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Abstract

A complex multivariate spatial point pattern for a plant commu-

nity with high biodiversity is modelled using a hierarchical multi-

variate point process model. In the model, interactions between plants

with different post-fire regeneration strategies are of key interest. We

consider initially a maximum likelihood approach to inference where

problems arise due to unknown interaction radii for the plants. We

next demonstrate that a Bayesian approach provides a flexible frame-

work for incorporating prior information concerning the interaction

radii. From an ecological perspective, we are able both to confirm

existing knowledge on species’ interactions and to generate new bio-

logical questions and hypotheses on species’ interactions.

1 Introduction

1.1 A plant community with high biodiversity

This paper discusses a multivariate spatial point process model for spatial
point patterns formed by a natural plant community with a high degree of
biodiversity. The data were collected in Cataby, in the Mediterranean type
shrub- and heathland of the south western area of Western Australia (Beard,
1984), where the locations of 6378 plants from 67 species on a 22 m by
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22 m plot have been recorded (Armstrong, 1991). Figure 1 shows the point
patterns of the 24 most abundant and influential species. The patterns are of
varying nature, showing different patterns of inhomogeneity and clustering.
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Figure 1: Observed point patterns for the 5 most abundant species of seeders
and the 19 most dominant (influential) species of resprouters.
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Our objective is to devise methodology suitable for modelling a mul-
tivariate spatial point pattern dataset as complex as this. We also aim at
emphasising the suitability of spatial point process methods in the context of
plant community ecology and the applicability of the methodology to other,
similar datasets. In particular, we demonstrate that a Bayesian approach
provides a flexible framework for incorporating prior information concerning
plant interactions.

1.2 Ecological perspective

The dataset considered here is only one example of a multivariate spatial
point pattern of high dimensionality. Similar large datasets are becoming
increasingly available in the context of plant community ecology (Burslem
et al., 2001). The ecological information buried in these datasets has not yet
been fully explored.

In view of the increasing impact of humans on plant ecosystems, result-
ing in the destruction of these and thus in a loss of biodiversity, ecologists
seek to understand the processes that organise ecological plant communities.
Such knowledge may help the re-naturation and subsequent conservation of
disturbed ecosystems (Greig-Smith, 1983; Herben et al., 2000). This aspect
is further discussed in Section 2 for our specific dataset.

In particular, revealing the mechanisms that allow a large number of
species to coexist is of key interest within community ecology (Murrell et al.,
2001; Loreau et al., 2001). Species coexistence is directly linked to local
inter- and intra-specific interactions in a community (Durrett and Levin,
1998). Each plant has a dependence on local growing conditions (Stoll and
Weiner, 2000) and interacts mainly with its immediate neighbours, as plants
are non-motile organisms. As noted, the dataset considered here consists of
as many as 67 species, which manage to coexist in the same ancient commu-
nity without out-competing each other. We are interested in revealing the
mechanisms that facilitate this coexistence, i.e. in understanding the nature
of the interaction structure in the community in terms of the strength and
direction of interaction (Law et al., 1997).

Non-statistical spatially explicit individual based models have become a
very popular approach in ecological modelling over the last ten years (Law
et al., 2003). These mechanistic models are built on equations capturing
those properties of the individuals which are believed to influence commu-
nity dynamics. However, the individual based models yield simulated reali-
sations which do not necessarily capture overall spatial characteristics of the
entire community. Moreover, extending the mechanistic model to a statisti-
cal model which takes uncertainty into account would be a difficult task due
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to the high complexity of the model and the limited data available when a
plant community is only observed at one instance in time.

We propose instead to analyse information on locations of individual
plants using a spatial point process model of the interaction structure in
the plant community. So far, most applications of spatial point processes in
ecology have been either of a merely descriptive nature using second order
summary statistics such as Ripley’s K-function (Dale et al., 2002; Liebhold
and Gurevitch, 2002; Wiegand and Moloney, 2004) or the models were re-
stricted to a very small number of species, typically not more than two or
three (Mateu et al., 1998). A traditional spatial point process analysis involv-
ing the inspection of first and second order summary statistics for each of the
species as well as pairwise cross species summary statistics (see e.g. Diggle,
2003; Møller and Waagepetersen, 2003) becomes a very tedious task with high
numbers of species. For our dataset, we develop a suitable hierarchical spatial
point process model that provides information on the interaction structure
in the community.

