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Abstract

Statistical methodology for spatio-temporal point processes is in its in-
fancy. We consider second-order analysis based on pair correlation func-
tions and K-functions for first general inhomogeneous spatio-temporal
point processes and second inhomogeneous spatio-temporal Cox processes.
Assuming spatio-temporal separability of the intensity function, we clar-
ify different meanings of second-order spatio-temporal separability. One is
second-order spatio-temporal independence and relates e.g. to log-Gaussian
Cox processes with an additive covariance structure of the underlying
spatio-temporal Gaussian process. Another concerns shot-noise Cox pro-
cesses with a separable spatio-temporal covariance density. We propose di-
agnostic procedures for checking hypotheses of second-order spatio-temporal
separability, which we apply on simulated and real data (the UK 2001 epi-
demic foot and mouth disease data).

Key words: spatio-temporal functional summary statistics; K-function; pair
correlation function; second-order intensity-reweighted stationarity; shot-noise
Cox process; spatio-temporal separability.

1 Introduction

While statistical methodology for spatial point processes (Diggle 2003, Møller &
Waagepetersen 2004, Møller & Waagepetersen 2007, Illian, Penttinen, Stoyan &
Stoyan 2008) and for temporal point processes (Daley & Vere-Jones 2003, Da-
ley & Vere-Jones 2008) is rather well-developed, it is still in its infancy for
spatio-temporal point processes (Gabriel & Diggle 2009). We consider a spatio-
temporal point process with no multiple points as a random countable subset
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X of R2 × R, where a point (u, t) ∈ X corresponds to an event u ∈ R2 occur-
ring at time t ∈ R. Examples of events include incidence of disease, sightings
or births of a species, the occurrences of fires, earthquakes, tsunamis, or vol-
canic eruptions (Schoenberg, Brillinger & Guttorp 2002). In practice, X is
observed within a spatio-temporal window W ×T , where W ⊂ R2 is a bounded
region of area |W | > 0, T is a bounded time interval of length |T | > 0, and
X

⋂
(W × T ) = {(ui, ti), i = 1 . . . n} are the data. Assuming that X has an

intensity function and a pair correlation function, the spatial component process
Xspace consisting of those events with times in T and the temporal component
process Xtime consitsting of those times with events in W are then well-defined
point processes on R2 and R, respectively, with well-defined intensity and pair
correlation functions (as detailed in Section 2).

The aim of this paper is to study spatio-temporal separability properties
and inferential procedures based on first and second-order properties as given
by the intensity and pair correlation functions for X , Xspace, and Xtime as well
as related K-functions and other functional summary statistics. The first part
of the paper considers general inhomogeneous spatio-temporal point processes
and the second part inhomogeneous spatio-temporal Cox processes (Cox 1955).
In the latter case we are given a non-negative stochastic process λ defined on
R2×R such that X conditional on λ is a Poisson process with intensity function
λ. Furthermore, λ is assumed to have the multiplicative structure

λ(u, t) = ρ(u, t)S(u, t), ES(u, t) = 1, (u, t) ∈ R
2 × R, (1)

where we refer to S as the residual process. This has unit mean so that ρ
becomes the intensity function.

Throughout the paper we assume that X has a spatio-temporal separable in-
tensity function ρ as specified in Section 2. Further, assuming that X is second-
order intensity-reweighted stationary (Baddeley, Møller & Waagepetersen 2000,
Gabriel & Diggle 2009), Section 2 recalls how second-order properties are spec-
ified by pair correlation and K-functions for X , Xspace, and Xtime. Section 2
also discusses how such functions are estimated by non-parametric methods.

Section 3 concerns the hypothesis of spatio-temporal separability of the pair
correlation function. Diggle, Chetwynd, Häggkvist & Morris (1995) suggested
simple diagnostic procedures for this hypothesis in the stationary case of X ,
i.e., when the distribution of X is invariant under translations in R2×R. These
were also used in the inhomogeneous case (i.e. when X is non-stationary) in
connection to Figure 4 in Gabriel & Diggle (2009). Section 3 corrects a mistake
in connection to these diagnostic procedures, and discusses the case of a log-
Gaussian Cox process, i.e., when the residual process in (1) is a log-Gaussian
process.

The pair correlation and K-functions for X , Xspace, and Xtime are related to
various modifications of intensity-reweighted second-order measures. Section 4
introduces a new kind of modified intensity-reweighted second-order measures
and their related densities and K-functions, which can be estimated by non-
parametric methods. This becomes e.g. important when the residual process
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in (1) is a shot-noise process, i.e., when X is a spatio-temporal shot-noise Cox
process (Møller 2003, Møller & Torrisi 2005) as studied in Section 5.

