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Abstract

Studies of forest declines are important, because they both reduce timber produc-
tion and affect successional trajectories of landscapes and ecosystems. Of partic-
ular interest is the decline of red pines which is characterized by expanding areas
of dead and chlorotic trees in plantations throughout the Great Lakes Region.
Here we examine the impact of two bark beetle groups, namely red turpentine
beetles and pine engraver bark beetles, on tree mortality and the subsequent gap
formation over time in a plantation in Wisconsin. We construct spatial-temporal
statistical models that quantify the relations among red turpentine beetle coloniza-
tion, pine engraver bark beetle colonization, and mortality of red pine trees, while
accounting for correlation across space and over time. For statistical inference,
we adopt a Bayesian hierarchical model and devise Markov chain Monte Carlo
algorithms for obtaining the posterior distributions of model parameters as well
as posterior predictive distributions. Our data analysis results suggest that red
turpentine beetle colonization is associated with higher likelihood of pine engraver
bark beetle colonization and pine engraver bark beetle colonization is associated
with higher likelihood of red pine tree mortality, whereas there is no direct associa-
tion between red turpentine beetle colonization and red pine tree mortality. There
is strong evidence that red turpentine beetle colonization does not kill a red pine
tree directly, but rather predisposes the tree to subsequent colonization by pine
engraver bark beetles. The evidence is also strong that pine engraver bark beetles
are the ultimate mortality agents of red pine trees.

Keywords: Autologistic model, Bayesian inference, forest entomology, Markov
chain Monte Carlo, perfect simulation, spatial-temporal processes.
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1 Introduction

Studies of forest declines are of great interest to the timber industry, natural re-
source managers, and ecologists alike, because these declines both reduce timber
production and affect successional trajectories of landscapes and ecosystems. De-
cline syndromes occur in forests throughout the world, and occur at a variety of
scales (Auclair, 2005). Declines due to soil acidification and atmospheric pollution
may affect large areas (Battles and Fahey, 2000; Drohan et al., 2002; Purdon et al.,
2004) while declines due to insect and/or disease complexes may exhibit smaller
mosaics of mortality such as gap formation, which is our focus here (Klepzig et al.,
1991; Erbilgin and Raffa, 2003). In some systems, areas of large-scale mortality
to insects and pathogens may originate from such small-scale mosaics. Character-
izing spatial patterns and gaining inference about the processes that may create
such patterns may assist in policy and management decisions when dealing with
declines. Indeed, linking pattern and process is a key goal in ecology.

In particular we examine tree mortality and the subsequent gap formation
over time in red pine forests. Decline of red pines is characterized by expanding
areas, termed “pockets” of dead, slow growing, and chlorotic trees in plantations
throughout the Great Lakes Region (Klepzig et al., 1991). Abiotic factors such
as soil characteristics and drought stress can predispose trees to biotic mortality
agents such as insects and root pathogens (Klepzig et al., 1991; Erbilgin and Raffa,
2002). Here we focus on the impact of two bark beetle groups, called “turpentine
beetles” and “Ips spp.” (for details of the species, see Section 2), on the decline of
red pines in a plantation in Wisconsin.

Past studies on red pine decline have yielded valuable insights on individual
components of this system by examining multiple levels of scale, from detailed
studies on individual trees (Klepzig et al., 1995; Raffa and Smalley, 1995; Klepzig
et al., 1996) to regional studies comparing multiple sites (Klepzig et al., 1991;
Erbilgin and Raffa, 2002, 2003). Despite these advances, elucidation of exact
mechanisms of pocket development and expansion remain elusive since a single
site has never been observed over more than three years. In the present study,
we examine a seven-year data set of annual surveys of all trees in a plantation.
Each year, each of the 2,715 trees was examined for presence/absence of Ips spp.,
tree condition (alive/dead), and the number of pitch tubes, each of which signifies
colonization by a turpentine beetle. We attempt to answer several important eco-
logical questions. Of most interest is how the mortality rate of a tree is associated
with the turpentine beetle and Ips spp. colonization. For example, how different
are the mortality rates between a tree that has been colonized by both groups and
a tree that has been colonized by just one group of bark beetles? Related to these
questions are the degree of association between turpentine beetle and Ips spp. For
example, what is the likelihood of a tree that has been colonized by turpentine
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beetles will be colonized by Ips spp. subsequently? Moreover it is also of interest to
quantify the spatial and temporal relations among turpentine beetle colonization,
Ips spp. colonization, and tree mortality.

The study of red pine declines poses statistical challenges, in that processes
giving rise to patterns of mortality may act at different levels of temporal and
spatial scales. Here we construct spatial-temporal models that quantify the re-
lations among the activities of turpentine beetle, the activities of Ips spp., and
the conditions of red pine trees. Furthermore, we introduce spatial and temporal
terms into the model that account for correlations across space and over time. For
statistical inference, we adopt a Bayesian hierarchical model and Markov chain
Monte Carlo (MCMC) algorithms that enable us to obtain the posterior distribu-
tions of the model parameters and posterior predictive distributions. The model
for Ips spp. also involves an unknown normalizing constant. Thus when we use a
Metropolis-Hastings algorithm, we approximate a ratio of normalizing constants
by path sampling (Gelman and Meng, 1998) combined with the Propp-Wilson
algorithm for perfect simulation (Propp and Wilson, 1996; Møller, 1999).

The remainder of the paper is organized as follows. In Section 2, we describe
some more biological background and the data. In Section 3, we specify a set
of spatial-temporal models for the data. The Bayesian model and simulation
algorithms are specified in Section 4. We describe the results of the data analysis
and address the ecological questions in Section 5. Section 6 contains concluding
remarks.

