on X for which p|E j

is τ j -continuous for every j ≥ 1. P is separating, for each x 6= 0 lies
in some E j , where p j(x) > 0 for a continuous seminorm p j (cf Propo-
sition 10.2.3), which extends to a seminorm in P by (10.3.4); ie, P is
non-void. The construction in Theorem 10.2.1 now yields a locally convex
topological vector space (X ,σ).

Here σ ⊂ τ when τ is the final topology on X , for each I j is τ j -σ -
continuous: if xλ → x in E j , then I jxλ → I jx since p(I j(xλ − x))→ 0 for
every p ∈P as p◦ I j is τ j -continuous.

But if 0 ∈ G ∈ τ , each E j ∩G = I−1
j (G) is in τ j . So (10.3.5) ff. yields

a smaller convex, balanced set V , which also belongs to σ as p = µV is in
P . Therefore σ and τ have the same neighbourhoods at 0, that is σ = τ ,
which shows the first claim.

As for (i), the induced topology σ j = E j ∩σ fulfils σ j ⊂ τ j since I j
is τ j -σ -continuous. Now every τ j -continuous seminorm p j extends by
(10.3.4) to some p ∈P , so p j = p ◦ I j is also σ j -continuous. It follows
that σ j and τ j have the same neighbourhoods at 0. Thence τ j = σ j .

If B⊂ E j0 is a bounded subset, B is bounded in X because the injection
I j0 is continuous. For the other part of (ii), suppose first that B ⊂ X fulfils
B ⊂ E j0 without being bounded in the relative topology; then there is an
open set U ⊂ X containing 0 such that 1

nB \ (U ∩E j0) 6= /0 for all n, so
removal of E j0 renders B unbounded in X . Secondly, when eg for every
j ≥ 2, the set B∩ (E j \E j−1) contains a vector x j , since x2 6= 0 there is a
seminorm p2 on E2 such that p2(x2) = 2, and it extends to seminorms p j
on E j such that p j(x j) ≥ j for all j ≥ 2 according to Proposition 10.2.3.
For the induced p ∈P one has p(x j)≥ j, so B is unbounded in X since

sup p(B) = ∞. (10.3.7)
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The general case in which B intersects E j \E j−1 only for j in an infinite
subset of N is equally easy (except to write down). This yields (ii).

The convergence condition in (iii) is clearly sufficient. Since Cauchy
sequences have bounded ranges, it follows from (ii) that every convergent
sequence (xn) in X lies together with its limit x in some E j0 . Since every
neighbourhood at 0 has the form U ∩E j0 for some neighbourhood U at 0
in X , it contains the difference xn−x eventually; whence the necessity. �
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