So far in the literature on spatio-temporal Cox processes, mainly log-Gaussian
Cox processes have been studied (Brix & Møller 2001, Brix & Diggle 2001, Brix
& Diggle 2003, Brix & Chadoeuf 2002, Diggle, Rowlingson & Su 2005, Diggle
2007) and to some extent, in a discrete time setting, shot-noise Cox processes
(Møller & Diaz-Avalos 2010). In Section 5, which deals with inhomogeneous
spatio-temporal shot-noise Cox processes in a continuous-time setting, our def-
inition of spatio-temporal separability implies spatio-temporal separability of
the density of the covariance function for the counts N(A) = #(X ∩ A) (where
A ⊆ R2 × R is a Borel set). In this connection a diagnostic procedure is pro-
posed, and a quick parameter estimation procedure based on the second-order
properties for a specific type of inhomogeneous spatio-temporal shot-noise Cox
process is discussed. Finally, this methodology is investigated for simulated
data and for the UK 2001 epidemic foot and mouth disease data previously
analyzed in Keeling, Woolhouse, Shaw, Matthews, Chase-Topping, Haydon,
Cornell, Kappey, Wilesmith & Grenfell (2001), Diggle (2006), Diggle (2007),
and Gabriel, Rowlingson & Diggle (2010).

2 Assumptions and background

This section specifies the setting and recalls the properties and non-parametric
estimation procedures of the intensity, pair correlation, and K-functions of the
processes X , Xspace, and Xtime as needed in the sequel. For statistical back-
ground material on spatio-temporal point processes, see Diggle (2007), Diggle
& Gabriel (2010), Møller & Diaz-Avalos (2010), and the references therein; for
measure theoretical details, see e.g. Daley & Vere-Jones (2003) or Appendix B
in Møller & Waagepetersen (2004).

We assume that X has intensity function ρ and pair correlation function g
(see e.g. Møller & Waagepetersen (2004)). Then

∫ ∫
f((u, s), (v, t))g((u, s), (v, t)) d(u, s) d(v, t) = E

6=∑

(u,s),(v,t)∈X

f((u, s), (v, t))

ρ(u, s)ρ(v, t)

(2)

for any non-negative Borel function f defined on (R2×R)× (R2×R). Here
∑ 6=

means that (u, s) 6= (v, t), and we take a/0 = 0 for a ≥ 0. The pair correlation
function is related to the density function c of the covariance function for the
counts N(A) = #(X ∩ A) (where A ⊆ R2 × R is a Borel set) by

c((u, s), (v, t)) = ρ(u, s)ρ(v, t)(g((u, s), (v, t)) − 1), (u, s) 6= (v, t), (3)

see e.g. Daley & Vere-Jones (2003).
It follows from (2) that with probability one, for any pair of distinct points

(u, s) and (v, t) from X , we have that u 6= v and s 6= t. We can therefore ignore
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the case where the spatial and temporal component processes Xspace and Xtime

have multiple points and define them by

Xspace = {u : (u, t) ∈ X, t ∈ T }, Xtime = {t : (u, t) ∈ X, u ∈ W}.

We consider Xspace and Xtime rather than the marginal processes given by all
events respective all times in X , since the later processes may not have well-
defined first or second-order properties as studied in this paper. Clearly, though
we suppress this in the notation, Xspace depends on T , and Xtime depends on
W .

2.1 First-order properties

2.1.1 First-order spatio-temporal separability

Throughout this paper we assume first-order spatio-temporal separability, i.e.,

ρ(u, t) = ρ̄1(u)ρ̄2(t), (u, t) ∈ R2 × R, (4)

where ρ̄1 and ρ̄2 are non-negative functions. One may be tempted to call this
property ‘first-order spatio-temporal independence’, since intuitively the prob-
ability that X has a point in an infinitesimally small region around (u, t) of
volume d(u, t) = du dt is

ρ(u, t) d(u, t) = [ρ̄1(u) du][ρ̄2(t) dt]

which is a product of a function of u and du and a function of t and dt. How-
ever, we prefare to avoid this terminology, since (4) does not necessarily mean
that for a point (u, t) in X , the event u is independent of its time t. More pre-
cisely, (4) means that the intensity measure given by µ(A × B) = EN(A × B)
for Borel sets A ⊆ R2 and B ⊆ R is a product measure, since µ(A × B) =∫