1.3 Outline

Section 2 gives further information on the dataset, providing a justification
for the hierarchical model considered in Section 3. The hierarchical model
exploits subject matter knowledge concerning post-fire regeneration strate-
gies of the species. Some model parameters reflect strength and direction of
interaction between individuals while other model parameters define circu-
lar regions around the individuals where interaction takes place. Section 4
discusses maximum likelihood inference and points out various problems
with the estimation of interaction radii in the model. Section 5 considers
a Bayesian approach which incorporates prior information on the interaction
radii and overcomes the estimation problem. Section 6 contains concluding
remarks.

2 Biological background to dataset

The flora in the sampled area is distinguished by its large number of species
specific for that area, the large number of rare flora and a high biodiversity;
indeed the southwest of Australia is one of the world’s biodiversity hot-spots
(Crawley, 1997). Lying within a mineral sand mining area, the study area was
mined shortly after data collection in 1990 and will have to be re-naturated
as soon as mining has ceased. Current efforts towards re-naturation in neigh-
bouring areas, however, have resulted in a very small survival rate for some
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species. Nevertheless, re-naturation is a legal requirement in the area after
large scale mining and the modelling approach here seeks to inform that
re-naturation process by identifying community dynamics.

The characteristic sandy soil in the area is extremely low in nutrients
and water (Armstrong, 1991). Hence, individual plants may interact in var-
ious ways by inhibiting each other’s growth while competing for the scarce
resources (Richardson et al., 1995). This is likely to reduce the number of
plants in close proximity thus leading to an observed spatial pattern with
inhibition between plants. Attraction may, however, also occur if conditions
(shade, nutrients, water availability) in the micro habitat are made more
suitable for a plant by the presence of another plant. Except for small-scale
local variations caused by individual plants, the extremely low nutrient and
water level in the soil can be regarded as spatially homogeneous. The ap-
parent inhomogeneity in Figure 1 e.g. for seeder 2 and resprouters 8 and 15
is therefore likely to be due to a “patchy” growth behaviour typical for the
area rather than to inhomogeneity in the environment (Dixon, 2005).

The vegetation in the area is Banksia low woodland (Elkington, 1991),
which is susceptible to regular natural fires occurring approximately every
ten years. Plants have adapted to this through the development of two
different regeneration strategies. Resprouting species survive the fire with
the above soil part of the plant burning off and the plant regrowing from
sub-soil root stock. Seeding species, on the other hand, die in the fire but the
fire triggers the shedding of seeds, which have been stored since the previous
fire. The specific regeneration method used by a species will have an impact
on the pattern formed by the individual plants (Armstrong, 1991) and also on
the structure of the interaction between species with different regeneration
strategies.

Since the resprouting plants have been at exactly the same location for a
very long time (some of them for hundreds or even thousands of years; Arm-
strong, 1991), the seeders, which start anew after each fire, do so with the
resprouters already present. We thus assume that the growth and survival of
reseeding plants will be influenced by the resprouting plants already present
in the plot, whereas an influence of the seeders on the resprouting plants is
highly unlikely. To capture the asymmetric interaction, we model the loca-
tions of the reseeding plants conditionally on the locations of the resprouting
plants in Section 3.

In the sequel, we consider the 24 point patterns in Figure 1, i.e. the 5 most
abundant species of seeders and the 19 species of resprouters suspected to be
most dominant (influential). We assume that each individual resprouter has
a circular zone of influence with the strength of influence decreasing with the
distance from each plant. Beyond this zone the influence is considered zero.

