
MATEMATIK 3
OPTIMISATION 1 September 2010

Overview no. 1

The topics for the course on optimisation will this autumn be:

• Extrema under constraints for real-valued functions.

• Calculus of Variations.

• Optimal Control Theory.

The purpose of the course is to acquaint you with the topics, their methods and
the kind problems they can solve (or address).

As you will see, the problems go far beyond what you could treat previously
by setting gradients equal to zero. Phrased briefly, we shall deal with general,
yet powerful methods for rewriting optimisation problems in terms of ordinary
differential equations, which can be solved. But more about this later.

The course will be based on the book (ask secr. Lisbeth G. Nielsen)

[SS] Optimal control theory with economic applications, by Atle Seierstad og
Knut Sydsæter; North Holland 1987.

It will be a central issue in this course to work through the exercises. How-
ever, it will probably be best to delay the exercises to the next gathering after the
lectures on a subject. I therefore propose the following:

1st gathering, Thursday September 2. We meet at 12.30-14.15 in G5-109 for
the lectures. I will begin with an overview of the course, including a primer on
Calculus of Variations and on Optimal Control theory. Then we go through the
first topic, which is a deeper understanding of extrema of real-valued functions.
This includes necessary conditions for extrema (second order derivatives) and ex-
trema under constraints — think for example of finding the maximum of a func-
tion defined on the unit sphere in Rn.

From 14.30 to 16.15 you may begin in the groups to solve the exercises an-
nounced below for the second gathering.

For convenience the next overview contains a few notes for today’s lectures.
Med venlig hilsen

Jon Johnsen
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MATEMATIK 3
OPTIMISATION September 1

Overview no. 2

For completeness we first give a precise version of Taylor’s formula: when
g : I → C is a Cn-function on an open interval I ⊂ R, then it holds for all t,
t0 ∈ I that

g(t) = g(t0)+· · ·+ g(n−1)(t0)
(n−1)!

(t−t0)n−1+ (t−t0)n

(n−1)!

∫ 1

0

(1−θ)n−1g(n)(t0+θ(t−t0)) dθ.

(1)
This can be verified by induction over n, by using that (1−θ)n−1 = − 1

n
d
dθ

(1−θ)n.
The above gives easy access to Taylor’s limit formula for g ∈ Cn(I):

g(t) = g(t0) + · · ·+ g(n)(t0)
n!

(t− t0)n + o((t− t0)n), (2)

where by definition o(sn)/sn → 0 for s → 0. In fact, the o-function can be
obtained from (1) by subtraction of g(n)(t0))

n!
(t − t0)n from the integral remainder,

for 1
n

=
∫ 1

0
(1−θ)n−1 dθ can be used to exploit the continuity of g(n) at t0 (try it !).

For functions f of several variables, both formulae can be utilised eg by intro-
ducing g(t) = f(x∗ + t(x− x∗)), when x is in a ball B(x∗, r).

Theorem. When f : O → R be C2 on an open set O ⊂ Rn, then

f has a local maximum at x∗ ∈ O =⇒


∇f(x∗) = 0,
λ ≤ 0 for each eigenvalue λ for

Hf(x∗) := ( ∂2f
∂xj∂xk

(x∗)).

(3)

Conversely, if λ < 0 whenever λ is an eigenvalue for Hf(x∗), whereby x∗ ∈ O is
a critical point, then x∗ is a local maximum.

Note that there is a small gap between the necessary and sufficient conditions
for the local maximum; this cannot be avoided, cf the exercise below.

