
A brief introduction to (simulation based)
Bayesian inference

The basic idea of Bayesian inference is to setup a full probability model for both observed
and unobserved quantities. Inference is then based on the so-called posterior density — that
is the conditional density of the unobserved quantity conditional on the observed quantity.
Let y denote the observed quantity (the data) which we assume is a realisation of a random
variable Y . Assume futher that the dsitribution of Y depends on an unobserved quantity
θ which we assume is a realisation of another random variable Θ. More precisely we as-
sume that Θ is distributed according to the so-called prior density π(θ). Given Θ = θ we
assume that Y is distributed according to the so-called sanpling/data density π(y|θ) — so-
metimes also referred to as the likelihood. By the definition of conditional densities, these
assumption imply that the joint distribution of Y and Θ has density

π(y, θ) = π(θ)π(y|θ).

The prior density should reflect our prior knowledge (or our prior uncertainty) regarding
Θ, i.e. our knowledge about Θ before we observe Y . The data density should be chosen so
that it is consistent with our knowledge about the problem of interest.
From the definition of conditional densities we obtain the posterior density of Θ:

π(θ|y) =
π(y, θ)

π(y)
=

π(θ)π(y|θ)

π(y)
. (1)

Notice that given the data Y = y the term π(y) is a constant and hence

π(θ|y) ∝ π(θ)π(y|θ)

is an unnormalised posterior density. The posterior density can be interpreted as our up-
dated knowledge about Θ after having observed Y . Inference is typically based on repro-
ducing all or parts of the posterior density graphically (as graphs or contour plots). Another
option is to report e.g. posterior mean, mode, and quantiles. Notice that a central 95%
postrior interval (e.g. the interval between the 2.5% and 97.5% quantiles) can directly be
interpreted as containing θ with high probability unlike the classical confidence intervals.
It is however not always trivial to obtain the posterior density — or even an approximation
of it.
Classical Bayesian inference has been limited by the fact that to make a posterior analysis
feasible the prior should be chosen so that the resulting posterior density can be recognised
as the density of a known distribution. Such prior distribution are called conjugated priors.
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This limitation has been drastically reduced in last 15 years by a combination of Markov
chain Monte Carlo (MCMC) methods and an increase in available computing power.
For a more detailed introduction to Bayesian inference, including many example of appli-
cations, see
Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis,
2nd ed. Chapman & Hall/CRC.

Example: Placenta Previa data (cont.)

Recall Exercise 5 in the text “Basic methods for simulation of random variables: 1. Inver-
sion” regarding estimating the probability for a female birth given a special condition called
placenta previa. The number of female births is the observed quantity and the probability of
a female birth is the unobserved quantity θ which we assume is the realisation of a random
variable Θ. This leads us to assume that the number of observed female births given Θ = θ
is binomially distributed with parameter θ, so Y has density

π(y|θ) =

(

n

y

)

θy(1 − θ)n−y,

where we assume that the total number of births n = 980 is known. In Exercise 5 the prior
distribution has a non-standard density (a witch hat). Here we assume instead that the prior
density is beta with parameters α and β:

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1.

This is an example of a conjugated prior, since the resulting posterior density:

π(θ|y = 437) ∝
Γ(α + β)

Γ(α)Γ(β)
θα−1(1 − θ)β−1θ437(1 − θ)543 ∝ θ437+α−1(1 − θ)543+β−1

can be recognised as the unnormalised density of a beta distributed random variable Θ with
parameters 437 + α and 543 + β.
In Bayesian statistics it is good practice to perform a so-called sensitivity analysis to assess
how sensitive the posterior distribution is to the choice of prior. Table 1 contains the 2.5%,
50% and 97.5% quantiles for the posterior distribution for a range of α and β values repa-
rameterised as α/(α + β) (the prior mean) and α + β. Further, Figure 1 shows the prior
and posterior densities of Θ for the same values of α and β. Table 1 shows that except for
the last row the prior has little influence on the posterior distribution. Note that the prior
and posterior densities are quite different, again except the last case, and even here the 95%
posterior interval does not contain the prior mean.
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Quantiles
α

α+β
α + β 2.5% 50% 97.5%

0.5 2 0.415 0.446 0.477
0.485 5 0.415 0.446 0.477
0.485 10 0.415 0.446 0.477
0.485 20 0.416 0.447 0.478
0.485 100 0.420 0.450 0.479
0.485 200 0.424 0.453 0.481

Tabel 1: Prior parameters and corresponding posterior quantiles.
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Figur 1: Prior (solid line) and posterior (dashed line) densities.
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