A
ρ̄1(u) du

∫
B

ρ̄2(t) dt.
First-order spatio-temporal separability is a convenient working hypothesis

which is hard to check. It implies that

ρspace(u) = ρ̄1(u)

∫

T

ρ̄2(t) dt, ρtime(t) = ρ̄2(t)

∫

W

ρ̄1(u) du, (5)

are the intensity functions of the spatial and temporal component processes,
and

ρ(u, t) =
ρspace(u)ρtime(t)∫
W×T

ρ(u, t) d(u, t)
. (6)

Note that if X is stationary, ρ, ρspace, and ρtime are all constant. In the sequel,
our focus is on the inhomogenuous case.
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2.1.2 Non-parametric estimation

In Section 5 we consider semi-parametric models, with a non-parametric model
for ρ and a parametric model for g. The present section deals with non-
parametric estimation of the spatial and temporal intensity functions ρspace

and ρtime.
Suppose we are given estimates ρ̂space and ρ̂time. If these are unbiased

estimates of the expected number of observed points, i.e.,
∫

W
ρ̂space(u) du =∫

T
ρ̂time(s) ds = n, then the estimate of the spatio-temporal intensity function

given by

ρ̂(u, t) = ρ̂space(u)ρ̂time(t)/n (7)

also becomes an unbiased estimate of the expected number of observed points,
since by (6),

∫
W×T

ρ̂(u, t) d(u, t) = n.
For non-parametric estimation of ρspace, we may follow Diggle (1985) and

Berman & Diggle (1989) in using the kernel estimate

ρ̂space(u) =

n∑

i=1

ωb(u − ui)/cW,b(ui), u ∈ W, (8)

where ωb(u) = ω(u/b)/b2 is a kernel with bandwidth b > 0, i.e., ω is a given
density function. Further,

cW,b(ui) =

∫

W

ωb(u − ui) du

is an edge correction factor ensuring that
∫

W
ρ̂space(u) du = n. However, in

practice, for complicated or irregular windows W , this edge correction factor is
often ignored.

A similar kernel estimate may be used for non-parametric estimation of ρtime.
If the tail of the empirical distribution function of the observed times ti turns
out to be heavy tailed (this is the case for the data in Section 5.3.2), it may
be more reasonable to use the log-transform re-transform scheme in Markovich
(2007), where first a kernel estimate ĥ is obtained for the intensity function of
the log-transformed observed times, and next

ρ̂time(t) = ĥ(log(t))/t (9)

is used as the non-parametric estimate of ρtime.
Although these non-parametric estimation procedures of the spatial and tem-

poral intensity functions may only lead to approximately unbiased estimates,
we will still use (7).

5



2.2 Second-order properties

2.2.1 The spatio-temporal case

Throughout this paper, following Baddeley et al. (2000) and Gabriel & Diggle
(2009), we assume that X is second-order intensity-reweighted stationary, i.e.,

g((u, s), (v, t)) = g(u − v, s − t), (u, s), (v, t) ∈ R2 × R. (10)

Then the spatio-temporal inhomogeneous K-function is defined by

K(r, t) =

∫
1[‖u‖ ≤ r, |s| ≤ t]g(u, s) d(u, s), r > 0, t > 0, (11)

where ‖u‖ denotes usual distance in R2 and |s| numerical value (not to be
confused with the length |T | or the area |W |). In the stationary case of X ,
ρK(r, t) is the expected number of further points within distance r and time lag t
from the origin given that X has a point at the origin (Ripley 1976, Ripley 1977).
In our opinion, (11) is therefore a more natural definition than the one used in
Gabriel & Diggle (2009) which differ by a factor 1/2. Note that if X is a Poisson
process, g = 1 and K(r, t) = 2πr2t.

Non-parametric estimation of pair correlation functions are usually based on
kernel methods (Stoyan & Stoyan 1994, Illian et al. 2008), where the specifica-
tion of the bandwidth of the kernel is debatable, not at least in the inhomo-
geneous case (Baddeley et al. 2000). Alternatively, an approximately unbiased
non-parametric estimate of the K-function is given by

K̂(r, t) =
1

|W ||T |

∑

i6=j

I [‖ui − uj‖ ≤ r, |ti − tj | ≤ t]

ρ̂(ui, ti)ρ̂(uj , tj)w1(ui, uj)w2(ti, tj)
(12)

where
∑

i6=j means the sum over all pairs (ui, ti) 6= (uj , tj) of the data points;
I(·) denotes the indicator function; ρ̂(u, t) is as in Section 2.1.2; either w1(ui, uj)
is Ripley’s isotropic edge correction factor (Ripley 1976, Ripley 1977), that is,
the reciprocal of the proportion of the circumference of the circle with cen-
ter ui and radius ‖ui − uj‖ that lies within W—or, if W is too complicated,
w1(ui, uj) = 1; w2(ti, tj) is the temporal edge correction factor which is equal
to one if both ends of the interval of length 2|ti − tj | and center ti lie within T ,
and w2(ti, tj) = 2 otherwise (Diggle et al. 1995).

