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Simulation from specific distributions
— especially the normal distribution

Special algorithms exist for the most important distributions. These algorithms are faster
but more complicated than the algorithms considered so far. The algorithms are often based
on clever forms of rejection sampling and/or transformation methods; examples of trans-
formation methods are given in Exercises 1 and 2 below. R provides a comprehensive set
of standard distributions, see pages 37–40 in “An Introduction to R”. Another place to read
is

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numercal Re-
cipes in C, 2nd edn, Cambridge University Press, Cambridge.

This book is also available at www.nr.com.

Exercise 1 (The normal distribution)

Recall the classical and extremely important

Theorem 1 — Central limit theorem (CLT) If Y1, Y2, . . . are iid random variables with
mean µ and variance σ2 where σ > 0, then the empirical mean Ȳn = 1

n
(Y1 + · · · + Yn)

converges in distribution towards the normal distribution N(µ, σ2/n); more precisely, for
−∞ < x < ∞,

P (
√

n(Ȳn − µ)/σ ≤ x) →
∫ x

−∞

1√
2π

exp
(

−x2/2
)

as n → ∞.

For short we write this as
√

n(Ȳn − µ)/σ
∼→ N(0, 1).
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1. Assuming you have an algorithm for simulating from N(0,1), how would you make
simulations from N(µ, σ2)?

2. The CLT can be used for simulating from N(0,1): Let U1, . . . , Un be iid with distribu-
tion unif(0,1). Show that

Wn ≡ ((U1 + · · · + Un) − n/2)/
√

n/12
∼→ N(0, 1).

Illustrate this result in R, setting n = 5, simulating 100 values of Wn, and making a
histogram; superimpose the density of N(0,1); make a Q-Q plot using the R-function
qqnorm. Repeat all this for n = 10 and n = 100. Discuss the results.

The so-called Box-Muller method is a better way of simulating from N(0,1), since it is ba-
sed on the following exact result.

Theorem 2 If U1 and U2 are iid with distribution unif(0,1) and

X1 =
√

−2 log(U1) cos(2πU2)

X2 =
√

−2 log(U1) sin(2πU2)

then X1 and X2 are iid with distribution N(0,1).

In fact Theorem 2 can be verified using the following

Theorem 3 Let R be an invertible mapping from R
n to R

n, that is, there exists a unique
mapping S from R

n to R
n such that y = R(x) if and only if x = S(y). Let J(x) be the

Jacobi matrix for R, i.e.

J(x) =







∂
∂x1

R1(x) · · · ∂
∂xn

R1(x)
... ... ...

∂
∂x1

Rn(x) · · · ∂
∂xn

Rn(x)






.

Let X = (X1, . . . , Xn) be a stochastic vector with density function fX(x), x ∈ T , where
T ⊂ R

n is an open set. Let Y be the stochastic vector given by Y = R(X). Then Y has
density function

fY(y) = fX(x)/| det(J(x))|, y ∈ R(T ),

where x = S(y).
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Exercise 2 (The multivariate normal distribution)

The multivariate normal distribution play an extremely important role in statistical appli-
cations. One way of defining this distribution is by the distribution of an n-dimensional
random vector of the form

X = µ + CU

where U = (U1, . . . , Un)T consists of n iid N(0,1) random variables (and T denotes transpo-
sition), µ ∈ R

n, and C is an n×n matrix. Define the mean of X by EX = (EX1, . . . , EXn)T

and the covariance matrix V arX of X as the n×n matrix with entry Cov(Xi, Xj) for row i
and column j. It can be shown that EX = µ and V arX = CCT. Set Σ = CCT. The distri-
bution of X is called the n-dimensional normal distribution with mean µ and covariance
matrix Σ, and it is denoted Nn(µ, Σ).

1. Show that Σ is a symmetric positive semi-definite matrix, i.e. Σ = ΣT and xTΣx ≥ 0
for all x ∈ R

n.

2. Suppose that C is invertible. Show that Σ is invertible and Σ is positive definite, i.e.
xTΣx = 0 implies x = 0.
Hint: A square matrix B is invertible if and only if the only solution to the matrix
equation Bx = 0 is the trivial solution x = 0.
Furthermore, using Theorem 3 it can be shown that X has density

f(x) =
1

√

(2π)ndet(Σ)
exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

.

Check that this is in accordance with the well-known result for n = 1.

3. Choleski decomposition of a symmetric positive definite square matrix Σ produces
an upper-triangular matrix R such that RTR = Σ; the corresponding R-function is
chol. How would you use Choleski decomposition for simulation from Nn(µ, Σ).

4. Simulate 1000 times from N2(µ, Σ) when µ = 0 and

Σ =

(

2 −1
−1 3

)

.

Produce a scatter plot of this sample.
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