5



1. Alexgeorgia nitens: 10-40 11. Phlebocaria filifolia: 20-30
2. Conostylis canescens: 5-15 12. Restio sinuousus: 25-75
3. Dasypogon bromelifolius: 15-60 13. Scholtzia aff. involuc.: 30-50
4. Eremae astrocarpa: 25-75 14. Allocasuarina humilis: 50-130
5. Hibbertia crassifolia: 10-25 15. Banksia attenuata: 150-400
6. Hibbertia hypericoides: 10-20 16. Banksia grandis: 50-200
7. Hibbertia subvaginata: 10-25 17. Banksia ilicifolia: 50-200
8. Hypocalymma xantop.: 10-25 18. Banksia menziesii: 50-250
9. Lomandra sp.: 2-10 19. Eucalyptus todtiana: 10-250
10. Lyginia barbata: 20-100

Table 1: Range of zone of influence (in cm) for resprouters.

The interaction can be positive (e.g. caused by subcanopy soil enrichment;
Callaway, 1995) or negative (e.g. caused by allelopathy; Armstrong, 1991).
Prior information (Armstrong, 2005) available on the typical radii of the
influence zones is given in Table 1 which also shows the numbering we use for
resprouter species. The 5 species of seeders are 1. Andersonia heterophylla,
2. Astroloma xerophyllum, 3. Conospermum crassinervium, 4. Leucopogon

conostephioides and 5. Leucopogon striatus.

3 Likelihood

Denote W the 22 m by 22 m plot where the plants have been recorded,
x1, . . . ,x19 the observed point patterns for the 19 resprouters, y1, . . . ,y5 the
observed point patterns for the 5 seeders, and X1, . . . ,X19,Y1, . . . ,Y5 the
corresponding spatial point processes, i.e. here each Xj or Yi is considered
to be a random finite subset of W ; for details on spatial point processes,
see Møller and Waagepetersen (2003) and the references therein. Since we
are mainly interested in the inter-species interactions between seeders and
resprouters, we leave the marginal distribution of the resprouters unspecified
and restrict attention to the conditional likelihood of the seeders given the
resprouters.

Conditional on X1 = x1, . . . ,X19 = x19, we assume that Y1, . . . ,Y5 are
independent Poisson processes, and each Yi has intensity function

λ(ξ|x, θi) = exp
(

θis(ξ|x)T
)

, ξ ∈ W, (1)

where we use the following notation: x = (x1, . . . ,x19) is the collection of
all 19 resprouter point patterns; θi = (θi0, . . . , θi19) is a vector of parameters,
where θi0 ∈ R is an intercept and for j = 1, . . . , 19, we let θij ∈ R control
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the influence of the jth resprouter on the ith seeder (a positive value of
θij means a positive/attractive association; a negative value of θij means a
negative/repulsive association); s(ξ|x) = (1, s1(ξ|x), . . . , s19(ξ|x)) with

sj(ξ|x) =
∑

η∈xj

hη(‖ξ − η‖), j = 1, . . . , 19,

where ‖·‖ denotes Euclidean distance, and hη is a smooth interaction function
given by

hη(r) =

{

(1 − (r/Rη)
2)

2
if 0 < r ≤ Rη

0 else

for r ≥ 0, where Rη ≥ 0 defines the radii of interaction of a given resprouter
at location η, cf. Table 1.

Thus, given the resprouters x the number Ni of points in Yi is Poisson dis-
tributed with mean value

∫

W
λ(ξ|x, θi)dξ, and if we also condition on Ni, the

points in Yi are independent and identically distributed with a density pro-
portional to λ(ξ|x, θi). It follows that the conditional log likelihood function
based on the 5 seeder point patterns y = (y1, . . . ,y5) is

l(θ,R;y|x) =
5

∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)T −

∫

W

exp
(

θis(ξ|x)T
)

dξ
]

, (2)

where θ = (θ1, . . . , θ5) is the vector of all 100 parameters θij and R is the
vector of all 3168 radii Rη, η ∈ xj, j = 1, . . . , 19. In comparison, there are
N1 + · · · + N5 = 1954 seeders.

A potential weakness of our model is the assumed conditional indepen-
dence between the seeders, see Sections 4.2 and 5.2.3 on model assessment.