2.2.2 Spatial and temporal components

The pair correlation function gspace of the spatial component process Xspace

satisfies

∫ ∫
f(u, v)gspace(u, v) du dv = E

6=∑

u,v∈Xspace

f(u, v)

ρspace(u)ρspace(v)
(13)

for any non-negative Borel function f defined on R2 × R2. Defining

p1(u) = ρ̄1(u)/

∫

W

ρ̄1(v) dv, p2(t) = ρ̄2(t)/

∫

T

ρ̄2(s) ds,
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and using (2), (4), (5), (10), and (13), we obtain second-order intensity-reweighted
stationarity of Xspace, since we can take

gspace(u, v) = gspace(u − v) =

∫

T

∫

T

p2(s)p2(t)g(u − v, s − t) ds dt. (14)

Similarly, Xtime is second-order intensity-reweighted stationary with

gtime(s, t) = gtime(s − t) =

∫

W

∫

W

p1(u)p1(v)g(u − v, s − t) du dv. (15)

The corresponding K-functions are

Kspace(r) =

∫

‖u‖≤r

gspace(u) du, r > 0, (16)

and

Ktime(t) =

∫ t

−t

gtime(s) ds, t > 0. (17)

Non-parametric estimates of these are given by

K̂space(r) =
1

|W |

∑

i6=j

I [‖ui − uj‖ ≤ r]

w1(ui, uj)ρ̂space(ui)ρ̂space(uj)

and

K̂time(t) =
1

|T |

∑

i6=j

I [|ti − tj | ≤ t]

w2(ti, tj)ρ̂time(ti)ρ̂time(tj)

where we use the same notation as in (12).

3 Spatio-temporal separability of the pair cor-

relation function

The hypothesis of spatio-temporal separability of the pair correlation function
states that

g(u, t) = ḡ1(u)ḡ2(t), (u, t) ∈ R
2 × R, (18)

where ḡ1 and ḡ2 are non-negative functions. Intuitively, (2), (4), and (18) imply
that the probability of observing a pair of points from X occurring jointly in
each of two infinitesimally small sets with centers (u, s), (v, t) and volumes du ds,
dv dt is

[ρ̄1(u)ρ̄1(v)ḡ1(u − v) du dv][ρ̄2(s)ρ̄2(t)ḡ2(s − t) ds dt]

which is a product of a function of the locations (u, v) and the areas (du, dv)
and a function depending on the times (s, t) and the lengths (ds, dt). Therefore
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one could be tempted to refer to (18) as the hypothesis of second-order spatio-
temporal independence, but we shall avoid this terminology for a similar reason
as in Section 2.1.1. However, note that if e.g. the times in X form a second-order
intensity-reweighted stationary point process which is independent of the events
in X and has intensity function ρ2 and pair correlation function g2, and if the
events are i.i.d. with density f , then ρ(u, t) = f(u)ρ2(t) and g((u, s), (v, t)) =
g2(s− t), and so X is second-order intensity-reweighted stationary and satisfies
(18).

Observe that (14)-(15) and (18) imply

gspace(u) = cspace ḡ1(u), with cspace =

∫

T

∫

T

p2(s)p2(t)ḡ2(s − t) ds dt, (19)

and

gtime(t) = ctime ḡ2(t), with ctime =

∫

W

∫

W

p1(u)p1(v)ḡ1(u − v) du dv. (20)

Hence, by (11) and (16)-(20), spatio-temporal separability of g implies that

K(r, t) =
Kspace(r)

cspace

Ktime(t)

ctime
. (21)

Diggle et al. (1995) incorrectly expected that the functional summary statis-
tic given by

D̂(r, t) =
K̂(r, t)

K̂space(r)K̂time(t)
, r, t > 0, (22)

is close to one under the hypothesis of spatio-temporal separability of the pair
correlation function. This mistake was repeated in connection to Figure 4 in
(Gabriel & Diggle 2009). In fact, under the hypothesis of spatio-temporal sep-
arability of g, D̂ should be expected to be approximately equal to cspacectime,
cf. (21), and this constant is in general different from one (unless g = 1). As an
illustration, Figure 1 shows a perspective plot of D̂ for the UK 2001 epidemic
foot and mouth disease dataset which is further analyzed in Section 5.3.2. It
seems that D̂ is far from being constant, indicating that g is not spatio-temporal
separable.