Proof: Since f ∈ C2, Taylor’s formula yields that

f(x)−f(x∗) = ∇f(x∗)·(x−x∗)+ 1
2
(x−x∗)THf(x∗)(x−x∗)+o(‖x−x∗‖2). (4)

When x∗ is a local extremum, this gives ∇f(x∗) = 0. For otherwise one can take
‖x− x∗‖ outside a parenthesis on the right-hand side and note that

x 7→ ∇f(x∗) · ( 1
‖x−x∗‖(x− x

∗))

takes on both positive and negative values on every line segment parallel to∇f(x∗)
through x∗; on suitably small such segments this also holds after addition of (two)
terms of the form o(‖x − x∗‖). This contradicts that f(x) − f(x∗) has constant
sign on such line segments. Thence∇f(x∗) = 0.
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The matrix Hf is real and symmetric, as f ∈ C2. So according to the spectral
theorem, Hf(x∗) is diagonalisable and has real eigenvalues λ1, . . . , λn. Thus
Hf(x∗) = PDP T for D = diag(λ1, . . . , λn) and a suitably chosen n × n-
matrix P containing an orthonormal basis of eigenvectors for Hf(x∗). Setting
y = P T (x− x∗), whereby ‖y‖ = ‖x− x∗‖, this gives

f(x)− f(x∗) = 1
2
(x− x∗)TPDP T (x− x∗) + o(‖x− x∗‖2)

= 1
2
(λ1y

2
1 + · · ·+ λny

2
n) + o(‖y‖2).

(5)

In particular y = (0, . . . , 0, yj, 0, . . . , 0) with corresponding x− x∗ = Py, entails

0 ≥ f(x)− f(x∗) = (1
2
λj + o(1))y2

j (6)

for ‖x − x∗‖ = |yj| in a neighbourhood of 0, since x∗ is a maximum point. As
1
2
λj + o(1) has the same sign as λj for |yj| in a possibly smaller neighbourhood of

0, it follows that λj > 0 is impossible. Hence λj ≤ 0 for j = 1, . . . , n.
Conversely, note that (5) implies

f(x)− f(x∗) ≤ (1
2

max(λ1, . . . , λn) + o(1))‖y‖2. (7)

If λj < 0 for all j, the parenthesis is negative or 0 for y in a small ball B(0, r).
This entails that f(x) ≤ f(x∗) for x ∈ B(x∗, r), as desired.

To elucidate the theorem, it is recalled that a quadratic form Q on Rn is a
function of the form

Q(x) = xTAx,

whereby A is a fixed n× n-matrix. In practice A is often real and symmetric.
By definition, Q is said to be

positive definite if xTAx > 0 for every x 6= 0; (8)

positive semidefinite if xTAx ≥ 0 for every x ∈ Rn. (9)

Similarly Q is negative definite and negative semidefinite, if −Q is positive defi-
nite and positive semidefinite, respectively. Moreover, Q is called

indefinite if for some x, y ∈ Rn it holds that Q(x) > 0 > Q(y). (10)

The same terminology applies to the matrix A defining the quadratic form Q.
These notions can be effectively analysed in terms of eigenvalues. In fact,

when A is reall and symmetric, a diagonalisation of xtAx, similar to the one in
(5), shows straightforwardly that

Q is positive definite ⇐⇒ λ > 0 holds for every eigenvalue λ of A (11)
Q is positive semidefinite ⇐⇒ λ ≥ 0 holds for every eigenvalue λ of A. (12)

Of these inequalities are reversed for the corresponding versions of negative defi-
niteness. Moreover,

Q is indefinite ⇐⇒ µ < 0 < λ holds for two eigenvalues µ, λ of A. (13)
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The signature of Q, or of A, is then given by

sign(A) = dimV+ − dimV−. (14)

Here V+ is the maximal subspace on which (the restriction of) A has only positive
eigenvalues; similarly for V−. Clearly Rn = V+ ⊕ NullA⊕ V−.

Returning to the theorem, it is clear that for a critical oint x∗ ∈ O to be a local
maximum, it is necessary that the Hessian Hf(x∗) is negative semidefinite. The
converse is not assured; but it is sufficient for a maximum that Hf(x∗) is negative
definite.

