CORRECTIONS TO FUNCTIONAL ANALYSIS...BY MICHAEL PEDERSEN

JON JOHNSEN

May 14, 2001

- **Page 3:** Def. 1.3: $(x_n) \subset M$ is brief, but not a standard notation.
- **Page 4**₃: The notation x_1 and x_2 is also used (implicitly) for the first two elements of the sequence.

Page 5₃: the estimate should be $\leq \frac{1}{\min(m,n)}$.

- **Page 7²:** there is no need to assume f real-valued.
- **Page 7**⁷: the interval [0; 1] is compact.
- **Page 12:** Definition 2.3 should have *(or just metric).* (The definition is equivalent to the one formulated in terms of open coverings.)
- **Page 15**₃: The argument beginning with *Hence* is not correct in the mathematical sense, because it is meaningless to say that $f \in L^p$ as long as this set is not specified. (But even so it might be compelling enough.) Similarly the conclusion that $f_1 \in L^p$ is not justified.

Page 21₃: Should have $x \in V$.

Page 27₄: $\lim_m ||T_m - T_n||$ should have been $\limsup_m ||T_m - T_n||$.

Page 28²: $\lim_{m} ||T_m - T_n||$ should have been $\limsup_{m} ||T_m - T_n||$. **Page 29⁵:** The statement beginning with *Moreover* should be deleted.

Page 32: This page should not be blank, but read as follows: for all $x \in V$. Then

$$\sup\{\|T_{\lambda}\| \mid \lambda \in \mathbb{R}\} < \infty.$$
(3.6)

Page 37¹²: Should have: (and orthogonal....

- **Page 37**¹⁴: Here and in the following only Hilbert spaces are considered, for an inner product space can be shown to have a Hilbert space as its completion.
- **Page 38:** After formula (4.12) in the last part of Proposition 4.5, one should add the supplementing conclusion and that $\alpha_k = (\sum_{j=1}^{\infty} \alpha_j x_j | x_k)$ for every $k \in \mathbb{N}$..
- **Page 40:** In Proposition 4.9 *each* of the conditions (i), (ii), (iii) is equivalent to (x_n) being an orthonormal basis.
- **Page 44**₁: A_0 should be multiplied by $\frac{1}{\sqrt{\pi}}$.
- **Page 45**₃: The summand $e^{-ik\theta}$ should be deleted from every term of the summation.

Page 48₁: The summand should be $c_k \frac{1}{\sqrt{2\pi}} e^{ikx}$.

Page 49²: Should be $c_k = \frac{1}{\sqrt{2\pi}} \dots$

Page 57³: the first line of the proof should read: We have only to show that $\overline{T(H)}^{\perp} = T(H)^{\perp} = .$

Page 57₆: Remove the superfluous) after y_i .

Page 59¹3: Replace quadratic in T by "linear" in x.

- **Page 63:** The proof Theorem 5.10 should have the first paragraph replaced by: "To show that T is compact, let A be a bounded set in H. Given a sequence (y_n) in $\overline{T(A)}$, take for each n some $x_n \in A$ such that $||Tx_n - y_n|| < 1/n$, as we may. It then suffices to show the existence of a subsequence x_{n_k} for which Tx_{n_k} converges to some y for $k \to \infty$, for by the definition of the x_n it follows that $y_{n_k} \to y$ for $k \to \infty$."
- **Page 64:** In formula (5.9), the \parallel in front of the summation should be removed.
- **Page 69**₁3: This line should end with *open set* (since B_1 need not be a ball).
- **Page 75:** The last part of Example 5.7 is rather misleading, so delete from *Now consider*....
- **Page 79**₂: Here $T \lambda I$ should not be followed by).
- **Page 83:** The Spectral Theorem needs corrections from the end of the second line; one possibility would be: "If H is infinite dimensional, the corresponding eigenvalues $\lambda_n \to 0$ for $n \to \infty$ and $0 \in \sigma(T)$; when also R(T) is infinite dimensional, the nonzero eigenvalues (μ_n) can be numbered such that $|\mu_1| \ge |\mu_2| \ge$ $\dots \ge |\mu_n| \ge \dots > 0$.

In any case every x in H has an expansion $x = \sum_{n} (x | e_n) e_n$ for which it holds that

$$Tx = \sum_{\lambda_n \neq 0} \lambda_n(x \mid e_n) e_n. "$$

Corrections in the proof are necessary too; eg. one cannot first find a sequence of non-zero eigenvalues with eigenvectors (e_n) and then append another sequence of vectors and end up with a sequence! [The appended vectors never get counted. If they are interlaced instead, $(|\lambda_n|)$ is not a decreasing sequence.]

- **Page 87:** In Example 6.5, the expressions and calculations should have λ_n instead of (λ_n) .
- **Page 89**₆: the vector e_n is missing on the left hand side of the identity.

Page 95₈: The summation should be over $|(Ke_m|e_n)|^2$.

- **Page 111:** In formula (9.1) the integrand should be |f(x)|.
- **Page 116**²: The integer should be k instead of m.
- **Page 266:** Exercise 99 should be formulated: Let T be a closed linear operator $in \ldots$

 $\mathbf{2}$

CORRECTIONS TO FUNCTIONAL ANALYSIS... BY MICHAEL PEDERSEN 3

Page 267: In Exercise 107 the factor $\frac{1}{2^2}$ should be in front of $(x_1 + x_2 + x_3)$.