Cox point process models with a spatio-temporal separable pair correlation
function are rather uncommon in the literature. For example, consider a spatio-
temporal log-Gaussian Cox process, i.e., when log S in (1) is a Gaussian process
on R2 × R. Then

g((u, s), (v, t)) = exp(C((u, s), (v, t))) (23)

where C is the covariance function of the Gaussian process (Møller, Syversveen
& Waagepetersen 1998), and so second-order intensity-reweighted stationarity
means that

C((u, s), (v, t)) = C(u − v, s − t). (24)
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Figure 1: D̂ for the UK 2001 epidemic foot and mouth disease dataset.

Hence spatio-temporal separability of g means an additive spatio-temporal co-
variance structure C(u, t) = log ḡ1(u) + log ḡ2(t), cf. (18) and (23)-(24). How-
ever, often in the literature the covariance function is instead assumed to be
spatio-temporal separable meaning that C(u, t) = C1(u)C2(t) is multiplicative,
see e.g. Diggle (2007). Another example with spatio-temporal dependence is a
shot-noise Cox process as shown in Section 5.

4 Intensity-reweighted second-order measures

The pair correlation functions g, gspace, and gtime are all densities of modified
second-order factorial moment measures obtained by reweighting the points of
X , Xspace, and Xtime with their respective intensities ρ, ρspace, and ρtime, cf. (2)
and (13). In the sequel, we need the functions

g1(u) =
1

|T |2

∫

T

∫

T

g(u, s − t) ds dt, g2(t) =
1

|W |2

∫

W

∫

W

g(u − v, t) du dv,

(25)
where u ∈ R2 and t ∈ R. These are related to more complicated modifications
of intensity-reweighted measures, since by (2) and (25),

∫ ∫
f1(u, v)g1(u − v) du dv =

1

|T |2
E

6=∑

(u,s),(v,t)∈X: s,t∈T

f1(u, v)

ρ(u, s)ρ(v, t)
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for any non-negative Borel function f1 defined on R2 × R2, and

∫ ∫
f2(s, t)g2(s − t) ds dt =

1

|W |2
E

6=∑

(u,s),(v,t)∈X:u,v∈W

f2(s, t)

ρ(u, s)ρ(v, t)

for any non-negative Borel function f2 defined on R×R. Furthermore, we define
corresponding K-functions

K1(r) =

∫

‖u‖≤r

g1(u) du, K2(t) =

∫ t

−t

g2(s) ds, (26)

where r, t > 0.
In the following special cases we have simple relationships between g1 and

gspace, and between g2 and gtime. If X is a Poisson process, these functions are
all equal to one. If ρ(u, t) = ρ̄1(u) does not depend on t ∈ T , then by (14) and
(25), g1 = gspace. Similarly, if ρ(u, t) = ρ̄2(t) does not depend on u ∈ W , then
by (15) and (25), g2 = gtime. Moreover, if we have spatio-temporal separability
of g, then g1 and gspace are proportional, and g2 and gtime are proportional,
since by (18)-(20) and (25),

g1(u) =
c̄1

cspace
ḡspace(u), with c̄1 =

1

|T |2

∫

T

∫

T

ḡ2(s − t) ds dt,

and

g2(t) =
c̄2

ctime
ḡtime(t), with c̄2 =

1

|W |2

∫

W

∫

W

ḡ1(u − v) du dv.

We also need the following approximately unbiased non-parametric estimates
of K1 and K2,

K̂1(r) =
1

|W ||T |2

∑

i6=j

I [‖ui − uj‖ ≤ r]

w1(ui, uj)ρ̂(ui, ti)ρ̂(uj , tj)

and

K̂2(t) =
1

|W |2|T |

∑

i6=j

I [|ti − tj | ≤ t]

w2(ti, tj)ρ̂(ui, ti)ρ̂(uj , tj)
,

where we use the same notation as in (12).