2 Bark beetle and red pine data

2.1 Background

Bark beetle species are characterized by their ability to mine and reproduce be-
low the surface of the bark of trees. The red turpentine beetle (Dendroctonus

valens (LeConte)), which we in short call “turpentine beetle”, is one of the most
widely distributed bark beetles in North America. Colonization by turpentine bee-
tle adults concentrate in the lower stems of pine trees. The larvae breed largely
below the soil line in the root collar and primary lateral root regions. An external
indicator of colonization by the turpentine beetle is a pitch tube on the outer sur-
face of the bark just above the soil line or pitch pellets on the ground. Peak flight
and colonization in Wisconsin occur in late April and May. Turpentine beetles
colonize primarily trees that are weakened by drought and fire, for example, but
may also colonize apparently healthy trees. These beetles vector the staining fungi
Leptographium terebrantis and L. procerum (Klepzig et al., 1991). It is hypothe-
sized that a colonization of a healthy tree by turpentine beetles does not kill the
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tree but may predispose it to subsequent colonization by other bark beetles such
as engraver beetles.

Engraver beetles (predominantly Ips pini (Say), although additionally some
Ips grandicollis (Eichhoff) in our study site (Klepzig et al., 1991)), which we in
short call “Ips spp.”, may have up to three generations from spring to early fall
(Erbilgin et al., 2002; Erbilgin and Raffa, 2002; Aukema et al., 2005). Successful
colonization by the Ips spp. is indicated by fine sawdust shavings pushed to the
outer surface of the bark and galleries inside the tree. Ips spp. beetles produce
aggregation pheromones as they enter host trees, thus attacking trees en masse

over very short periods. These mass attacks typically result in complete utilization
of the resource within a single generation, making it unlikely that subsequent Ips

spp. or turpentine beetles will enter. Ips spp. also vector the fungal associate
Ophiostoma ips, whose colonization may impede the upward flow of water to the
tree crowns. Lack of water leads the needles to wither and die while the color
characteristically fades from green to red to brown. Ips spp. brood adults leave the
tree through emergence holes on the surface of the outer bark, the most apparent
external indicator that a tree has been colonized by Ips spp. The tree is most likely
to die within a few weeks after an attack.

2.2 Description of data

The study area is a red pine plantation near Spring Green, Wisconsin. In 1986,
each of the 2,715 trees in the plantation was surveyed and its condition (alive/dead)
was recorded. From 1987 to 1992, subsequent surveys were conducted not only of
the tree condition, but also about the colonization of turpentine beetles and Ips

spp. For turpentine beetles, the number of pitch tubes on the outer surface of a
bark was recorded, while for Ips spp., an indicator variable of Ips spp. colonization
(yes/no) was recorded. The survey took place in autumn of each year, after beetles
had become dormant.

Selected image plots in Figure 1 illustrate the nature of the data. For 1987,
colonization of turpentine beetles (zero or positive number of pitch tubes), colo-
nization of Ips spp. (yes/no), and condition of trees (alive/dead) are shown (Fig-
ure 1(a)–(c)). For 1992, similar plots are shown, except that colonization of Ips

spp. here includes colonization from 1987 to 1992 (Figure 1(d)–(f)). There is clear
indication of spatial dependence among tree conditions, Ips spp. colonization, and
turpentine beetle colonization. A gap of dead trees was evident in the southeastern
part of the plantation in the beginning and expanded over the years. Furthermore
there was a strong association between the spatial pattern of Ips spp. colonization
and that of tree mortality, but the link was not as obvious between turpentine
beetle colonization and tree mortality.

There were 126 dead trees in 1986. From 1987 to 1992, a total of 344 trees died,
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339 trees were colonized by Ips spp., and 152 trees were colonized by turpentine
beetles. Among the 344 dead trees, a majority of 330 were colonized by Ips spp.
and 73 were colonized by turpentine beetles. Only 9 out of 339 trees that were
colonized by Ips spp. survived by 1992, whereas 79 out of 152 of the trees that
were colonized by turpentine beetles survived. Ips spp. colonization seemed to
associate more with those trees with a larger number of pitch tubes of turpentine
beetles, although the evidence was subtle due to the small number of trees that
had a large number of pitch tubes.

Figure 1: (a) and (d) turpentine beetle colonization, (b) and (e) Ips spp. colo-
nization, and (c) and (f) tree condition by 1987 (top row) and 1992 (bottom row).
The site of a tree is colored black if the tree was colonized by turpentine beetles
((a) and (d)), colonized by Ips spp. ((b) and (e)), or dead ((c) and (f)); all other
sites are colored grey.

(a)

(d)

(b)

(e)

(c)

(f)
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3 Observation model

3.1 Notation

Let t = −1, 0, . . . , 5 index the time of survey from 1986 to 1992 and let i =
1, . . . , 2715 index the sites of 2,715 red pine trees in the plantation that were
surveyed. For the purpose of modeling, we consider time points t = . . . ,−1, 0, 1, . . .
and define xt,i, yt,i, zt,i, and ut,i as follows. Since the survey was conducted in
autumn, after insect and tree dormancy for any given year, the data reflect insect
activities and tree conditions throughout that year. At time t and site i, let xt,i

denote the turpentine beetle colonization variable such that xt,i is the cumulative
number of turpentine beetle pitch tubes on the bark. Further, let yt,i denote the
Ips spp. colonization variable such that yt,i = 0, 1, 2 correspond respectively to no
Ips spp. colonization, colonization by Ips spp. in year t, and colonization by Ips

spp. in a previous year. Let ut,i denote an indicator variable of whether Ips spp.
colonization took place during year t at site i, i.e. ut,i = 1 if yt,i = 1 and ut,i = 0
otherwise. In consistency with the data, we assume that Ips spp. colonization
could only occur once at a given site and after colonization of a tree, Ips spp.
leaves the tree before the end of the flight season of the same year (before the
annual survey). Thus ut,i = 1 for at most one year t. Finally, let zt,i denote the
tree condition variable such that zt,i = 0 if the tree was alive and zt,i = 1 if the
tree was dead at time t and site i.

