#prior# sd0 <- 3 phi0 <- sd0^2 theta0 <- 38 z=seq(28,47,by=0.05) y0=dnorm(z,theta0,sd0) plot(z,y0,type="l",ylim=c(0,0.9)) #likelihood# sdobs <- 2 phi <- sdobs^2 nobs <- 10000 #NB: misprint here in Lee's code (chests.txt)# xbar <- 39.8 #posterior# phi1 <- (phi0^(-1) + (phi/nobs)^(-1))^(-1) sd1 <- sqrt(phi1) theta1 <- phi1*(theta0/phi0 + xbar/(phi/nobs)) cat("Posterior mean",theta1,"and s.d.",sd1,".\n") y1=dnorm(z,theta1,sd1) lines(z,y1) #predictive distribution# sd2=sqrt(phi+phi1) cat("Predictive mean",theta1,"and s.d.",sd2,".\n") y2=dnorm(z,theta1,sd2) lines(z,y2)