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Basic methods for simulation of random variables:
1. Inversion

Simulation of non-uniform random variables are often done by transforming (pseudo-
random) uniform random variables. Here we consider the simplest method calledinversion.

In the simplest case of inversion, we have a continuous random variableX with a strictly
increasing distribution functionF . ThenF has an inverseF−1 defined on the open interval
(0,1): for 0 < u < 1, F−1(u) is the unique real numberx such thatF (x) = u. In other
words,

F (F−1(u)) = u, F−1(F (x)) = x.

Let U ∼ unif(0, 1) denote a uniform random variable on (0,1). Then

P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x)

soF−1(U) has distribution functionF . Hence we can simulate a realisation ofX by simu-
lating a realisation ofF−1(U).

To extend this result to a general distribution functionF (which is not necessarily strictly
increasing), we need to introduce thegeneralised inverse ofF : this is the function defined
by

F−(u) = inf{x : F (x) ≥ u} 0 < u < 1,

i.e. F−(u) is theu-quantile (the smallest real numberx such thatF (x) ≥ u). We leave it
as an exercise to show that

F (F−(u)) ≥ u, F−(F (x)) ≤ x, (1)

and hence that
F−(u) ≤ x ⇐⇒ F (x) ≥ u. (2)

Therefore,
P (F−(U) ≤ x) = P (U ≤ F (x)) = F (x),
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and so we have verified the following useful result:

Theorem 1 If X is a random variable with distribution functionF andU ∼ unif(0, 1),
then we can simulate a realisation ofX by simulating a realisation ofF−(U).

Exercise 1

Verify (1) and (2).
Hint: Make a drawing of various distribution functions with and without jumps.

Exercise 2

Show that ifU ∼ unif(0, 1) andλ > 0 is a constant, then

−
1

λ
log(U)

is exponentially distributed with parameterλ > 0.

Exercise 3

Pareto distribution: If α > 0 is a constant andX is a random variable with density

f(x) = αx−(α+1), x ≥ 1,

thenX is said to beParetodistributed with parameterα (among other things, this distri-
bution has been used for describing file transport on the Internet when using the so-called
TCP protocol).

1. Show that the corresponding distribution function is given by

F (x) = 1 − x−α, x ≥ 1.

2. Consider two distrbution functionsG1 andG2 such thatG1(x) = G2(x) = 0 for all
x < 0. We say thatG2 has athicker tail thanG1 if G1(x) ≥ G2(x) for all sufficiently
largex. Discuss what this means (e.g. consider two random variables with distrbution
functionsG1 andG2).

2



3. Argue whyF (as given above) has a thicker tail compared to any exponential distri-
bution.

4. Show that for any real numberk, E(Xk) = α/(α − k) if k < α, while E(Xk) = ∞
if k ≥ α.

5. Show thatF−(u) = (1 − u)−1/α and make an R-functionrpareto(n,a) which
generatesn Pareto distributed random variables with parametera.

6. Produce 10000 Pareto distributed random variables with parameter0.5, plot their
histogram (usinghist andboxplot), and calculate the empirical mean (mean).
Repeat this a number of times and study the variability of theempirical means (com-
pare with question 4).

7. Calculate emperical means based on simulations whenn = 102, 103, 104, 105, 106

and discuss the result.

Exercise 4

1. Consider a discrete random variableX with a distribution concentrated on0, 1, . . ..
For j = 0, 1, . . ., let pj = P (X = j) andqj = p0 + · · · + pj = P (X ≤ j). Consider
the following

Algorithm (Inversion for discrete distributions)

A j := −1

B GenerateU ∼ unif(0, 1)

C Repeatj := j + 1 until U < qj

D Returnj

Show that the output has the same distribution asX.

2. LetX1, X2, . . . be iid random variables withP (Xi = 0) = 1−p andP (Xi = 1) = p
where0 < p < 1 is a parameter. Ifr is a given positive integer, then

X = inf{n : X1 + · · · + Xn = r}

can be interpreted as follows: Think of eachXi as an experiment where the event
Xi = 1 is a success andXi = 0 is a failure. ThenX is the number of experiments
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needed in order to obtainr successes. It can be shown (you are welcome to try, but
is not asked to do so) that

P (X = j) =

(

j − 1
r − 1

)

pr(1 − p)(j−r), j = r, r + 1, . . .