We let xt = (xt,1, . . . , xt,2715), yt = (yt,1, . . . , yt,2715), and zt = (zt,1, . . . , zt,2715)
denote the vectors of respectively the turpentine beetle colonization variables, the
Ips spp. colonization variables, and the tree condition variables at time t and all the
sites. Further, let ut = (ut,1, . . . , ut,2715) and wt = (xt, yt, zt). Since turpentine bee-
tle colonization typically precedes Ips spp. colonization, which in turn precedes the
death of a tree, we order the variables xt, yt, zt such that xt precedes yt and yt pre-
cedes zt. Thus, the data under study are ordered as (z−1, x0, y0, z0, . . . , x5, y5, z5),
while the unobserved data in the past are ordered as (. . . , x−2, y−2, z−2, x−1, y−1).

3.2 Temporal model

In Sections 3.3–3.5, we shall construct a set of spatial-temporal models to capture
the relations among the variables xt,i, yt,i, and zt,i, while accounting for spatial
and temporal dependence. Before specifying these details, it is useful to give a
brief description of the temporal process wt and how the likelihood factorizes.

In equations (1)–(3) below we naturally consider a sequential model construc-
tion such that for each time t, we specify the conditional distribution of xt first,
yt second, zt third given the relevant past. The detailed model descriptions (5),
(8), and (12) in Sections 3.3–3.5 imply the following conditional independence
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structure for the temporal process. Let [a|b] denote the conditional distribution
of a random component a given another random component b. For the turpentine
beetle colonization variables at time t,

[xt|(ws)s=t−1,t−2,...] ∼ [xt|xt−1, zt−1] (1)

depends on a parameter θ as specified in Section 3.3; for the Ips spp. beetle colo-
nization variables at time t,

[yt|xt, (ws)s=t−1,t−2,...] ∼ [yt|xt, yt−1, zt−1] (2)

depends on a parameter ψ (Section 3.4); for the tree condition variables at time t,

[zt|xt, yt, (ws)s=t−1,t−2,...] ∼ [zt|xt, yt, zt−1] (3)

depends on a parameter ϕ (Section 3.5). For the corresponding likelihood terms,
we write L(1)(θ) = L(1)(θ;xt|xt−1, zt−1), L

(2)(ψ) = L(2)(ψ; yt|xt, yt−1, zt−1), and
L(3)(ϕ) = L(3)(ϕ; zt|xt, yt, zt−1).

For statistical inference we condition on

e = (z−1, x0, y0)

since by (1)–(3), the remaining data

d = (z0, x1, y1, z1, . . . , x5, y5, z5)

are conditionally independent of the unobserved (. . . , x−2, y−2, z−2, x−1, y−1). We
let L(θ, ψ, ϕ) = L(θ, ψ, ϕ; d|e) denote the likelihood based on the conditional dis-
tribution of d given e. By (1)–(3), this factorizes into

L(θ, ψ, ϕ; d|e) = L(1)(θ)L(2)(ψ)L(3)(ϕ)

given by the likelihood terms for each type of data

L(1)(θ) =
5

∏

t=1

L
(1)
t (θ), L(2)(ϕ) =

5
∏

t=1

L
(2)
t (ϕ), L(3)(ψ) =

5
∏

t=0

L
(3)
t (ψ), (4)

where L
(1)
t (θ) = L

(1)
t (θ;xt|xt−1, zt−1), L

(2)
t (ψ) = L

(2)
t (ψ; yt|xt, yt−1, zt−1), and L

(3)
t (ϕ)

= L
(3)
t (ϕ; zt|xt, yt, zt−1) are specified at the end of Sections 3.3–3.5.
In Sections 3.3–3.5, our strategy is for each time, site, and type of data xt,i, yt,i,

or zt,i to specify a “local characteristic” which only depends on “local information”.
For example, by the local characteristic of yt,i, we mean the conditional distribution
of yt,i given the other yt,j , j 6= i and the previous history xt, (ws)s=t−1,t−2,.... We
express the local information with respect to the grid of tree locations and consider
for site i its first-, second-, . . . order neighbors which are the (up to) four nearest,
four second nearest, . . . sites to i.
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3.3 Likelihood based on turpentine beetle colonization

The cumulative number of turpentine beetles at time t and site i is assumed to
depend on local information such that

[xt,i|(xt,j)j 6=i, (ws)s=t−1,t−2,...] ∼
[

xt,i|xt−1,Nx
i
, zt−1,i

]

(5)

where xt−1,Nx
i

is the vector of variables xj with j ∈ Nx
i . Here Nx

i consists of i and
its neighbors up to the fifth order, and we assume that the conditional distribu-
tion of turpentine beetle colonization at time t depends only on turpentine beetle
colonization at time t − 1 and at sites in N x

i , since this neighborhood is fairly
large but is still interpretable biologically (see Section 5 for further details). Since
turpentine beetles colonize red pines during only one brief period per year, and a
tree can be colonized by multiple turpentine beetles, we assume conditional inde-
pendence among nearby sites within the same year. On the other hand, turpentine
beetles that colonize a tree in one spring tend to colonize nearby trees in the next
spring. Thus we build into the model a possible relation between turpentine beetle
colonization at time t and at time t− 1.