4 Maximum likelihood estimation

4.1 Assumptions and results

For a fixed value of R, due to the log linear intensity (1), the log likelihood
(2) can be maximised relatively easily with respect to θ using the Berman
and Turner (1992) device: briefly, the log likelihood is then approximated
by a weighted log likelihood of independent Poisson variables which can be
optimised using standard software, such as the function glm in R, see also
the R package spatstat (Baddeley and Turner, 2005). Maximisation with
respect to R on the other hand is difficult due to the high dimensionality
of R and since the Rη-values do not enter the likelihood function in a log
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linear fashion. In this section, we therefore make the simplifying assumption
that for each resprouter type j, all Rη with η ∈ xj are equal to a common
interaction radius Rj, given by the midpoint of the interval for the zone of
influence in Table 1.

Given the chosen value of R, another problem is the existence of the
maximum likelihood estimate (MLE) of θ. By exponential family results
(Barndorff-Nielsen, 1978), the MLE for θi exists if and only if tj(yi) ≡
∑

ξ∈yi
sj(ξ|x) > 0, j = 1, . . . , 19. Depending on the value of Rj it may

well happen that tj(yi) = 0, and indeed this is sometimes the case with our
choice of the Rj. In Figure 2, the fields marked with NA correspond to the 18
parameters where the MLE does not exist. We could choose to let θij = −∞
if tj(yi) = 0. This corresponds to a hard core effect of the jth resprouter on
the ith seeder, cf. resprouter 2, 9, and 14. It may on the other hand also
simply be the case that the chosen interaction radii for these resprouters are
too small.

To study the strengths and directions of interaction, we consider z-statistics
for the various θij, i.e. MLEs scaled by the associated estimated standard er-
rors. The upper plot in Figure 2 shows transformed z-statistics u = Φ(z),
where Φ is the standard normal distribution function. Dark shading corre-
sponds to large u-values. Assuming that the z-statistics are approximately
standard normal (and hence that the us are approximately uniform on [0, 1]),
the starred fields correspond to parameters which are significantly different
from zero at the 5 % level. With 95 interaction parameters, there is obviously
an issue of multiple testing and hence we should be careful when interpreting
the “starred” parameters. Rather than looking at individual parameters it
seems more appropriate to look for resprouters or seeders with a consistent
pattern of dark or light fields in Figure 2. For example, it seems reasonable
to conclude that resprouters 1 and 4 have a repulsive effect on the seeders
whereas there may be evidence that resprouters 15 and 18 have an attractive
effect on the seeders.

4.2 Model assessment

We assess the fitted model using the so-called L-function derived from the
inhomogeneous K-function by L(r) =

√

K(r)/π, (Baddeley et al., 2000). An

estimate L̂(r;yi, θ̂i) for the ith seeder is obtained by replacing K(r) with the
estimate

K̂(r;yi, θ̂i) =
∑

ξ,η∈yi

1[0 < ‖ξ − η‖ ≤ r]

λ(ξ|x, θ̂i)λ(η|x, θ̂i)
eξ,η,

8



5 10 15

1
2

3
4

5

resprouters

re
se

ed
er

s

0.0

0.2

0.4

0.6

0.8

1.0

*

*

*

NA

NA

NA

NA

NA

* *

*

NA

NA

NA

NA

NA

NA

*

* *

*

NA

NA

NA

NA

*

*

NA NA *

NA

NA

5 10 15

1
2

3
4

5

resprouters

re
se

ed
er

s

0.0

0.2

0.4

0.6

0.8

1.0

*

*

*

*

*

*

*

*

* *

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Figure 2: Upper plot: Grey scale plot of u = Φ(z)-statistics for the inter-
action parameters θij. Fields for parameters which are significantly different
from zero at the 5 % level are marked with a *. Fields marked with NA
correspond to θij where the MLE does not exist. Lower plot: Grey scale plot
of posterior probabilities P (θij > 0|y). The starred fields are those for which
0 is outside the central 95 % posterior interval for θij.

