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Monte Carlo methods

Monte Carlo methods are used for estimating integrals basedon pseudo-random numbers.
Typically the integrals can not be performed by other means such as numerical methods;
this is particularly the case for high-dimensional integrals.

The perhaps earliest application of the simple Monte Carlo method is“Buffon’s needle”,
see Exercise 2 below (this experiment by Buffon goes back to 1777). Enrico Fermi and
Stanislaw Ulam reinvented the method in physics. Fermi worked on neutron diffusion in
Rome in the early 1930s. Ulam, and two other pioneers, John von Neumann and Nicholas
Metropolis, worked on the Manhattan Project at Los Alamos during the Second World War
(the atomic bomb was constructed at Los Alamos). In 1947 Metropolis and von Neumann
showed how the Monte Carlo method could solve a number of problems concerned with
neutron export in the hydrogen bomb. This work was an impressive success, but they were
not able to publish their results, because they were classified as secret. Over the following
two years however, they and others applied the method to a variety of more mundane pro-
blems in physics, and published a number of papers which drewthe world’s attention to
this emerging technique. Of particular note to us is the publication in 1953 of the paper
by Metropolis and coworkers, in which they describe for the first time the Monte Carlo
technique that has come to be known as theMetropolis algorithm(which we study later on
this course).

As indicated much of the theoretical and practical development of Monte Carlo methods
have appeared in physics. In the last twenty years, statisticians have contributed substan-
tially to this development. Due to the exponential growth incomputer power and the in-
vention of new algorithms, Monte Carlo methods are widely used today in science and
technology.
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Exercise 1 (The simple Monte Carlo method)

For specificity, suppose thatX is a continuous random variable with density functionf (the
results and ideas described below apply as well ifX is a discrete random variable), and we
want to calculate the mean

θ = E(h(X)) =

∫

h(x)f(x)dx

whereh : R
n → R is a function such that the mean exists. Recall the followingimportant

result:

Theorem 1 — the strong law of large numbersIf X1, X2, . . . are iid with densityf ,
then with probability one,

θ̂n =
1

n

n
∑

i=1

h(Xi)

converges toθ:
P (θ̂n → θ asn → ∞) = 1.

Definition:We say then that̂θn is anconsistent estimatorof θ.

1. Show that̂θn is unbiased, i.e.Eθ̂n = θ.

2. Show that a)
∫ 1

0
u

1+u
du = 1 − log(2) and b) construct a Monte Carlo method for

estimating this integral.

Hint: a) Use substition ofu byx = 1 + u.
b) UseZ = U/(1 + U) whereU ∼ unif(0,1).

3. Use R to estimate the integral forn = 10, 100, 1000, 10000, 100000, 1000000.
Investingate how the estimates converges.

4. Recall that if the varianceV ar(h(X)) exists, then by the CLT,

√
n(θ̂n − θ)

∼→ N(0, σ2) asn → ∞

whereσ =
√

V ar(h(X)). Show that the probability thatθ is included in the interval

[

θ̂n − 1.96σ√
n

, θ̂n +
1.96σ√

n

]

is approximately 95%; this interval is called a95% confidence interval forθ.
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5. Consider again the integral in 2. Show thatV ar(Z) = 1/2− (log(2))2. Use this in R
to obtain 95% confidence intervals for the estimates in 3.

Hint: Find the derivative of2(u − log(u + 1)) − u2/(1 + u) and obtain thereby
E(Z2).

Exercise 2 (Buffon’s needle)

The following relates to the webpage http://www.mste.uiuc.edu/reese/buffon/buffon.html.
See also http://www.angelfire.com/wa/hurben/buff.html.

1. Consider the paragraph “The Simplest Case”. The problem is not completely formu-
lated because the randomness in the needle drop is not completely specified. a) So
how are the random variablesD andθ distributed? b) Why is the suggested method
for calculatingπ the same as simple Monte Carlo?