Remark. The definition of a saddle point is very concise in these terms: it is
a critical point at which the Hessian is indefinite. So if x∗ is a saddle point, then
∇f(x∗) = 0 and Hf(x∗) has at least one positive and one negative eigenvalue —
therefore there are two lines through x∗ (along the corresponding eigenvectors) on
which f has a minimum at x∗, respectively a maximum at x∗. (Visualise a horse
saddle!)

Remark. At a critical point x∗ ∈ O, there are consequently four possibilities:

• f has a local maximum at x∗;

• f has a local minimum at x∗;

• f has a saddle point at x∗;

• f has a more complicated behaviour in every neighbourhood of x∗.

The last point should not be overlooked. One simple example of this is provided
by the fourth order polynomial on R2, f(x, y) = (y − x2)(y − 3x2): along the
first axis this has a minimum at (0, 0); yet along any other line through the origin
it attains both positive and negative values, even arbitrarily close to (0, 0); hence
f has neither an extremum at (0, 0) nor a saddle point there.

As a reminder from mathematics 2 we also have
The Implicit Function theorem. When Φ(x, y) is a C1-function O → Rk, on

an open set O ⊂ Rn−k × Rk, and (x0, y0) solves the equation

Φ(x, y) = 0,

and moreover the JacobianDyΦ of Φ(x0, ·) at the point y0 has an inverse ∂Φ
∂y

(x0, y0)−1,
then there are closed balls U = B̄(x0, α) and V = B̄(y0, β) and a function
ψ ∈ C1(U, V ) so that all the equation’s solutions (x, y) in U × V constitute the
graph of ψ. In other words,

{ (x, ψ(x)) | x ∈ U } = (U × V )
⋂

Φ−1({0}). (15)

Since Φ(x, ψ(x)) ≡ 0 the chain rule gives, in block matrix notation,

(
DxΦ DyΦ

)( I
Dψ

)
= 0. (16)
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This theorem is a valuable tool in the next section.

Optimisaton under constraints. In the following f : O → R denotes a C1-
function on an open set O ⊂ Rn. The task will be to determine its extreme values
as x runs through a subset F ⊂ O, given as the set of solutions (in O, of course)
to the equations

g1(x) = c1, . . . , gk(x) = ck. (17)

Hereby the gj ∈ C1(O,R) are given functions. To determine maxx∈F f(x) and
minx∈F f(x) is called maximisation and minimisation, respectively, of f under
the constraints (17) given by g1,. . . ,gk.

Henceforth it is assumed that k < n, for otherwise one can only expect to have
(none or) finitely many solutions to (17).

Notice that the Jacobian of G :=

( g1
...
gk

)
is not assumed surjective, so the pre-

image F = G−1({(c1, . . . , ck)}) is therefore not necessarily a regular C1-surface
in O. (Cf the mathematics 3 course in geometry.)

As a necessary condition for extremum under constraints one has:

Theorem. If x∗ ∈ O satisfies the constraints (17) and gives f an extreme value
on F , then the matrix

M =


∂f
∂x1

. . . ∂f
∂xn

∂g1
∂x1

. . . ∂g1
∂xn

... . . . ...
∂gk

∂x1
. . . ∂gk

∂xn

 (x∗) (18)

does NOT have maximal rank. (Ie there is at most k linearly independent rows.)
Proof: Suppose rankM = k + 1; by relabelling the variables it may be as-

sumed that the first k + 1 columns are linearly independent.
Introducing an auxiliary variable u ∈ R, it is convenient to set

F (x, u) =


f(x) + u
g1(x)

...
gk(x)

 .

This is a C1-function O×R→ Rk+1 with ∂F
∂x,∂u

(x∗, 0) = (M e1 ), in block matrix
notation. Hereby e1 denotes the first canonical basis vector.