where 1[·] is the indicator function and eξ,η is an edge correction factor (Møller
and Waagepetersen, 2003). For a Poisson process, L(r) − r = 0. The esti-
mated (L(r)−r)-functions with 95% envelopes obtained by simulation under
the fitted model (Møller and Waagepetersen, 2003) are shown in Figure 3.
For seeder 1, the estimated L-function is clearly above the envelopes for dis-
tances up to about 400 cm, indicating that there is clustering present in the
point pattern that is not explained by the model. This clustering might be a
result of a reproduction mechanism where offspring are located in the vicinity
of the parent plant. For seeders 2 and 5, it is not clear how to interpret the
estimated L-functions which are below the envelopes at larger distances. The
model yields a reasonably good fit for seeders 3 and 4, though at very small
distances there appears to be some intra-specific repulsion. This might be
the effect of a hardcore zone around each individual in which no conspecific
individuals can survive.
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Figure 3: Estimated inhomogeneous (L(r)−r)-functions for seeders 1-5 with
95% envelopes simulated from the model. Distance r > 0 is in cm.

The results indicate that a more appropriate model would have to take
intra-specific interaction into account. Assuming known interaction radii,
Högmander and Särkkä (1999) consider a hierarchical model with interac-
tions for a bivariate point pattern of ants’ nests. However, in our situation,
we believe that the assumption of known and equal interaction radii for re-
sprouters of the same type is highly unrealistic, since the plants vary in size,
and we choose to focus on this problem in the next section.

5 Bayesian inference

We now consider a more flexible Bayesian approach, allowing different inter-
action radii for each resprouter plant, and where we elicit prior distributions
based on the information in Table 1.

5.1 Prior and posterior

We make the following prior assumptions. The θij and the Rη are inde-
pendent random variables; each θij follows a N(0, σ2)-distribution; for each
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η ∈ xj, Rη follows the restriction of N(µj, σ
2

j ) to [0,∞), where (µj, σ
2

j ) is
chosen so that under the unrestricted N(µj, σ

2

j ), the range of the zone of
influence in Table 1 is a central 95% interval; (θ,R) and X are independent,
i.e. the posterior density for (θ,R) satisfies

π(θ,R|x,y) ∝ π(θ,R) exp (l(θ,R;y|x)) .

Combining the prior assumptions with the log likelihood (2) we obtain the
posterior density

π(θ,R|x,y) ∝ exp
(

−
5

∑

i=1

[

θ2

i0/(2σ2)−
19

∑

j=1

{

θ2

ij/(2σ2)+
∑

η∈xj

(Rη−µj)
2/(2σ2

j )
}])

× exp
(

5
∑

i=1

[

θi

∑

ξ∈yi

s(ξ|x)T −

∫

W

exp(θis(ξ|x)T)dξ
])

, θij ∈ R, Rη ≥ 0.

(3)

The specification of the prior standard deviation σ for the θij’s is difficult.
In regression models with a design matrix of full rank, a common choice are
flat improper priors, i.e. σ2 = ∞. In our situation, however, with improper
priors on the θi’s we cannot guarantee a proper posterior, since the statis-
tics tj(yi) have positive posterior probability of being zero (Waagepetersen,
2005). It is also difficult to specify informative priors on the θi’s, since we
only have a qualitative understanding of these parameters. It turns out that
essentially the same posterior results are obtained with different values 2, 4,
or 8 of σ. In the following we restrict attention to the results for σ = 8.

Monte Carlo estimates of posterior distributions are calculated using sim-
ulations from (3). We use a hybrid Markov chain Monte Carlo algorithm (see
e.g. Robert and Casella, 1999), where θ1, . . . , θ5 are updated in turn, using
random walk Metropolis updates, followed by a random walk Metropolis up-
date of R. The proposal distributions for these random walk updates are
multivariate normal with diagonal covariance matrices. The vector of pro-
posal standard deviations for θi is given by kσ̂i|y, where k is a user specified
parameter and σ̂i|y is an estimate of the vector of posterior standard devi-
ations for θi obtained from a pilot run. The value of k was chosen to give
acceptance rates around 25 %. The vector of proposal standard deviations
for R is given by the vector of prior standard deviations divided by 2.
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5.2 Results

