Basic methods for simulation of random variables: 2. Accept/rejection algorithm

Another simple and general simulation method is the accept/rejection (or just rejection) algorithm, also called von Neumann sampling.
Suppose we want to make a simulation Y from a (discrete or continuous - and uni- or multi-variate) density function f (in the discrete case $f(x)$ is the probability of the state x). Sometimes we only know f up to proportionality, i.e. $f=h / c$ where c is an unknown normalising constant and h is a so-called unnormalised density (many examples of this are given later in the course). In the discrete case, $c=\sum_{x \in \Omega} h(x)$, while in the continuous case, $c=\int h(x) d x$ (where the integral is one or higher dimensional). When c is in fact known, we can without loss of generality take $c=1$ and $h=f$; we say then that h is a normalised density. We call f (or h) the target density (or unnormalised target density).

The requirement in rejection sampling is that there exists an unnormalised density g and a constant M such that for all states $x \in \Omega$,

$$
h(x) \leq M g(x) .
$$

We call g the (unnormalised) instrumental density. The idea is that g is chosen such that it is easy to sample from g and $h(x) /(M g(x))$ can be considered as a probability with which we accept a draw from g :
Accept/rejection algorithm:

1. Generate $X \sim g$ and $U \sim \operatorname{unif}(0,1)$.
2. Accept $Y=X$ if $U \leq h(X) /(M g(X))$, else repeat 1.-2.

Exercise 1

1. Show that the accept/rejection algorithm produces a variable Y distributed according to f.
Hint:

$$
P(Y \in F)=P\left(X \in F \left\lvert\, U \leq \frac{h(X)}{M g(X)}\right.\right) .
$$

2. Suppose that both h and g are normalised densities.
(a) Show that $M \geq 1$ and the probability of acceptance in step 2 . of the accept/rejection algorithm is given by $p=1 / M$.
(b) Let N denote the number of trials before acceptance in step 2 . Show that

$$
P(N=n)=p(1-p)^{n}, \quad n=0,1, \ldots
$$

(this distribution is called the geometric distribution).
(c) Show that the mean number of times we perform steps 1.-2. is given by

$$
E(N+1)=M .
$$

Hint: Recall that for any number $q \in(-1,1)$ we have that

$$
\sum_{n=0}^{\infty} q^{n}=\frac{1}{1-q}
$$

and so

$$
\sum_{n=1}^{\infty} \frac{d}{d q} q^{n}=\frac{d}{d q} \sum_{n=1}^{\infty} q^{n}=\frac{d}{d q}\left(\frac{1}{1-q}-1\right)=\frac{1}{(1-q)^{2}}
$$

3. Discuss what would be good and bad choices of instrumental densities.

Exercise 2

Suppose $h(x)=\exp \left(-x^{2} / 2\right)$ is our unnormalised target density (you probably recognise this density as that of a standard normal distribution $N(0,1)$). Consider the unnormalised instrumental density

$$
g(x)=\exp (-|x|), \quad-\infty<x<\infty .
$$

1. Show that $h(x) / g(x) \leq \sqrt{\mathrm{e}}$ and $E(N+1)=\sqrt{2 \mathrm{e} / \pi}=1.315$ (see Exercise 1).
2. How would you simulate from the instrumental density? Hint: Show that we can take $X=W Z$, where Z is exponentially distributed with parameter 1 (i.e. $P(Z>z)=\exp (-z)$ for $z \geq 0)$, and W is a uniform random variable on $\{-1,1\}$ (i.e. $P(W=-1)=P(W=1)=1 / 2)$.
3. Implement the accept/rejection algorithm in R so that simulations from $N(0,1)$ of length $n=1000$ are produced and $E(N+1)$ is estimated by its empirical mean.

Exercise 3

The beta distribution with parameters $\alpha>0$ and $\beta>0$ has a continuous density given by

$$
f(x)=\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1,
$$

where $B(\alpha, \beta)=\Gamma(\alpha) \Gamma(\beta) / \Gamma(\alpha+\beta)$ is the so-called complete beta function and $\Gamma(\alpha)=$ $\int_{0}^{\infty} y^{\alpha-1} \exp (-y) d y$ is the so-called gamma function.

1. Make plots in R of the target density f when $(\alpha, \beta)=(0.5,0.5),(1,0.5),(0.5,1)$, $(1,1),(1,2),(2,1),(2,2),(5,10)$.
Hint: gamma is the gamma function in R.
2. In this and the following questions we let $\alpha>1$ and $\beta>1$. Show that $f(x)$ is increasing for $x \leq(\alpha-1) /(\alpha+\beta-2)$ and decreasing for $x \geq(\alpha-1) /(\alpha+\beta-2)$.
3. Discuss how you would chooce an instrumental density.
4. Find $E(N+1)$ (see Exercise 1) when $g(x)=1$ for $0 \leq x \leq 1$ and $(\alpha, \beta)=$ $(2,2),(5,10)$.
Hint: $\Gamma(\alpha)=(\alpha-1)$! when $\alpha \geq 1$ is an integer.
5. Implement the accept/rejection algorithm in R. Compare with results produced by the R -function rbeta.