Here
(

n
m

)

=
n!

m!(n − m)!

is the binomial coefficient defined for non-negative integers m,n. Implement the
inversion algorithm in R so that simulations fromX are produced. Estimate the mean
and variance ofX whenp = 0.1, 0.5, 0.9 andr = 1, 10; discuss the result.
Hint: choose(n,m) can be used for calculating binomial coefficients. Read also
Section 9.2.2 in “An Introduction to R”.

3. Read the help page for the R-functionsample and discuss in which cases this can
be used for simulating a discrete random variable.

Exercise 5

As a specific example of a factor that may influence the sex ratio, we consider the maternal
conditionplacenta previa, an unusual condition of pregnancy in which the placenta is im-
plemented very low in the uterus, obstructing the fetus froma normal vaginal delivery. An
early study concerning the sex of placenta previa births in Germany found that of a total of
980 births, 473 were female. How much evidence does this provide for the claim that the
proportion of female births in the population of placenta previa births is less than 0.485,
the proportion of female births in the general population?

1. LetΘ be the probability of a female birth in the population of placenta previa births
(we assume thatΘ is the same for all births). Since we don’t know this probability,
we considerΘ as a random variable with a distribution centered around 0.485 but
is flat far away from this value to admit the possibility that the truth is far away.
Specificially, we let the density ofΘ be

fΘ(θ) =



















0.5 if 0 < θ ≤ 0.385
−20.675 + 55θ if 0.385 < θ ≤ 0.485
32.675 − 55θ if 0.485 < θ ≤ 0.585
0.5 if 0.585 < θ < 1.

Make a drawing of this density. Argue that 40% of the probability mass is outside the
interval [0.385.0.585].
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2. Conditional onΘ = θ (whereθ is a real number on the interval (0,1)) we naturally
assume the following model: the sex of then = 980 placenta previa births are realisa-
tions of iid random variablesX1, . . . , Xn with P (Xi = 1|Θ = θ) = θ whereXi = 1
is interpreted as “female” andXi = 0 as “male”. LetX = X1 + · · ·Xn denote the
number of female births. We have observedX = x wherex = 473, while we are not
told what the values ofX1, . . . , Xn are. As we shall see this is not a problem.

Show that
P (X1 = x1, . . . , Xn = xn|Θ = θ) = θx(1 − θ)n−x

wherex1, . . . , xn denote the unobserved values ofX1, . . . , Xn (we only know that
x1 + . . . + xn = x).

Consequently,

P (X1 = x1, . . . , Xn = xn|Θ = θ) = θ473(1 − θ)507

depends only onx1, . . . , xn throughx = 473 andn − x = 507. In other words, it is
sufficient to report that “of a total of 980 births,X = 473 were female”.

3. Show that the conditional density ofΘ givenX1 = x1, . . . , Xn = xn is specified by

f(θ|X1 = x1, . . . , Xn = xn) =
1

c(x)
fΘ(θ)P (X1 = x1, . . . , Xn = xn|Θ = θ)

wherec(x) = P (X1 = x1, . . . , Xn = xn) is a constant in the sense that it only
depends on the datax = 473 and not onθ.

Thus we can write

f(θ|X = 473) = f(θ|X = x) =
1

c
fΘ(θ)θ473(1 − θ)507 (3)

wherec = c(473).

4. The densityfΘ is called theprior densityand the conditional density (3) is called
theposterior density ofΘ givenX = 473 (we return to this terminology later in the
course). Calculate the posterior density in R when we approximate this density by a
discrete density on the grid ofθ values 0.000, 0.001, . . . , 1.000.

5. Show a plot of this approximative posterior density together with the prior density.

6. Use inversion for simulating 1000 realisations from the (discrete approximation of
the) posterior density (3). Show a histogram of the result and compare with the re-
sults above. Find also the posterior median (i.e. the 50% quantile in the posterior
distribution), the posterior mean, and the 95% central posterior interval (this is the
interval given by the 2.5% and 97.5% quantiles in the posterior distribution).
Hint: Heresample can be useful.
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