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Basic methods for simulation of random variables:
1. Inversion

Simulation of non-uniform random variables are often dogetransforming (pseudo-
random) uniform random variables. Here we consider thelgishmethod callethversion

In the simplest case of inversion, we have a continuous randwoiableX with a strictly
increasing distribution functiof’. ThenF has an inversé'~! defined on the open interval
(0,1): for0 < u < 1, F~!(u) is the unique real number such thatF'(z) = u. In other
words,
F(F ') =u,  F'(F(z)) =z
Let U ~ unif(0, 1) denote a uniform random variable on (0,1). Then
P(F7\(U) < z) = P(U < F(x)) = F(x)

so F~1(U) has distribution functior#’. Hence we can simulate a realisation’by simu-
lating a realisation of"~*(U).

To extend this result to a general distribution functiérfwhich is not necessarily strictly
increasing), we need to introduce theneralised inverse of: this is the function defined

by
F~(u) =inf{z : F(z) > u} 0<u<l,

i.e. F'~(u) is theu-quantile (the smallest real numbesuch thatF'(x) > ). We leave it
as an exercise to show that

F(F~(u)) > u, F~(F(z)) <, Q)

and hence that
F (u)<z < F(z)>u. 2

Therefore,



and so we have verified the following useful result:

Theorem 1 If X is a random variable with distribution functidn andU ~ unif(0, 1),
then we can simulate a realisationfby simulating a realisation of — (U).

Exercise 1

Verify (1) and (2).
Hint: Make a drawing of various distribution functions with andhaut jumps

Exercise 2
Show that ifU ~ unif(0,1) and\ > 0 is a constant, then

1
Y log(U)

is exponentially distributed with parameter> 0.

Exercise 3

Pareto distribution If o > 0 is a constant and’ is a random variable with density
fl@) =az=*D w>1,

then X is said to beParetodistributed with parametex (among other things, this distri-
bution has been used for describing file transport on theratevhen using the so-called
TCP protocol).

1. Show that the corresponding distribution function isegiby

Flz)=1—-a"¢, x> 1

2. Consider two distrbution functior(s; andG, such that7, (z) = Gy(z) = 0 for all
x < 0. We say that?, has ahicker tailthanG, if G;(z) > G»(z) for all sufficiently
largex. Discuss what this means (e.g. consider two random vasatté distrbution
functionsG; andG»).



3. Argue whyF (as given above) has a thicker tail compared to any expaalefisiri-
bution.

4. Show that for any real numbgr E(X*) = a/(a — k) if k < a, while B(X*) = oo
if k> a.

5. Show thatF'~(u) = (1 — u)~*/* and make an R-functionpar et o( n, a) which
generates Pareto distributed random variables with parameter

6. Produce 10000 Pareto distributed random variables vathrpeter0.5, plot their
histogram (usindni st andboxpl ot ), and calculate the empirical meame@n).
Repeat this a number of times and study the variability oktigirical means (com-
pare with question 4).

7. Calculate emperical means based on simulations when 102, 103, 10*, 10%, 10°
and discuss the result.

Exercise 4

1. Consider a discrete random variablewith a distribution concentrated dnti,. . ..
Forj =0,1,..., letp; = P(X = j)andg; = py+--- +p; = P(X < j). Consider
the following

Algorithm (Inversion for discrete distributions)

Aj=-1

B Generatd/ ~ unif(0,1)

C Repeatj :=j+ 1until U < g;
D Returny

Show that the output has the same distributiotkas

2. LetXy, Xs, ... beiid random variables witR(X; = 0) = 1—pandP(X; =1) =p
where0 < p < 1is a parameter. If is a given positive integer, then

X=inf{n: X;+---+X,=r}

can be interpreted as follows: Think of ea&h as an experiment where the event
X; = lisasuccess andl; = 0 is a failure. ThenX is the number of experiments
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needed in order to obtainsuccesses. It can be shown (you are welcome to try, but
is not asked to do so) that

. 1)\, - ,
P(X:j):(i_l)p(l—p)(] ), j=rr+1,...