5 Spatio-temporal shot-noise Cox processes

As noticed in Section 1, so far in the literature on spatio-temporal Cox processes,
mainly log-Gaussian Cox processes have been studied. Spatio-temporal shot-
noise Cox processes (SNCP) provide an alternative, tractable, and flexible model
class, as discussed in Møller & Diaz-Avalos (2010) but in a discrete time setting.
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In this section, we consider a continuous time setting and let X be a spatio-
temporal SNCP with the multiplicative structure (1) and assume second-order
intensity-reweighted stationarity. The residual is then given by

S(u, t) =
1

ν

∑

(v,s)∈Φ

κ(u − v, t − s)

where Φ is a stationary Poisson process on R2 × R with intensity ν > 0, and κ
is a density function on R2 × R.

Observe that X has an interpretation as a Poisson cluster process, i.e., as
a superposition of independent clusters with centres given by Φ and so that
conditional on Φ, the clusters are independent Poisson processes with intensity
functions λ(v,s)(u, t) = ρ(u, t)κ(u − v, t − s)/ν for (v, s) ∈ Φ. We therefore
refer to λ(v,s) as the ‘offspring intensity’ (associated to the cluster centre (v, s)).
Assuming ρ is bounded on W × T by a positive constant ρmax, we can obtain a
simulation of X ∩ (W × T ) by first simulating a stationary SNCP Xmax within
W × T and where ρ is replaced by ρmax, and second make an independent
thinning of Xmax ∩ (W × T ) where the retention probability of a point (u, t) ∈
Xmax∩(W ×T ) is given by p(u, t) = ρ(u, t)/ρmax. Simulation of a homogeneous
SNCP is discussed in Brix & Kendall (2002), Møller (2003), and Møller &
Waagepetersen (2004).

We have

g(u, t) = 1 + κ ∗ κ̃(u, t)/ν (27)

where ∗ denotes convolution and κ(u, t) = κ(−u,−t). This follows using the
Slivnyak-Mecke’s formula, see Møller (2003) and Møller & Waagepetersen (2004).
Note that κ ∗ κ̃ is the density of the vector given by the difference between two
offspring within a cluster of Xmax (but not of X unless ρ is constant).

5.1 Spatio-temporal separability

Assume that the kernel κ is spatio-temporal separable,

κ(u, t) = κ1(u)κ2(t) (28)

where κ1 is a density on R2 and κ2 is a density on R. In general, (27)-(28) imply
spatio-temporal dependence. However,

λ(v,s)(u, t) = [ρ̄1(u)κ1(u − v)] [ρ̄2(t)κ2(t − s)] /ν

is a product of a function depending on u and a function depending on t. Thus
the offspring intensities are spatio-temporal separable, i.e., (28) is equivalent to
spatio-temporal independence within the clusters. Furthermore, the covariance
density (3) is spatio-temporal separable, with

c((u, s), (v, t)) = [ρ̄1(u)ρ̄1(v)κ1 ∗ κ̃1(u − v)] [ρ̄2(s)ρ̄2(t)κ2 ∗ κ̃2(s − t)] /ν.
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Defining

c1(W ) = 1

/∫

W

∫

W

κ1∗ κ̃1(u−v) du dv, c2(T ) = 1

/∫

T

∫

T

κ2∗ κ̃2(s−t) ds dt,

and
ν1 = ν1(T ) = νc2(T )|T |2, ν2 = ν2(W ) = νc1(W )|W |2,

we obtain from (25) and (27)-(28),

g1(u) = 1 + κ1 ∗ κ̃1(u)/ν1, g2(t) = 1 + κ2 ∗ κ̃2(t)/ν2, (29)

and so

ν[g(u, t) − 1] = ν1ν2 [g1(u) − 1] [g2(t) − 1] .

Consequently,

ν
[
K(r, t) − 2πr2t

]
= ν1ν2

[
K1(r) − πr2

]
[K2(t) − 2t] .

Under the separability hypothesis (28) we therefore expect the functional sum-
mary statistic

F̂ (r, t) =

[
K̂(r, t) − 2πr2t

]

[
K̂1(r) − πr2

] [
K̂2(t) − 2t

] , r, t > 0,

to be approximately constant.

5.2 Further model assumptions and parameter estimation

In the reminder of this paper, we assume that κ1 is the density of a zero-mean
bivariate radially symmetric normal distribution N2(0, σ2I) with variance σ2,
and κ2 is the density of an exponential distribution with rate α and restricted
to a bounded interval [0, t∗], i.e.,

κ2(t) =
α

1 − exp(−αt∗)
exp(−αt), 0 ≤ t ≤ t∗. (30)

This section briefly discusses a simple procedure for estimating the positive
parameters ν, σ2, α, and t∗ based on the second-order properties. Further
methods are discussed in Møller & Waagepetersen (2007) and the references
therein.

