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Model checking based on p-values

Consider first a classical statistical setting with a parametric statistical model, with density
7(y|0) for a random variable Y and an unknown parameter 6. In order to check this mo-
del, suppose that we have specified a test quantity, that is a real function ¢(y), where for
specificity we assume that large values of the test quantity are critical for the model. To be
more precise, suppose we have observed Y = y (the data), let ) denote the “true” value of
6, and consider the p-value defined by obtaining something more critical than we actually
observe when 0 = 0, that is

p=P(t(Y) = t(y)|6o).

If Y is a continuous random variable, we have

p= / 7(x|6p) dz.
t(y)

If Y is a discrete random variable, the integral is replaced by a sum over all x with t(x) >

t(y) and 7(z|0y) > 0.

A small value of p (e.g. p < 0.05) is critical for the model, since this is equivalent to
that ¢(y) is large. However, since we don’t know the true value of 6, the p-value may be
unknown. Therefore, one usually replace 6 by an estimate 6, e.g. the maximum likelihood
estimate (mle), that is the value of # which maximizes 7(y|f) (note that in general the mle
may not exists or it may not be unique; we assume here that it exists and is unique). Thereby
we obtain the estimated p-value

p=PY)>t(y)]d).

Still it may be hard or impossible to calculate this probability. Then we may approximate
p by
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using a sample V7, . . ., Y, obtained by a simulation from the estimated density p(-|0) of the
observation model.

Exercise 1
Consider an observation model with iid Bernoulli trials Y7, . . ., Y,, and parameter 6 € (0, 1)
of success. In other words, the observation model for Y = (Y7, ..., Y,) has discrete density

W(y‘g) = H@yl(l — 9)1*91‘ — 95(1 . 9)7175

where s = " | y; is the number of successes. Moreover, suppose that we have n = 20
trials and data

y=(1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0).

The long sequences of zeros and ones in the data indicate that the model assumption of
independent Y;’s is not true; there seems to be a positive autocorrelation. To quantify this, let
the test quantity ¢(y) = —switch(y) denote minus the number of switches, i.e. switch(y) =
3 for the data. Argue why large values of ¢(y) = —switch(y) are critical for the model.
Show that § = s/n = 7/20 is the mle, and calculate  from a sample of length k& = 1000
from the estimated observation model.

Consider next a Bayesian model where 6 is replaced by a random variable © with prior
density 7(6). Assuming again that we have observed Y = y from the observation model
7(y|0), the posterior density becomes

m(0ly) oc w(0)m(y0).

We define the posterior predictive distribution as the conditional distribution of (6',Y”)
given Y = y, where

(i) © given Y = y follows the posterior density 7 (-|y),
(ii) Y’ given ©" = 0 follows the density 7(-|#) of the observation model,

(i) conditional on ©’, we have that Y” is independent of Y’



(usually, by the posterior predictive distribution is meant the conditional distribution of Y’
given Y = y, but I find it more convenient to use the present definition). Thus the posterior
predictive distribution has (conditional) density

(0", y'ly) = 7(0'|y)7(y']6),

and we refer to the posterior predictive distribution when we write P((©",Y") € F|Y = y)
for events F'. Note that a simulation from the posterior predictive distribution is given by
first generating ©' from the posterior density 7 (-|y) and second generating Y’ from the
density 7(-|©’) of the observation model.

Now, in order to check the Bayesian model, suppose that we have specified a test quantity
t(0,y), where for specificity we assume again that large values of the test quantity are
critical for the model. Note that in contrast to the classical setting, we allow ¢(6,y) to
depend on . The Bayesian p-value is defined by obtaining something more critical under
the posterior predictive distribution than we actually observe, that is

p=PO,Y) 2 (&, y)lY =y).

Then a small value of p is critical for the Bayesian model, since this means that ¢(0’, y) is
likely to be large. As in classical statistics, it would not make much sense if ¢(, y) does not
depend on y (because otherwise p = 1). In Exercise 2 below, ¢(6,y) = t(y) depends only
on y, while in Exercise 3, t(6,y) depends on both € and y. Note also that we have a more
clear interpretation of the p-value in a Bayesian setting than in a classical setting, since we
don’t need to replace 6 by an estimate.

In practice, we usually approximate p from a sample (01,Y}), ..., (0},Y}) of the poste-
rior predictive distribution, calculating

k
1
~ Z [L(©,Y!) > (8, y))].
As above, for each iteration i = 1,...,k, we simply first simulate O/ from 7(-|y) and
second simulate Y} from 7 (-|©}).
Exercise 2
Consider again an observation model with iid Bernoulli trials Y7,...,Y,, and data as in

Exercise 1, but impose a uniform prior on the probability © of success. Thus the prior
density is 7(0) = 1 for 0 < 6 < 1, and the posterior density is

m(0ly) o< 0°(1 — 9)"~*

3



meaning that ©|Y = y follows the Beta-distribution with parameters s + 1 and n — s + 1.
Moreover, let still the test quantity be ¢(6,y) = —switch(y). Generate a sample of length
k = 1000 from the posterior predictive distribution and calculate the p-value.

Exercise 3

Let the situation be as in Exercise 2, but define the test quantity by
t(60,y) = |switch(y) — E[switch(Y)|© = 6]].

Show that E[switch(Y")|© = 6] = 2(n—1)0(1—0) and calculate the p-value from a sample
of the posterior predictive distribution.