()= o

is the binomial coefficient defined for non-negative integer, n. Implement the
inversion algorithm in R so that simulations frokhare produced. Estimate the mean
and variance o whenp = 0.1,0.5,0.9 andr = 1, 10; discuss the result.

Hint: choose( n, ) can be used for calculating binomial coefficients. Read also
Section 9.2.2 in “An Introduction to R”

Here

3. Read the help page for the R-functisanpl e and discuss in which cases this can
be used for simulating a discrete random variable.

Exercise 5

As a specific example of a factor that may influence the sex,nat consider the maternal
conditionplacenta previaan unusual condition of pregnancy in which the placentanis i
plemented very low in the uterus, obstructing the fetus feonormal vaginal delivery. An

early study concerning the sex of placenta previa birthsam@ny found that of a total of
980 births, 473 were female. How much evidence does thisigeeder the claim that the

proportion of female births in the population of placentavia births is less than 0.485,
the proportion of female births in the general population?

1. Let® be the probability of a female birth in the population of @ata previa births
(we assume thad is the same for all births). Since we don’t know this prohabil
we consider© as a random variable with a distribution centered aroun83But
is flat far away from this value to admit the possibility thaettruth is far away.
Specificially, we let the density @& be

0.5 if 0 <6 <0.385
fol) = —20.6754 550 if 0.385 < 0 < 0.485
© 32.675 — 550  if 0.485 < 0 < 0.585
0.5 if 0.585 < 6 < 1.

Make a drawing of this density. Argue that 40% of the probghihass is outside the
interval [0.385.0.585].



2. Conditional onr® = 0 (wheref is a real number on the interval (0,1)) we naturally
assume the following model: the sex of the- 980 placenta previa births are realisa-
tions of iid random variableX, . .., X,, with P(X; = 1|© = 0) = § whereX; = 1
is interpreted as “female” andl; = 0 as “male”. LetX = X; + --- X,, denote the
number of female births. We have obsend= x wherex = 473, while we are not
told what the values ok, . . ., X, are. As we shall see this is not a problem.

Show that
PXi=a1,..., X, =2,]0=0)=0"(1—-0)"""

wherex, ..., z, denote the unobserved values.¥f, ..., X, (we only know that
T+ ...+ x, =1).
Consequently,
P(Xi=1,...,X, = 2,|0 = 0) = 0*(1 — )7
depends only ony, . .., z, throughz = 473 andn — = = 507. In other words, it is

sufficient to report that “of a total of 980 birth&] = 473 were female”.

3. Show that the conditional density ©fgiven X; = x4, ..., X,, = z,, is specified by

1

—fe(OP( Xy =21,.... X, = =0
C(.Z')fe( ) ( 1 x1, ) n [En|@ )
wherec(z) = P(X; = zi1,...,X,, = z,) is a constant in the sense that it only
depends on the data= 473 and not ory.

Thus we can write

f(0|X1 :Il,...7Xn :ZEn> =

FOIX = 473) = FO1X = 2) = fo(6)6°(1 — 6)" (3)
wherec = ¢(473).

4. The densityfg is called theprior densityand the conditional density (3) is called
the posterior density 0® given X = 473 (we return to this terminology later in the
course). Calculate the posterior density in R when we apprate this density by a
discrete density on the grid éfvalues 0.000, 0.001, ..., 1.000.

5. Show a plot of this approximative posterior density tbgewith the prior density.

6. Use inversion for simulating 1000 realisations from tlisgrete approximation of
the) posterior density (3). Show a histogram of the result @mpare with the re-
sults above. Find also the posterior median (i.e. the 50%tdean the posterior
distribution), the posterior mean, and the 95% centralgyastinterval (this is the
interval given by the 2.5% and 97.5% quantiles in the postelistribution).

Hint: Heresanpl e can be useful.