By (26) and (29), since κ1 ∗ κ̃1 is the density of N2(0, 2σ2I), K1 agrees with
the K-function for a planar Thomas process, see e.g. Møller & Waagepetersen
(2004). Thus the Spatstat software package (Baddeley & Turner 2005, Baddeley
& Turner 2006) provides an estimate (ν̂1, σ̂

2) based on a minimum contrast
estimation procedure such that the theoretical K1-function becomes close to its
non-parametric estimate K̂1. We use another minimum contrast procedure for

12



estimating α. First, we obtain an estimate t̂∗ by considering a plot of K̂2(t)−2t
and using the fact that K2(t) − 2t is constant for t ≥ t∗. Next, define

R(t; α, t∗) =
K2(t) − 2t

K2(t∗) − 2t∗
, R̂(t) =

K̂2(t) − 2t

K̂2(t̂∗) − 2t̂∗
, 0 < t ≤ t∗.

By (26) and (29)-(30),

R(t; α, t∗) =

∫ t

−t
κ2 ∗ κ̃2(s) ds

∫ t∗

−t∗
κ2 ∗ κ̃2(s) ds

= 2

∫ t

0

κ2 ∗ κ̃2(s) ds

=
1 + exp (−2αt∗) − exp (−αt) − exp (αt − 2αt∗)

[1 − exp (−αt∗)]
2

since κ2 ∗ κ̃2 is a symmetric density concentrated on [−t∗, t∗], with

κ2 ∗ κ̃2(t) =
α exp (αt)

2 [1 − exp (−αt∗)]
2 [exp (−2αt) − exp (−2αt∗)] , 0 ≤ t ≤ t∗. (31)

Then the minimum contrast procedure is such that R(t; α, t̂∗) becomes close to
its non-parametric estimate R̂. Specifically,

α̂ = argmin

∫ bt∗

0

(
R(t; α, t̂∗) − R̂(t)

)2

dt. (32)

Finally, since ν1 = νc2(T )|T |2, we estimate ν by

ν̂ = ν̂1

∫

T

∫

T

κ̂2 ∗ κ̃2(s − t) ds dt/|T |2 (33)

where κ̂2 ∗ κ̃2 is obtained by replacing α and t∗ by α̂ and t̂∗ in (31).

5.3 Applications

5.3.1 Simulation study

The aim of this section is first to compare results obtained using either the true
intensity function ρ or its non-parametric estimate ρ̂ from Section 2.1.2, and
second to discuss the sensitivity of such results using different bandwidths of
the kernel estimate. We let W×T = [0, 1]2×[0, 1] be the unit cube, and consider
100 simulated point patterns from a SNCP within W × T , where

ρ(u, t) =
200

(1 − e−1)(e − 1)(e2 − 1)
e−x+y+2t with u = (x, y),

and where σ = 0.025, α = 20, t∗ = 0.1, and ν = 10. Then the expected number
of points per simulation is 100.

For ρ̂space, we use (8) with a bivariate Gaussian kernel where a bandwidth
of 0.067 is obtained by the command msd2d of the splancs package (Rowlingson
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Figure 2: Means of various functional summary statistics based on 100 simula-
tions of the SNCP specified in Section 5.3.1. Top left panel: L̂1 using ρ (solid
line) or ρ̂ (dashed line), and theoretical L1 for a Poisson process (dotted line).
Top right panel: R̂ using ρ (solid line) or ρ̂ (dashed line), and theoretical R for
the SNCP (pluses). Middle left panel: K̂(r, t) − 2πr2t using ρ. Middle right
panel: K̂(r, t) − 2πr2t using ρ̂. Bottom left panel: F̂ using ρ. Bottom right
panel: F̂ using ρ̂.
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& Diggle 2010) (briefly, this is based on minimizing a mean square error given
in Diggle (1985)). For ρ̂time, we use instead a univariate Gaussian kernel where
a bandwidth of 0.6 is first used. This bandwidth may appear to be large as
compared to the unit square W , but it was chosen after some experimentation
to obtain similar results when ρ or ρ̂ is used. This is illustrated in Figure 2. The
top left panel shows the mean of the 100 simulated L̂1-functions when using ρ