5.2.1 Interaction parameters

The lower plot in Figure 2 is a grey scale plot of the posterior probabili-
ties P (θij > 0|y) where dark grey scales are associated with large values of
these posterior probabilities. The starred parameters are those for which 0 is
outside the 95% posterior interval of θij given by the 2.5% and 97.5 % quan-
tiles. In comparison with the upper plot in Figure 2, it is striking that the
Bayesian approach seems to yield more clear-cut results than the maximum
likelihood inference, since the intermediate grey scales are less frequent in
the lower plot. Moreover, more θij’s have strong evidence for being different
from zero if ‘strong evidence’ is interpreted as being significant at the 95%
level or being outside the 95% posterior interval, respectively. Similar to the
maximum likelihood results, resprouter 1 seems to have a clear repulsive ef-
fect on seeders, and this also seems to be the case for resprouters 2, 4, 5, 8, 9,
and 14 (again we should exercise caution with resprouters 2, 9, and 14 where
the prior may be concentrated on too small interaction radii). Resprouters
15 and 18 seem to have a distinct attractive effect on seeders. Looking at
rows in the lower plot in Figure 2, seeders 1 and 4, for example, seem to be
repulsed by resprouters 1-5 and 8-11 and attracted by resprouters 12, 15, and
18. The Bayesian analysis shows that it may not be valid to interpret all the
θij’s with NA’s in Figure 2 as corresponding to hard cores, since a number of
these θij’s do not have strong posterior evidence of being different from zero.

5.2.2 Interaction radii

The individual interaction radii are not of particular interest, so for re-
sprouters j = 1, . . . , 19 we just consider the posterior distributions of the
empirical mean R̄j and the empirical standard deviation sj for the Rη with
η ∈ xj. Table 2 shows prior means and standard deviations for the interac-
tion radii and posterior means of the empirical means and standard deviations
for the interaction radii associated with each resprouter type. Except for the
very sparse resprouters 16 and 19, there is very little difference between the
prior mean or standard deviation and the posterior mean of the empirical
mean or standard deviation.

5.2.3 Model assessment

In analogy with Section 4.2, denote by L(r;Yi, θ,R) the estimate of the L
function obtained from the point process Yi using the intensity function cor-
responding to the interaction parameter vector θ and interaction radii R.
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prior posterior prior posterior
mean mean of R̄j std mean of sj

1. Alexgeorgia nitens: 25 25 7.5 7.5
2. Conostylis canescens: 10 10 2.5 2.5
3. Dasypogon bromelifolius: 37.5 37.2 11.25 11.5
4. Eremae astrocarpa: 47.5 47.5 11.25 11.3
5. Hibbertia crassifolia: 17.5 17.4 3.75 3.7
6. Hibbertia hypericoides: 15 15.0 2.5 2.5
7. Hibbertia subvaginata: 17.5 17.4 3.75 3.7
8. Hypocalymma xant.: 17.5 17.4 3.75 3.8
9. Lomandra sp.: 6.6 6.6 20 20
10. Lyginia barbata: 60.0 60.0 20 19.9
11. Phlebocaria filifolia: 25 25.0 2.5 2.5
12. Restio sinuousus: 50 50.0 12.5 12.5
13. Scholtzia aff. involucrata: 40.0 40.0 5 5
14. Allocasuarina humilis: 90.0 90.2 20.0 13.3
15. Banksia attenuata: 275 273.8 62.5 71.7
16. Banksia grandis: 125 59.7 37.5 0.00
17. Banksia ilicifolia: 37.5 39.5 37.5 26.8
18. Banksia menziesii : 150 147.6 50 51.6
19. Eucalyptus todtiana: 130 172.5 60 0.00