The local characteristic [xt,i|xt−1,Nx
i
, zt−1,i] is specified as follows. If the tree at

site i was dead at time t−1 (i.e. zt−1,i = 1), the local characteristic is deterministic
with xt,i = xt−1,i, since turpentine beetles will not colonize a dead tree. Turpentine
beetles could theoretically colonize a tree that dies from competitive thinning, i.e.,
a process in which the growth of neighboring trees blocks out necessary sunlight.
However, such events were rare in the stand, as the insects would likely colonize the
weakened tree in advance of tree death. Moreover, the diameter and subcortical
tissues of trees that have been crowded to death are frequently too thin to serve
as a suitable breeding substrate for this insect. Turpentine beetles could also
colonize a healthy tree that was killed suddenly, such as by a lightning strike or
during a wind storm. However, we did not find any visual evidence of lightning
(e.g., shredded bark, burn marks, or shattered limbs) or windthrow (other than
trees that had already been killed) in any of our annual surveys. Hence, focusing
on the colonization of live trees, if the tree at site i was alive at time t − 1 (i.e.
zt−1,i = 0), we assume that

[

xt,i − xt−1,i|xt−1,Nx
i
, zt−1,i = 0

]

∼ Poisson(λt,i)

where

log(λt,i) = θ0 + θ1

∑

j∈Nx
i

xt−1,j . (6)

Thus, given the past, the xt,i −xt−1,i with zt−1,i = 0 form a sample from a Poisson
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regression, so

L
(1)
t (θ) ∝

∏

i:zt−1,i=0

λ
xt,i−xt−1,i

t,i exp(−λt,i)

= exp





∑

i:zt−1,i=0

[

(xt,i − xt−1,i)

(

θ0 + θ1

∑

j∈Nx
i

xt−1,j

)

− exp

(

θ0 + θ1

∑

j∈Nx
i

xt−1,j

)]



 .

(7)

3.4 Likelihood based on Ips spp. colonization

The conditional dependence structure for whether colonization by Ips beetles has
occurred is assumed to be

[yt,i|xt, (yt,j)j 6=i, (ws)s=t−1,t−2,...] ∼
[

yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i, zt−1,i

]

. (8)

Thus we assume that the conditional distribution of Ips spp. colonization at time
t depends on turpentine beetle colonization at time t, Ips spp. colonization at sites
j ∈ N y

i at both time t − 1 and t, where N y
i consists of the first and second order

neighbors to i (note that N y
i does not include i). Since it is hypothesized that

turpentine beetles predispose red pines to colonization by Ips spp., we include in
the model a possible relation to the number of turpentine beetle pitch tubes on the
tree. Since Ips spp. attack different red pines 1–3 times per year and can overwinter
near the trees they have colonized, we assume relations among neighboring sites
for both time t and t − 1 and that a first- and second-order neighborhood would
suffice to capture spatial dependence in this study.

The local characteristic [yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i, zt−1,i] is specified as fol-

lows. If the tree at site i was dead at time t − 1 (i.e. zt−1,i = 1) or was colonized
by Ips spp. at previous times (i.e., yt−1,i = 1 or 2), the local characteristic is de-
terministic with yt,i = 0 or 2, since Ips spp. will not colonize a dead tree. Ips

spp. could theoretically colonize a tree that dies from competitive thinning, i.e.,
overshadowing and crowding by more dominant neighbors, although in practice
the insects would likely find and colonize a weakened tree in advance of tree death,
and would colonize only if the subcortical tissue was sufficiently thick. Such trees
also contribute little to the ecological dynamics of the system, as they are com-
monly colonized by competing species of insects against which Ips spp. fare poorly.
We also disregard the possibility that Ips spp. colonize lightning strikes or recent
windthrow of live trees, due to the absence of such events observed during our
annual surveys. Hence, focusing on colonization of live trees, if the tree at site i
was alive at time t− 1 (i.e. zt−1,i = 0) and was not colonized previously (yt,i = 0),
the local characteristic is assumed to be a logistic regression,

[

yt,i|xt,i, ut,N
y
i
, ut−1,N

y
i
, yt−1,i = 0, zt−1,i = 0

]

∼ Bernoulli(pt,i) (9)
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where

logit(pt,i) = ψ0 + ψ1xt,i + ψ2

∑

j∈N
y
i

ut−1,j + ψ3

∑

j∈N
y
i

ut,j . (10)

Since ut,i = yt,i in (9), by the Hammersley-Clifford theorem, L
(2)
t (ψ) is equal to

exp
(

∑

i:yt−1,i=zt−1,i=0

[

ψ0 + ψ1xt,i + ψ2

∑

j∈N
y
i
ut−1,j

]

ut,i + ψ3

∑

i<j: j∈N
y
i
ut,iut,j

)

c(xt, yt−1, zt−1, ψ)
(11)

where c(xt, yt−1, zt−1, ψ) is a normalizing constant (note that j ∈ N y
i ⇔ i ∈ N y

j ).
In other words, given the past, the ut,i with yt,i = zt,i = 0 form an autologistic
model (Besag, 1974).

3.5 Likelihood based on tree condition

The conditional dependence structure for tree condition is assumed to be

[zt,i|xt, yt, (zt,j)j 6=i, (ws)s=t−1,t−2,...] ∼
[

zt,i|xt,i, ut,i, zt−1,Nz
i
, zt−1,i

]

(12)

where the neighborhood N z
i consists of the neighbors up to the fifth order. If the

tree at site i was dead at time t − 1 (i.e. zt−1,i = 1), the local characteristic is
deterministic with zt,i = 1, because a dead tree remains dead. But if the tree at
site i was alive at time t− 1 (i.e. zt−1,i = 0), the local characteristic is assumed to
be a logistic regression,

[

zt,i|xt,i, ut,i, zt−1,Nz
i
, zt−1,i = 0

]

∼ Bernoulli(qt,i)

where

logit(qt,i) = ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i

zt−1,j . (13)

That is, mortality rate of a tree depends on both turpentine beetle colonization
and Ips spp. colonization. The additional term involving the tree condition at
time t − 1 is a way of accounting for any potential spatial dependence. Again
we consider a fairly large neighborhood that consists of neighbors up to the fifth
order. Conditional on the past, the zt,i with zt−1,i = 0 form a sample from a logistic
regressions, so

L
(3)
t (ϕ) =

∏

i:zt−1,i=0

exp(zt,ilogit(qt,i))

1 + exp(logit(qt,i))

=
∏

i:zt−1,i=0

exp(zt,i(ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i
zt−1,j))

1 + exp(ϕ0 + ϕ1xt,i + ϕ2ut,i + ϕ3

∑

j∈Nz
i
zt−1,j)

. (14)
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4 Bayesian model and posterior simulations

We assume independent improper uniform priors

p(θ) ∝ 1, θ ∈ R
2; p(ψ) ∝ 1, ψ ∈ R

4; p(ϕ) ∝ 1, ϕ ∈ R
4.

