A brief introduction to (simulation based)
Bayesian inference

The basic idea of Bayesian inference is to setup a full pritibaimodel for both observed
and unobserved quantities. Inference is then based on-telled posterior density — that
is the conditional density of the unobserved quantity ctiowial on the observed quantity.

Lety denote the observed quantity (the data) which we assumeaiaation of a random
variableY. Assume futher that the dsitribution ®f depends on an unobserved quantity
6 which we assume is a realisation of another random vari@blelore precisely we as-
sume tha® is distributed according to the so-callpdor density (). Given® = 6 we
assume thaY” is distributed according to the so-callsahpling/data density 7(y|0) — so-
metimes also referred to as thkelihood. By the definition of conditional densities, these
assumption imply that the joint distribution &f and© has density

(y,0) = 7(0)7(yl0).

The prior density should reflect our prior knowledge (or otopuncertainty) regarding
O, i.e. our knowledge abo before we observeé’. The data density should be chosen so
that it is consistent with our knowledge about the problenmterest.

From the definition of conditional densities we obtain thetpdor density ob:

ay0)  7(0)r(y)0)
S

(1)
Notice that given the datd = y the termn(y) is a constant and hence

m(0y) o< 7(0)m(y[0)

is an unnormalised posterior density. The posterior dgmsih be interpreted as our up-
dated knowledge abo@ after having observel. Inference is typically based on repro-
ducing all or parts of the posterior density graphicallygesphs or contour plots). Another
option is to report e.g. posterior mean, mode, and quantNesice that a central 95%
postrior interval (e.g. the interval between the 2.5% and 97.5% quantilesyizantly be
interpreted as containingwith high probability unlike the classical confidence inegds.

It is however not always trivial to obtain the posterior dgns— or even an approximation
of it.

Classical Bayesian inference has been limited by the fattthmake a posterior analysis
feasible the prior should be chosen so that the resultintpposdensity can be recognised
as the density of a known distribution. Such prior distributare called conjugated priors.
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This limitation has been drastically reduced in last 15 gd®ra combination of Markov
chain Monte Carlo (MCMC) methods and an increase in avalabmputing power.

For a more detailed introduction to Bayesian inferencdutting many example of appli-
cations, see

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (20B&yesian Data Analysis,
2nd ed. Chapman & Hall/CRC.

Example: Placenta Previa data (cont.)

Recall Exercise 5 in the text “Basic methods for simulatibramdom variables: 1. Inver-
sion” regarding estimating the probability for a femaldHbgiven a special condition called
placenta previa. The number of female births is the obseguadtity and the probability of

a female birth is the unobserved quantitwhich we assume is the realisation of a random
variable®. This leads us to assume that the number of observed fenmtile given®© = 0

is binomially distributed with parametér soY has density

wi6) = (7)o - o

where we assume that the total number of births 980 is known. In Exercise 5 the prior
distribution has a non-standard density (a witch hat). Mer@ssume instead that the prior
density is beta with parametesisand 5:

Lo+ B) a1 -
() = ———p>"1 (1 —9)° .
= Tare” Y
This is an example of a conjugated prior, since the resufigjerior density:
D(a+08) 0 - - -
1(0ly = 437) x 9 1—6 8 19437 1—6 543 x 9437+a 1 1—6 543+5—-1
(Bly = 437) o< S (1= 06T - 6) (1-9)

can be recognised as the unnormalised density of a betddistt random variabl® with
parameterd37 + « and543 + .

In Bayesian statistics it is good practice to perform a dedaensitivity analysisto assess
how sensitive the posterior distribution is to the choicemdr. Table 1 contains the 2.5%,
50% and 97.5% quantiles for the posterior distribution foarge ofa and 3 values repa-
rameterised a&/(«a + ) (the prior mean) and: + 3. Further, Figure 1 shows the prior
and posterior densities 67 for the same values ef and 3. Table 1 shows that except for
the last row the prior has little influence on the posteriatribution. Note that the prior
and posterior densities are quite different, again ext¢eplatst case, and even here the 95%
posterior interval does not contain the prior mean.
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Quantiles

9 a+f 25% 50% 97.5%
0.5 2 0415 0.446 0477
0485 5 0415 0.446 0.477
0.485 10 0.415 0.446 0.477
0.485 20 0.416 0.447 0.478
0.485 100 0.420 0.450 0.479
0.485 200 0.424 0.453 0.481

Tabel 1: Prior parameters and corresponding posteriortdesn

al/(a+b)=0.5, a+b=2

a/(a+b)=0.485, a+b=5

al(a+b)= 0.485 , a+b= 10
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Figur 1: Prior (solid line) and posterior (dashed line) dees.