Remark:An actual experiment of this type was carried out by the astronomer R.
Wolf in Zurich about 1850 — making this probably the first Monte Carlo procedure.
He dropped a needle 5000 times on a ruled grating and got the value 3.1596 forπ,
about 0.6ths of a percent in error.

2. Answer the questions in the paragraph “Questions”.

Exercise 3 (The weighted Monte Carlo method: importance
sampling)

Suppose thatθ = P (X > x) is unknown, whereX is a random variable andx is a real
number. Whenx is large,θ becomes small and the event{X > x} is called arare event.
Let 1A(y) denote theindicator functionfor A ⊆ R: 1A(y) = 1 if y ∈ A and1A(y) = 0 if
y 6∈ A. Sinceθ = P (X > x) = E1(x,∞)(X), we may suggest to estimateθ by θ̂n obtained
by simple Monte Carlo. However, as shown below, the weightedMonte Carlo method (also
called importance sampling) provides a much better method for estimating rare events.

1. Show thatV ar θ̂n = θ(1 − θ)/n.

2. If e.g.θ = 0.001, then how large needn to be if we want the standard deviation of
θ̂n to be at mostθ/10? (This indicates that a better method than simple Monte Carlo
is needed).
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3. Verify the following useful result: IfY1, . . . , Yn are iid with densityq such that

q(x) > 0 wheneverf(x) > 0

wheref denotes the density ofX, then

θ̃n =
1

n

n
∑

i=1

1(x,∞)(Yi)
f(Yi)

q(Yi)

is an unbiased consistent estimator ofθ (see Theorem 1).

The weighted Monte Carlo method (or importance sampling) isan evaluation of̃θn;
more details are given below.

4. Show that ifq(y) = 1(x,∞)(y)f(y)/θ, thenθ̃n = θ. (Of course, sinceθ is assumed to
be unknown, we cannot choseq in this way; however, it shows that ideallyq should
be chosen such thatq(y) is large whenevery > x andf(y) is large).

5. a) Suppose thatf(y) = exp(−y) for y > 0 (the standard exponential density) and
expressV ar θ̂n in terms ofx > 0.
b) Suppose thatq(y) = (1/x) exp(−y/x) for y > 0 (the exponential density with
parameterx > 0). It can be shown that

V arX̃n =
1

n

(

x2

2x − 1
e1−2x − e−2x

)

if x > 2

while V arX̃n = ∞ if 0 < x ≤ 2. Plot log(V ar θ̃n/V ar θ̂n) as a function ofx > 2.

Importance sampling

Exercise 3 shows a simple example of importance sampling when estimating probabilities.
In general importance sampling is based on

Theorem 2Consider a general setting as at the beginning of Exercise 1,and letY1, . . . , Yn

be iid with densityq such that

q(x) > 0 wheneverf(x) > 0

wheref denotes the density ofX. Then

θ̃n =
1

n

n
∑

i=1

h(Yi)
f(Yi)

q(Yi)
(1)
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is an unbiased consistent estimator ofθ = E(h(X)).

The method ofimportance samplingis an evaluation of (1). Typical in applications, we
use (1) for estimating several mean values corresponding todifferenth functions. We call
f the target densityand q the instrumental densityor the importance sampling density.
Moreover,

w(Yi) =
f(Yi)

q(Yi)
, i = 1, . . . , n,

are called theimportance weights. As demonstrated in Exercise 3, the variation of the im-
portance weights should not be too large: if one or a few of theimportance weights can be
large compared to the others, importance sampling will in general not work well as the vari-
ance of̃θn can be huge. Particularly, problems may be encountered whenE(f(Y )/q(Y )) =
∞. Apart from this, there is normally no restriction on the choice of the instrumental density
q. Furthermore, the same sample (generated fromq) can be used repeatedly for estimating
different mean values.

A good discussion on importance sampling (and many other Monte Carlo methods, inclu-
ding inversion and rejection) can be found in

Robert, C. P. and Casella, G. (1999).Monte Carlo Statistical Methods. Springer.
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