Thus θ, ψ, ϕ are a posterori independent with densities

π(θ) ∝ L(1)(θ), θ ∈ R
2; π(ψ) ∝ L(2)(ψ), ψ ∈ R

4; π(ϕ) ∝ L(3)(ϕ), ϕ ∈ R
4.

(15)
For a discussion of posterior properity, see Appendix A. For the remaining discus-
sion of MCMC simulations, we assume the reader is familiar with MCMC methods
(e.g. Robert and Casella (2004)).

For turpentine beetles, we will simulate from the marginal posterior distribu-
tion of θ using a Metropolis within Gibbs algorithm, where we alternate between
updating θ0 and θ1. Since the full conditional for λ0 = exp(θ0) is a Gamma
distribution with shape parameter

∑

t,i(xt,i − xt−1,i) and inverse scale parameter
∑

t,i exp(θ1

∑

j∈Nx
i
xt−1,j), where in both cases the sum

∑

t,i is over those t, i with
zt−1,i = yt−1,i = 0, we use a Gibbs update for this component. The full condi-
tional for the other parameter θ1 is not a standard distribution, so here we use a
Metropolis random walk algorithm with a normal proposal distribution, cf. Robert
and Casella (2004).

For Ips spp., suppose we use a Metropolis-Hastings algorithm to simulate from
the marginal posterior distribution of ψ. Let L

(2)
unnorm(ψ;u) denote L(2) in (4) but

without the unknown normalizing constant

c(ψ) =
5

∏

t=1

c(xt, yt−1, zt−1, ψ)

from (11); here u denotes the vector of all observed ut,i values. If ψ is the current
and ψ′ is the proposed parameter values in the Metropolis-Hastings algorithm,
then the Hastings ratio depends on the ratio c(ψ′)/c(ψ) of unknown normalizing
constants. This can be approximated by path sampling (e.g. Gelman and Meng
(1998)),

log
c(ψ′)

c(ψ)
≈

1

n

n
∑

k=1

[

d

ds
logL(2)

unnorm(ψ(sk); υk)

]

. (16)

Here we let s1, . . . , sn be independent and uniformly distributed on [0, 1], and
ψ(s) = sψ′ + (1 − s)ψ, 0 ≤ s ≤ 1 is a line segment. Further, each υk is a perfect
simulation of u = (u1, . . . , u5) where ut given the past follows the autologistic model
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(11) with parameter ψ(sk) (Propp and Wilson, 1996; Møller, 1999). Furthermore,
given s1, . . . , sn, the perfect simulations υ1, . . . , υn are independent.

We use a Metropolis random walk algorithm with independent normal proposal
distributions for ψ0, ψ1, ψ2, ψ3, where we propose to change all four parameters at
the same time, since the main part of the running time of the algorithm is by far
used in generating the perfect simulations, and this is the same amount of work
whether we are changing one or all four parameters.

In the case of ϕ, we use a Metropolis within Gibbs algorithm, where we alter-
nate between simulating from the marginal posterior distribution of ϕ0, ϕ1, ϕ2, ϕ3,
respectively. Neither of these parameters have standard distributions, so for each
parameter we use a Metropolis random walk update with a normally distributed
proposal.

When running the Metropolis random walk algorithm for either θ1, ψ, ϕ0, ϕ1, ϕ2,
or ϕ3, the standard deviation of the normal proposal distribution is chosen to reach
an average acceptance probability about 0.3 (Roberts et al., 1997).

5 Statistical inference and discussion of the eco-

logical questions

5.1 Posterior distributions of the model parameters

For inference of the parameters θ in the turpentine beetle colonization model,
Figure 2 gives the posterior distributions based on an MCMC run length of 100,000
with a burn-in length of 1,000. The results suggest that there is a positive relation
between the new turpentine beetle colonization and the number of turpentine
beetle tubes in the previous year, at not only the same site, but also the sites that
are up to the fifth-order neighbors. That is, the more turpentine beetles there were
in the previous year on a tree and its neighboring trees, the more new colonization
can be expected to occur on this tree in the current year. Here the extent of
local temporal dependence is captured by a 1-year lag and that of local spatial
dependence by about 5.14 m, which is the distance between a fifth-order neighbor
and the site of a tree. We have also fitted a model that has one term for the
zero-, first-, second-order neighbors and another term for the third- to fifth-order
neighbors. The results there (not shown) suggest that the regression coefficients for
the two types of neighborhoods are similar and thus we combine all the neighbors
up to the fifth order. This phenomenon is consistent with a hypothesis in which
turpentine beetles colonize trees that are being slowly weakened by the spread of a
root fungus, such as L. terebrantis or L. procerum. These fungi are introduced to
trees by the beetles and spread via root grafts at a rate of 5m per year, according
to our best estimates based on root excavations and fungal isolations (Klepzig
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et al., 1991; Erbilgin and Raffa, 2002). This hypothesis is consistent with the work
of Erbilgin and Raffa (2003), who found that the probability of tree death falls
below 50% at a distance of 5 m from the outer edge of the pocket margin.

