Importance sampling for unnormalized densities

Let the situation be as in Section 5 in "A short diversion into the theory of Markov chains, with a view to Markov chain Monte Carlo methods". However, assume that the target density π is only known up to proportionality, i.e. $\pi(x)=\pi_{u}(x) / c_{\pi}$ where π_{u} is a known unnormalized density and c_{π} is an unknown normalizing constant. Moreover, assume that the instrumental density is $g(x)=g_{u}(x) / c_{g}$ where g_{u} is a known unnormalized density and c_{π} is a (possibly unknown) normalizing constant. Then the estimator in Section 5,

$$
\begin{equation*}
\tilde{\theta}=\frac{1}{n+1} \sum_{i=m}^{m+n} h\left(Y_{i}\right) \frac{\pi\left(Y_{i}\right)}{g\left(Y_{i}\right)}=\frac{1}{n+1} \sum_{i=m}^{m+n} h\left(Y_{i}\right) \frac{\pi_{u}\left(Y_{i}\right)}{g_{u}\left(Y_{i}\right)} / \frac{c_{\pi}}{c_{g}} \tag{1}
\end{equation*}
$$

depends on the ratio c_{π} / c_{g} of unknown normalizing constants. Note that

$$
\frac{c_{\pi}}{c_{g}}=\frac{\int \pi_{u}(x) \mathrm{d} x}{c_{g}}=\int \frac{\pi_{u}(x)}{g_{u}(x)} \frac{g_{u}(x)}{c_{g}} \mathrm{~d} x=\int \frac{\pi_{u}(x)}{g_{u}(x)} g(x) \mathrm{d} x=E\left[\frac{\pi_{u}(Y)}{g_{u}(Y)}\right]
$$

where Y follows the instrumental density g. Thus it is possible to estimate c_{π} / c_{g}, using the sample Y_{1}, \ldots, Y_{n} (either an iid sample or a sample from an irreducible Markov chain with invariant density g):

$$
\begin{equation*}
\frac{c_{\pi}}{c_{g}} \approx \frac{1}{n+1} \sum_{i=m}^{m+n} \frac{\pi_{u}\left(Y_{i}\right)}{g_{u}\left(Y_{i}\right)} \tag{2}
\end{equation*}
$$

Finally, combining (1) and (2), we obtain the following consistent estimator of θ :

$$
\bar{\theta}=\frac{\frac{1}{n+1} \sum_{i=m}^{m+n} h\left(Y_{i}\right) \pi_{u}\left(Y_{i}\right) / g_{u}\left(Y_{i}\right)}{\frac{1}{n+1} \sum_{i=m}^{m+n} \pi_{u}\left(Y_{i}\right) / g_{u}\left(Y_{i}\right)} .
$$