(solid line) or ρ̂ (dashed line) and where L̂1(r) =

√
K̂1(r)/π (Besag 1977); the

two curves are very close. For comparison, the theoretical value L1(r) = r for a
Poisson process is also shown (dotted line); as expected this curve is much below
the two other curves. The top right panel shows the mean of the 100 simulated
R̂-functions when using ρ (solid line) or ρ̂ (dashed line), and the theoretical
R-function with the true parameters α = 20 and t∗ = 0.1 (pluses). Notice that
these are the functions appearing in the minimum contrast estimate α̂ given by
(32) (when t∗ agrees with its estimate t̂∗), and such estimates α̂ turn out to
be rather similar to the true α no matter if ρ or ρ̂ is used. The middle panels
show the mean of the 100 simulated K̂(r, t) − 2πr2t functions. They do not
depend much on whether ρ (middle left panel) or ρ̂ (middle right panel) is used,
and they clearly show the spatio-temporal clustering of the SNCP. The lower
panels show the mean of the 100 simulated F̂ -functions. Now the values are a
bit higher when ρ is used (lower left panel) than if ρ̂ (lower right panel), but
both surfaces are rather flat, indiacting the spatio-temporal separability of the
kernel κ.

The discrepancy between results obtained using ρ or ρ̂ is more pronounced
if a much smaller (or larger) bandwidth than 0.6 is used for ρ̂time. Figure 3
illustrates this when the bandwidth is 0.2 and we consider the K̂(r, t) − 2πr2t
function. The values in the right panel are now about twice as large as in the
left panel. This is not surprising since, as the bandwidth decreases, ρ̂time gets
more concentrated around the observed times and hence K̂ decreases.

5.3.2 The UK 2001 epidemic foot and mouth disease

This section applies our SNCP model to the data of the UK 2001 epidemic foot
and mouth disease in Cumbria, which were previously analyzed in Keeling et al.
(2001) and in Diggle (2006), Diggle (2007), and Gabriel et al. (2010). Cumbria
is the county in the North-West of England which was most severely affected
by the epidemic in 2001. The data analyzed in this section is taken from the
R package STPP (Gabriel et al. 2010) by converting the measurement scale of
spatial coordinates from meter to kilometer. We refer to these data as the FMD
data.

The area of Cumbria is 5556.298 km2 and data have been collected for 200
days starting at February 1, 2001, so we let T = [0, 200]. Figure 4 shows the
irregular region W defined by Cumbria (the smallest box surrounding W is of
size about 100× 110 km2) and the spatial point pattern of 648 infected animals
(upper left panel), and the daily number of infected animals (lower panel). The
upper right panel shows ρ̂space given by (8) with bandwidth b=3.83 km (obtained

15



r=distance

t=
tim

e

 0 

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14 

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

r=distance

t=
tim

e

 0 

 0.01 

 0.02 

 0.03 

 0.04 

 0.05 

 0.06 

 0.07 

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 3: As the middle panels in Figure 2 but when the bandwidth for ρ̂time is
0.2.
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by the command msd2d of the splancs package (Rowlingson & Diggle 2010)),
and the lower panel shows ρ̂time given by (9) with bandwidth 0.05 (chosen after
some experimentation so that ρtime appears to be in good agreement with the
temporal data). Clearly, data presence is more intense in the North-Western to
South-Eastern belt of Cumbria and within the first 100 days.

Spatial, temporal, and spatio-temporal clustering is also indicated by the
three first panels in Figure 5 showing respectively L̂1 (defined as in Section 5.3.1),
R̂ with t̂∗ = 20, and K̂(r, t)−2πr2t. The upper right panel also shows the para-
metric estimate R(t; α̂, t̂∗) with α̂ = 0.0478 obtained by the minimum contrast
method. The two curves in the upper right panel are in close agreement. Fur-
thermore, using the minimum contrast estimation procedure based on K1, we
obtain (ν̂1, σ̂) = (0.0000207, 3.23), and hence using (33), ν̂ = 0.000163 is ob-
tained. This correcponds to about 182 clusters in W × T . The final panel in
Figure 5 shows F̂ for the data together with simulated pointwise 95%-envelopes
obtained from 39 simulations of the fitted SNCP (such envelopes are obtained
for each value of (r, t) by calculating the smallest and largest simulated values
of F̂ (r, t); see Section 4.3.4 in Møller & Waagepetersen (2004)). For all (r, t),
F̂ (r, t) for the data is between the envelopes, so the plot is in favour of the
hypothesis of spatio-temporal independence in the clusters.
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