Figure 2: Posterior distribution of (a) θ0; (b) θ1 in the turpentine beetle coloniza-
tion model.
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For inference of the parameters ψ in the Ips spp. colonization model, Figure 3
gives the posterior distributions based on an MCMC run length of 60,000 with a
burn-in length of 1,000. For the approximation (16), we use only n = 10 perfect
simulations, which seems to give a reasonable approximation of the normalizing
constant ratio. The results suggest that there is a positive relation between the Ips

spp. colonization in the current year and the number of turpentine beetle tubes in
the same year at the same site, Ips spp. colonization in the previous year at the
neighboring sites (excluding the same site), and Ips spp. colonization in the current
year at the neighboring sites (excluding the same site), up to the second-order
neighbors. In other words, the more turpentine beetles there are on a tree, the more
likely that the tree will be colonized by Ips spp. Thus there is strong evidence that
turpentine beetles pre-dispose trees to colonization by Ips spp. Moreover, there
is clear spatial and temporal dependence in the Ips spp. colonization. The more
trees in the neighborhood that were colonized by Ips spp. in the previous year, the
more likely that the tree is colonized by Ips spp. in the current year. Similarly the
more trees in the neighborhood that are colonized by Ips spp. in the current year,
the more likely that the tree is colonized by Ips spp. in the current year. Here
the extent of local temporal dependence is captured by a 1-year lag and that of
local spatial dependence by about 2.07 m, which is the distance between a second-
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order neighbor and the site of the tree. Concentration of Ips spp. attacks among
nearby trees may occur for three reasons, none of which are mutually exclusive.
First, insect brood emerging from a previously colonized tree may preferentially
colonize nearby trees. This may occur, for example, if brood adults from late
fall overwinter in the duff around the base of their brood tree, and then emerges
to colonize nearby trees in the spring. Although little is known about relations
between brood tree and overwintering locations, inclement weather and predators
exert substantial mortality on bark beetles engaging in host seeking behaviors
(Berryman, 1979). Second, localized attacks may occur when high numbers of bark
beetles are attracted by aggregation pheromones of a successful attack and begin
to attack nearby trees, a phenomena known as “switching” (Geiszler et al., 1980).
Third, turpentine beetles, and/or fungal root pathogens, may weaken trees in local
neighborhoods and make them more susceptible to attacks and colonizations by
Ips spp. (Owen, 1985).

Figure 3: Posterior distribution of (a) ψ0; (b) ψ1; (c) ψ2; (d) ψ3 in the Ips spp.
colonization model.
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For inference of the parameters ϕ in the tree condition model, Figure 4 gives
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the posterior distributions based on an MCMC run length of 100,000 with a burn-
in length of 1,000. The results suggest that there is no evidence of a direct relation
between a tree’s condition and the number of its turpentine beetle tubes, but
there is a strong positive relation between Ips spp. colonization and subsequent
tree death. That is, the number of turpentine beetles does not directly influence
the mortality of tree, but there is a very large increase in the probability that a
tree dies after colonized by Ips spp. in the same year. This is not surprising, as
trees may survive colonization of the root collar by turpentine beetles for more
than one year. However, Ips spp. utilize aggregation pheromones to attract high
numbers of conspecifics that quickly colonize all available subcortical tissue. The
water-conducting tissues are mined by the developing larvae, and the tree dies soon
thereafter. Furthermore it appears necessary to account for the spatial-temporal
dependence among the tree conditions.

Figure 4: Posterior distribution of (a) ϕ0; (b) ϕ1; (c) ϕ2; (d) ϕ3 in the tree condition
model.
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5.2 Empirical and predictive rates of mortality and Ips

spp. colonization

In this and the next subsection we check important aspects of the model that
correspond to the ecological questions of interest, particularly the relations among
turpentine beetle colonization, Ips spp. colonization, and tree conditions (see Sec-
tion 1). The model checking is based on posterior predictive distributions obtained
by a Monte Carlo sample (x(s), u(s), z(s)), s = 1, . . . , S where the Monte Carlo
sample size is chosen to be S = 100. More precisely, since inference is performed
conditional on e, given a posterior simulation (θ(s), ψ(s), ϕ(s)), we simulate “new
data” (x(s), u(s), z(s)) from the conditional distribution of d given e as specified
in Section 3. This is done using the sequential model construction in Section 3,
where simulation of xt and zt given their relevant past is straightforward (see Sec-
tions 3.3 and 3.5), while we use perfect simulation for yt given the relevant past

(see Section 3.4). Note that x
(s)
0 = x0, y

(s)
0 = y0, and z

(s)
−1 = z−1. The samples

(θ(s), ψ(s), ϕ(s)), s = 1, . . . , S are chosen such that they are effectively independent
posterior simulations. Moreover, we let (x(0), y(0), z(0)) denote the data.

In this section, we consider the posterior predictive distribution of various
statistics related to mortality rates of trees and rates of Ips spp. colonization.
First, define

I0,0 = {i : z−1,i = 0, x0,i = 0, u0,i = 0}, I0,1 = {i : z−1,i = 0, x0,i = 0, u0,i = 1},

I1,0 = {i : z−1,i = 0, x0,i > 0, u0,i = 0}, I1,1 = {i : z−1,i = 0, x0,i > 0, u0,i = 1},

and

p
(s)
k,l (t) =

1

|Ik,l|

∑

i∈Ik,l

1[z
(s)
t,i = 1], s = 0, . . . , S, t = 0, . . . , 5, k, l = 0, 1

where |A| denotes the cardinality of a finite set A. Then p
(0)
0,0(t) is the observed

tree mortality rate of trees, which were alive at time −1 and had no bark beetle
colonization by time 0; p

