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This important and impressing paper by Lindgren, Rue and Lindström
(LRL) provides a computationally feasible approach for large spatial datasets
analyzed by a hierarchical Bayesian model. It involves a latent Gaussian
field, a parameter θ of low dimension, GMRF approximations to SPDEs for
covariance functions, and the INLA-package for the computations instead
of time consuming MCMC methods. Other recent papers by the authors
(Simpson et al., 2010; Bolin and Lindgren, 2011) compare the approach in
LRL with kernel convolution methods (process convolution approaches) and
covariance tapering methods, and conclude that the GMRF approximation
to SPDEs is superior.

The Matérn covariance function plays a key-role, where e.g. in the planar
case LRL assume that the shape parameter ν is a non-negative integer when
considering the SPDE. Is their some link to the fact that this stationary pla-
nar covariance function is proportional to the mixture density of a zero-mean
radially symmetric bivariate normal distribution N2(0,WI2) with the vari-
ance W following an ν + 1 times convolution of an exponential distribution?

Despite its popularity and flexibility for modelling different degrees of
smoothness, is this 3-parameter Matérn covariance function really flexible
enough for modelling large spatial datasets? Would a flexible non-parametric
Bayesian approach be more appropriate for ‘huge’ spatial datasets, although
this of course may be computationally slow? The dimension of θ may then
be expected to be so high that INLA (Rue et al., 2009) would not work; as
the dimension of θ may even be varying, a reversible jump MCMC method
(Green, 1995) may be needed when updating θ from its full conditional.
When updating the Gaussian field from its full conditional (corresponding to
a finite set of locations), a Metropolis-Hastings algorithm may apply (Roberts
and Tweedie, 1996; Møller and Waagepetersen, 2004).

LRL do not discuss model checking. INLA provides quick estimates of
the marginal posterior distributions of the Gaussian field and of θ. For model
checking based on the joint posterior distribution, e.g. when comparing the
data with simulations from the posterior predictive distribution, I presume
MCMC algorithms still are needed.

Finally, using a triangulation for a finite element representation of a Guas-
sian field is an appealing idea. For a spatial point pattern modelled by a log
Gaussian Cox process (Møller et al., 1998), I expect a regular triangulation
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should be used, since both the point pattern and the ‘empty space’ provide
important information.
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