To apply the Implicit Function Theorem, the points (x, u) ∈ Rk+1 are now de-
noted by (y, z), where y = (x1, . . . , xk+1) and z = (xk+2, . . . , xn, u). In particular
(y∗, z∗) = (x∗, 0), so that (y∗, z∗) belongs to the set of solutions to

F (y, z) = ( f(x∗) c1 ... ck )T . (19)

This determines a C1-surface locally near (y∗, z∗), since ∂F
∂y

(y∗, z∗) is invertible.
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Consequently there exists a C1-function ψ defined on an open neighbourhood
of z∗ and (small) closed balls B1 = B̄(y∗, α), B2 = B̄(z∗, β) such that ψ : B2 →
B1 and that (19) in B1 ×B2 is solved precisely by the points on the graph of ψ.

In particular (19) is solved by (ψ(z), z) for z = (x∗k+2, . . . , x
∗
n, u) with u ∈

[−β, β]. From the first entry in F it is seen that for every u ∈ [−β, β] it holds that

f(ψ(x∗k+2, . . . , x
∗
n, u), x∗k+2, . . . , x

∗
n) + u = f(x∗).

Since u 7→ ψ(x∗k+2, . . . , x
∗
n, u) is continuous, the pre-image of every ball B(x∗, r)

contains an interval ] − γ, γ[. On this the function u 7→ f(x∗) − u is monotone
decreasing, so from the equation above it is seen that B(x∗, r) contains points x′,
x′′ for which

f(x′) > f(x∗), f(x′′) < f(x∗). (20)

Because (ψ(z), x∗k+2, . . . , x
∗
n) ∈ F , the number f(x∗) is not an extreme value on

F . This proves the theorem.

Remark. In the special case in which the first row of M is a linear combination
of the others, it is obvious that there exists certain scalars λ1,. . . ,λk such that
∇f(x∗) + λ1∇g1(x∗) + · · ·+ λk∇gk(x∗) = 0. This implies

∇(f + λ1g1 + · · ·+ λkgk)(x
∗) = 0 (21)

so the function f + λ1g1 + · · ·+ λkgk has a critical point at x∗.
Therefore, if it is known that g1,. . . ,gk have linearly independent gradients, the

extremum points of f under the contraints can according to the above be deter-
mined among the critical points of

f + λ1g1 + · · ·+ λkgk. (22)

This clearly gives n + k unknowns and the same number of equations, namely
x1,. . . ,xn and λ1,. . . ,λk that appear the n equations (21) as well in the k con-
straints.

This method of constrained optimisation is often called the method of La-
grangian multipliers (these are the numbers λ1,. . . ,λk). In practice, however, the
theorem is more convenient because linear independence of the gradients need
not be verified first. Furthermore, it is often technically easier just to examine the
points at which M does not have maximal rank.

Med venlig hilsen
Jon Johnsen
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MATEMATIK 3
OPTIMISATION September 1

Overview no. 3

2nd gathering, Wednesday 8 September. We meet at 8.15 in G5-109.
In the exercises we shall look at

Local maximum: Determine whether f(x, y) = x3 +x2 + 3x2y+ 3xy2 + y3 has
a local extremum at the origin.

Prove that f(x, y) = y4 − x2 does not have a local maximum at (0, 0).

Explain why the necessary condition provided by Theorem 1, which states
that every eigenvalue λ ≤ 0, is not sufficient for a maximum.

The integral remainder term: Carry out the induction argument for Taylor’s for-
mula in line (1) above.

o-functions: Show that if two functions f(t) and g(t) both are o(tn) for t → 0,
then so is f(t) + g(t).

Would it be justified to write: o(tn) + o(tn) = o(tn) ?

Taylor’s limit formula: Use (2) to show that the Taylor polynomial of degree 2
in formula (4) is correct.

Show next that the remainder term in (4) is a term with the o(‖x − x∗‖2)
property, as claimed. [Hint: One can use (1)].

Constraints: Do exercise 13.5.51 in the calculus book of Edwards and Penney.
That is, consider the production of a buoy from steel plates; it should have
circular cross section of radius r and height H , while its ends should be
conical og height h (much like a pecil sharpened at both ends !). Minimise
the surface area (and hence the production costs) under the constraint that
the volume is a given constant V .