(0)
0,1(t) is the observed mortality rate of trees that were

colonized by Ips spp.; p
(0)
1,0(t) is the observed mortality rate of trees that were

colonized by turpentine beetles; and p
(0)
1,1(t) is the observed mortality rate of trees

that were colonized by both turpentine beetles and Ips spp. Figure 5 shows for each
value of (k, l) = (0, 0), (0, 1), (1, 0) and t = 0, . . . , 5 the observed mortality rate

p
(0)
k,l (t) and the 2.5th, 50th, 97.5th percentiles of the posterior predictive distribution

obtained from p
(s)
k,l (t), s = 1, . . . , S. Further, for the case (k, l) = (1, 1) (not shown

in Figure 5), the 2.5th, 50th, 97.5th percentiles for the mortality rates are for all
times t = 0, . . . , 5 given by 0.50, 1.00, and 1.00, respectively, and the corresponding
observed values are all 1.00. For all values of (k, l), the observed rates lie in the
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centers of the corresponding predictive distributions. Thus overall there is no
evidence against our model. Compared to p

(0)
0,0(t), which may be interpreted as

a kind of observed baseline mortality rate, p
(0)
0,1(t) increased greatly and the large

increase occurred within the same year of Ips spp. colonization; p
(0)
1,0(t) increased

at time 1 and the increase leveled off at time 2; and p
(0)
1,1(t) is nearly 100% within

the same year of the colonization. The predictive distributions show a similar
behavior. The fact that deaths of trees occur in both the first and the second year
after turpentine beetle colonization gives further evidence that turpentine beetles
predispose a tree to death rather than killing a tree directly. The result here
also supports the theory that Ips spp., unlike turpentine beetles, are the ultimate
mortality agents of red pines.

Figure 5: Central 95% prediction intervals and medians (indicated by bars) for
the tree mortality rates over time t = 0, . . . , 5 among those trees that were alive
at t = −1 and, (a) were not colonized (xi,0 = ui,0 = 0), (b) were colonized
by turpentine beetles (xi,0 > 0, ui,0 = 0), and (c) were colonized by Ips spp.
(xi,0 = 0, ui,0 = 1) at t = 0. The corresponding observed tree mortality rates are
indicated by crosses. Note the different scales on the y-axes.
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Next, let
Ik = {i : z−1,i = 0, x0,i = k}, k = 0, 1,

denote the collection of sites where a tree was alive at time −1 and was (k = 1)
or was not (k = 0) colonized by turpentine beetles by time 0, and let

p
(s)
k (t) =

1

|Ik|

∑

i∈Ik

1[u
(s)
t,i = 1], s = 0, . . . , S, t = 0, . . . , 5, k = 0, 1.

Then p
(0)
k (t) is the observed rate of Ips spp. colonization of a tree from Ik by time

t = 0, . . . , 5. Figure 6 is similar to Figure 5 but concerns p
(s)
k (t) for k = 0, 1 and
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t = 0, . . . , 5 Again there is no evidence against our model. Compared to p
(0)
0 (t),

the rates of Ips spp. colonization p
(0)
1 (t) are much higher and leveled off after 2–3

years, which support the theory that turpentine beetles pre-dispose the trees to
subsequent colonization and thus kill by Ips spp.

Figure 6: Central 95% prediction intervals and medians (indicated by bars) for the
rate of Ips spp. colonization over time t = 0, . . . , 5 among those trees that were
alive at t = −1 and (a) were not colonized by turpentine beetles (xi,0 = 0) or (b)
were colonized by turpentine beetles (xi,0 > 0). The corresponding observed rate
of Ips spp. colonization are indicated by crosses. Note the different scales on the
y-axes.
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5.3 Checking further aspects of the model

To check whether the model captures the relation between turpentine beetle col-
onization and Ips spp. colonization and between colonization of Ips spp. and tree
mortality, we consider

r(s)
x,u =

5
∑

t=1

∑

i

(x
(s)
t,i − x

(s)
t−1,i)u

(s)
t,i , r(s)

u,z =
5

∑

t=1

∑

i

u
(s)
t,i z

(s)
t,i , s = 0, . . . , S.

Here r
(0)
x,u summarizes the observed relation between new colonization of turpentine

beetles and new colonization of Ips spp. in the same year and at the same site, and
r
(0)
u,z summarizes the observed occurrences of Ips spp. colonization that is involved
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in mortality of trees. Furthermore, for spatial dependence structure, we consider

v(s)
x,x(δ) =

∑

i,j:d(i,j)∈N(δ)

1[x
(s)
5,i > 0, x

(s)
5,j > 0], s = 0, . . . , S, δ > 0,

v(s)
y,y(δ) =

∑

i,j:d(i,j)∈N(δ)

1[y
(s)
5,i > 0, y

(s)
5,j > 0], s = 0, . . . , S, δ > 0,

v(s)
z,z(δ) =

∑

i,j:d(i,j)∈N(δ)

1[z
(s)
5,i = 1, z

(s)
5,j = 1], s = 0, . . . , S, δ > 0,

where d(i, j) denotes the Euclidean distance between sites i and j, and N(δ) = (δ−

1, δ] is a half-open interval. That is, v
(0)
x,x(δ) (v

(0)
y,y(δ), v

(0)
z,z(δ)) captures the observed

spatial relation between turpentine beetle colonization (Ips spp. colonization, tree
mortality) at two sites that are at least δ − 1 and at most δ apart in distance.
Here we focus on cumulative effect of all three variables for simplicity. Finally, for
temporal dependence structure, we consider

w(s)
x (t) =

1

N

N
∑

i=1

1[x
(s)
t,i = 0],

w(s)
y (t) =

1

N

N
∑

i=1

1[y
(s)
t,i = 0],

w(s)
z (t) =

1

N

N
∑

i=1

1[z
(s)
t,i = 0],

where s = 0, . . . , S, t = 0, . . . , 5 for wx(t) and wy(t), while t = −1, . . . , 5 for wz(t),

and N = 2715. That is, w
(0)
x (t) (w

(0)
y (t), w

(0)
z (t)) is the observed proportion of trees

that are not colonized by turpentine beetles (that are not colonized by Ips spp.,
that are alive) by time t.