Table 2: Prior means and standard deviations for the interaction radii and
posterior means of the empirical means and standard deviations for the in-
teraction radii associated with each resprouter type.
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Following the idea of posterior predictive model checking (Gelman et al.,
1996), we consider the posterior predictive distribution of the differences
∆i(r) = L(r;y, θi,R) − L(r;Yi, θi,R), r > 0, i.e. the distribution obtained
when (Yi, θi,R) are generated under the posterior predictive distribution
given the data y. If zero is an extreme value in the posterior predictive dis-
tribution of ∆i(r) for a range of distances r, we may question the fit of our
model. In practice, we generate a posterior sample (θi,1,R1), . . . , (θi,m,Rm),
and for each (θi,k,Rk) we generate new data yi,k from the conditional dis-
tribution of Yi given (θi,k,Rk). We can then estimate the posterior pre-
dictive distribution from the sample L(r;yi, θi,k,Rk) − L(r;yi,k, θi,k,Rk),
k = 1, . . . ,m. We use m = 100 approximately independent simulations
obtained by subsampling a Markov chain of length 200, 000.

Figure 4 presents estimated upper and lower boundaries of the 95 %
posterior intervals for the posterior predictive distributions of ∆i(r), r > 0,
for the 5 seeder species (i = 1, . . . , 5). These intervals take into account
the uncertainty of the model parameters θ and R and are quite wide in
comparison with the envelopes in Figure 3. In accordance with the results
in Section 4.2, there is evidence of clustering for seeder 1 and indication of
repulsion at small distances less than 20 cm for seeder 4. In contrast with
Section 4.2, the posterior predictive intervals for seeder 2 indicate clustering.
As for seeder 1, this may be explained by offspring clustering around locations
of parent plants. Another explanation is inhomogeneity not accounted for by
our model, since seeder 2 plants are absent in the top part of the observation
plot, cf. Figure 1. Also for seeder 3 there is evidence of clustering. The
posterior predictive intervals for seeder 5 do not provide evidence against
our model.

5.2.4 Biological interpretation

Ecologists are particularly interested in revealing how individuals interact
and whether this interaction varies between species (Uriarte et al., 2004).
Our results clearly indicate that resprouter-seeder interaction may be both
negative and positive and that the same species can have both positive and
negative inter-species interactions.

Some of the interactions revealed here can be explained from ecological
background knowledge. For instance, the negative interaction of the most
abundant resprouter Alexgeogia nitens might be a result of the dense root mat
formed by this species making it very difficult for plants from other species to
establish themselves close to them. Similarly, the strong positive interactions
between the resprouters 15 or 18 and seeder 2 may be explained by specific
associations between soil fungi and the plant roots of the seeder. These
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Figure 4: Upper and lower boundaries (solid lines) of the 95% credibility
interval for the posterior predictive distribution of ∆i(r) for seeders i =
1, . . . , 5. Distance r > 0 is in cm.

associations, termed ericoid mycorrhiza, facilitate nutrient uptake from the
soil by plants from the Ericaceae family. They enable the seeder to use very
complex organic material produced, for example, by resprouters 15 and 18,
which is normally impossible to extract from the soil. As a result, individuals
from seeder 2 find more nutrients close to resprouters 15 and 18, leading to
a positive interaction. As all seeder species in our analysis are from the
Ericaceae family, other positive interactions between the seeder species and
species from the Banksia family (resprouters 15 to 18) might be explained in
a similar way.

However, for a large number of interactions no biological explanation can
be found. There clearly is a need for further biological research to understand
these aspects and to yield a better understanding of the overall community
dynamics.
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6 Conclusion

From a statistical point of view, our analysis shows the difficulty of mod-
elling spatial interactions in a plant community which requires very complex
models with a large number of parameters. In this situation, we found the
Bayesian approach more useful than the frequentist approach as it allowed
a more flexible and realistic model. Furthermore, taking biological back-
ground information into account in our analysis naturally lead to a hierar-
chical model. However, we are aware that the model does not sufficiently
capture all interactions that may be present in the dataset. It does not con-
sider an intra-species interaction for each seeder type and, similarly, assumes
that the seeder species are independent given the resprouters. Incorporating
all these aspects into a single model, though, is likely to be computation-
ally intractable. Finally, from an ecological perspective, we are able both
to confirm existing knowledge on species’ interactions and to generate new
biological questions and hypotheses on species’ interactions.
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with us and for many discussions which provided the biological background
for our modelling approach and for the elicitation of informative priors for
the interaction radii.
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