In the lectures we first complete the notes above, beginning with a reminder
on the implicit function theorem — please review this at home before the lecture!

We also proceed from page 13 in [SS].
Med venlig hilsen

Jon Johnsen
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MATEMATIK 3
OPTIMISATION 8 September 2010

Overview no. 4

Today we covered the rest of the notes above on optimisation of real func-
tions with constraints. These notes have also been expanded accordingly with
additional material today.

3rd gathering, Wednesday 15 September. Here we meet in G5-110 at 8.15. In
the lectures we now commence with the calculus of variations, pp. 13-31 in [SS].
Exercises:

Local extrema: Show that f(x, y) = 4x2ey− 2x4− e4y has 2 critical points; find
them. Show that they are both local maxima (“Two mountains without a
valley”). Surprised? — could this happen in dimension 1 ?

Constraints: Find the points on the surface xy−z2 = 1 that has the least distance
to the origin.

Find the dimensions of the largest rectangular box that can be inscribed in
the ellipsoid given by

(x
a
)2 + (y

b
)2 + ( z

c
)2 = 1.

Consider a current I that branches into three, so that I = I1 +I2 +I3, where
each Ij runs through a resistor Rj , where the power dissipation is RjI

2
j .

Supposing that the actual sizes of I1, I2, I3 will minimise the total loss of
energy, find the ratios I1/I2, I2/I3 and I1/I3.

Old exercises in the remaining time.

Med venlig hilsen
Jon Johnsen

8



MATEMATIK 3
OPTIMISATION 15. september 2010

Overview no. 5

Today we covered all essential parts of p. 13–31. The special cases in Sec-
tion 1.4 is left for you to read.

In particular we covered the deduction of the Euler equation as a necessary
condition. However, the precise argument for differentiation under the integral
sign (that is, formula (8) in [SS]) is postponed to the next lecture.

4th gathering, Wednesday 22 September. As exercises you can do 1.1.1 at home
along with your reading (recommended!). Then continue with 1.2.1+3+4+5+6
from [SS] in the groups.

In the lecture we shall complete the proof for the Euler equation (cf the above)
and continue with pp. 35-42 in [SS]. Here we shall meet other, less strict terminal
conditions, as well as the transversality conditions they give rise to.

5th gathering, Friday 1 October. We continue in the lectures with Section 1.6–7
and some material on convex/concave functions; for the latter we can at least refer
to Appendix B in [SS].

In the exercises we look at 1.3.1 and 1.4.1–4 (easy if you have read Sec-
tion 1.4!). Also 1.5.1 on transversality conditions.

Med venlig hilsen
Jon Johnsen
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MATEMATIK 3
OPTIMISATION 6 October 2010

Overview no. 6

Last time we covered Chapter 1.6 and 1.7, leaving the extension to vector
functions in Chapter 1.8 for you to read.

6th gathering, Thursday 7 October. We will finish Chapter 1 in [SS] with some
remarks and examples.

In the exercises we will do 1.6.1–2, 1.6.4 and 1.7.4.

7th gathering: First set of mandatory assignments. This consists in both a
practical and a theoretical exercise, namely

• Find the dimensions of the largest rectangular box that can be inscribed in
the ellipsoid given by

(x
a
)2 + (y

b
)2 + ( z

c
)2 = 1.

Determine also the volume of this box. (Note: You may assume, without
proof, that this box has its sides parallel to the coordinate axes.)

• Solve Exercise 1.8.4 in [SS].

As for the principles of this evaluation: Both exercises should be solved by each
of you, individually. You should also sign every sheet of the solution and present
it to me no later than Monday 25 October 2010.

Med venlig hilsen
Jon Johnsen
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MATEMATIK 3
OPTIMISATION October 13, 2010

Overview no. 7

8th gathering, Thursday 14 October.
In the exercises we will do 1.7.1–2 and 1.8.1–2.
The lectures will give more examples from and remarks on Section 1.8–9.

Med venlig hilsen
Jon Johnsen
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