Figures 7 and 8 are similar to Figure 5 but concern the statistics above except
r
(s)
x,u and r

(s)
u,z, where the 2.5%, 50%, 97.5% percentiles are 14.0, 28.0, 149.0 for

r
(s)
x,u, and 225.0, 314.5, 409.0 for r

(s)
u,z. Thus the observed values r

(0)
x,u = 58 and

r
(0)
u,z = 269 fall well within the central 95% prediction intervals. Our model also

adequately captures the spatial dependence for turpentine beetle colonization at all
lag distances (see v

(s)
x,x(δ) in Figure 7). For Ips spp. colonization and tree condition

(see v
(s)
y,y(δ) and v

(s)
z,z(δ) in Figure 7), the spatial dependence is well captured by the

model when the lag distances are small. The observed values tend to be larger
than what the model predicts, which may be a result of the large cluster of trees
that were colonized by Ips spp. and/or were dead in the southeastern part of the
plantation. Our model furthermore adequately captures the temporal dependence
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for Ips spp. colonization and tree condition at all time points (see w
(s)
y (t) and w

(s)
z (t)

in Figure 8). But for turpentine beetle colonization (see w
(s)
x (t) in Figure 8), the

observed values tend to be slightly larger than what the model predicts.

Figure 7: Central 95% prediction intervals and medians (indicated by bars) for

(a) v
(s)
x,x(δ), (b) v

(s)
y,y(δ), and (c) v

(s)
z,z(δ). The corresponding observed values are

indicated by crosses. Note the different scales on the y-axes.
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6 Concluding remarks

In this article, we have examined the effect of two bark beetle groups on the mor-
tality of red pine trees in a Wisconsin plantation. We have constructed spatial-
temporal statistical models to quantify the relations among turpentine beetle colo-
nization, Ips spp. colonization, and mortality of red pine trees, while accounting for
correlation across space and over time. For statistical inference, we have adopted a
Bayesian hierarchical model and devised MCMC algorithms for obtaining the pos-
terior distributions of model parameters. Based on the results in Sections 5.2–5.3,
our impression is that the spatial-temporal model in Section 3 has adequately cap-
tured the relations among the three variables, turpentine beetle colonization, Ips

spp. colonization, and tree condition. Moreover, our model has often though not
always captured adequately the spatial and temporal structure. The data anal-
ysis in Section 5 suggests that turpentine beetle colonization is associated with
higher likelihood of Ips spp. colonization and Ips spp. colonization is associated
with higher likelihood of red pine tree mortality, whereas there is no direct asso-
ciation between turpentine beetle colonization and red pine tree mortality. There
is strong evidence that turpentine beetle colonization does not kill a red pine tree
directly, but rather predisposes the tree to subsequent colonization by Ips spp.
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Figure 8: Central 95% prediction intervals and medians (indicated by bars) for

(a) w
(s)
x (t), (b) w

(s)
y (t), and (c) w

(s)
z (t). The corresponding observed values are

indicated by crosses. Note the different scales on the y-axes.
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The evidence is also strong that Ips spp. are the ultimate mortality agents of red
pine trees. The modeling approach here is of general utility to systems in which
interactions among several species affect overall dynamics, but likewise generate
spatial-temporal patterns that can complicate dissection of underlying processes.
Such systems are quite likely common in forest ecosystems. Employment of this
approach can help managers predict insect and pathogen dynamics as well as direct
preventative and remedial measures against inciting rather than merely ultimate
agents affecting forest health.

Appendix A

From a practical viewpoint, we would expect our MCMC runs to diverge if an
improper posterior distribution had been specified. From a theoretical viewpoint,
since the three likelihood functions in (15) are log concave, properity of the poste-
riors with uniform improper priors is equivalent to the existence of the maximum
likelihood estimate (MLE) based on L(1)(θ), L(2)(ψ), and L(3)(ϕ), respectively.
This can be established as sketched below.

The likelihood functions L(1)(θ), L(2)(ψ), L(3)(ϕ) in (7), (11), (14) are products

of log concave functions L
(1)
t (θ), L

(2)
t (ψ), L

(3)
t (ϕ), respectively. Therefore, to verify

the existence of the MLE based on L(1)(θ), L(2)(ψ), L(3)(ϕ), it suffices for each

t = 1, . . . , 5 to verify the existence of the MLE based on L
(1)
t (θ), L

(2)
t (ψ), L

(3)
t (ϕ),

respectively. This can easily be checked in the cases of the Poisson regression
L

(1)
t (θ) based on the data xt and the logistic regression L(3)(ϕ) based on the data
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zt, either by theoretical results (Barndorff-Nielsen, 1978; Jacobsen, 1989) or using

software for generalized linear models. Moreover, by (11), L
(2)
t (ψ) is of regular

exponential family form with canonical statistic

s
(2)
t (ut) =

∑

i:yt−1,i=zt−1,i=0



ut,i, xt,iut,i,
∑

j∈N
y
i

ut−1,jut,i,
∑

j: j∈N
y
i

ut,iut,j



 .

Consequently, by a well-known result from exponential family theory (Barndorff-

Nielsen, 1978), the MLE of ψ based on the data ut exists if s
(2)
t (ut) belongs to the

interior of the convex hull of its support. This condition seems less straightforward
to check, so alternatively, MCMC methods for finding the MLE may be applied
(Geyer and Thompson, 1992).
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