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THE FOUR COLOR THEOREM.

Every planar graph is 4-colorable.

Graphs have vertices and edges.

A graph is planar if it can be drawn in the plane without

crossings. We want to color so that adjacent vertices

receive different colors.
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HISTORY
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Francis Guthrie

• In 1852 colored the map of England with four colors

• asked brother Frederic whether true for all maps

• Frederic communicated the question to de Morgan
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A. de Morgan

• Leading mathematician in London at that time

• Thought seriously about the problem
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Arthur Cayley

• First printed reference in 1878
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Alfred Kempe

• Published the first “proof” in 1879

• Proof refuted by Heawood in 1890

• Kempe’s ideas used in the ultimate solution
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Percy Heawood

• Refuted Kempe’s proof

• Studied colorings of graphs on surfaces
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THE TORUS

Heawood’s formula: (7 +
√

48g + 1)/2 colors suffice
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Peter Guthrie Tait

• Published a “proof” in 1880

• Proof refuted by Petersen in 1891 and

• definitely by Tutte in 1954

• Tait’s proof gives an equivalent formulation of the 4CT
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Tutte’s example
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REDUCIBILITY

developed by Franklin, Bernhard and Bernhard, Reynolds,

Winn, Ore and Stemple, Ore, Stromquist, Meyer, Tutte,

Whitney, Allaire, Swart, Düre, Heesch, Miehe
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Heinrich Heesh

Invented discharging
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Heinrich Heesh

Invented discharging

Jean Meyer

Developed a nice discharging procedure
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Kenneth Appel Wolfgang Haken

• Published a proof in 1976
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Kenneth Appel Wolfgang Haken

• Published a proof in 1976
• Proof uses computers
• Proof is extremely complicated
• Scepticism remains
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EQUIVALENT FORMULATIONS
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The cross-product is not associative, and so

v1 × v2 × · · · × vn (1)

is not well-defined if n > 2. If we put in enough brackets

to make it well-defined, we get a bracketing.
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The cross-product is not associative, and so

v1 × v2 × · · · × vn (1)

is not well-defined if n > 2. If we put in enough brackets

to make it well-defined, we get a bracketing.

EXAMPLE ((v1 × v2)× (v3 × v4))× v5.

THEOREM (Kauffman) For every two bracketings of (1)

there exists an assignment v1, . . . , vn ∈ {i, j,k} such that

the evaluations of the two bracketings are equal and

nonzero.

THEOREM (Kauffman) The above theorem is equivalent

to the 4CT.
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THEOREM (Matiyasevich) There exist linear functions

Ak, Bk, Ck, Dk (k = 1, .., 986) of 21 variables such that

the 4CT is equivalent to the assertion that for every two

integers n,m there exist integers c1, . . . , c20 such that

986∏
k=1

(
Ak(m, c1, .., c20) + 7nBk(m, c1, .., c20)
Ck(m, c1, .., c20) + 7nDk(m, c1, .., c20)

)
is not divisible by 7.



26

“While it has sometimes been said that the four color

problem is an isolated problem in mathematics, we have

found that just the opposite is the case. The four color

problem . . . is central to the intersection of algebra,

topology, and statistical mechanics.”

L. Kauffman and H. Saleur

Comm. Math. Physics
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NEW PROOF
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Appel and Haken, 1986:

“This leaves the reader to face 50 pages containing text

and diagrams, 85 pages filled with almost 2500

additional diagrams, and 400 microfiche pages that

contain further diagrams and thousands of individual

verifications of claims made in the 24 lemmas in the

main sections of text. In addition, the reader is told that

certain facts have been verified with the use of about

twelve hundred hours of computer time and would be

extremely time-consuming to verify by hand. The papers

are somewhat intimidating due to their style and length

and few mathematicians have read them in any detail.”
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• To my knowledge, no mathematician verified the

Appel-Haken proof
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• To my knowledge, no mathematician verified the

Appel-Haken proof

• Ulrich Schmidt verified 40% of Part I of A&H proof

• Schmidt and others found errors that were

subsequently corrected by Appel and Haken
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NEW PROOF

Robertson, Sanders, Seymour, Thomas, published in

1997

• Still computer assisted

• Article has 42 pages

• Programs available for independent verification

• Independent programs written by Gašper Fijavž

COROLLARY A quadratic algorithm to 4-color planar

graphs.
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OUTLINE OF PROOF

Let G be a counterexample with |V (G)| minimum. It

follows that G is an internally 6-connected triangulation.

A configuration:
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We exhibit a set U of 633 configurations such that

THEOREM 1 No member of U “appears” in a minimal

counterexample to the 4CT

THEOREM 2 For every internally 6-connected

triangulation T , some member of U “appears” in T .

A configuration K appears in a triangulation T if K is

an induced subgraph of T and for every vertex of K its

label equals its degree in T .
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A SUBSET OF U
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ABOUT THEOREM 1

THEOREM 1 No member of U appears in a minimal

counterexample to the 4CT

PROOF Suppose one of them does.
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ABOUT THEOREM 1

THEOREM 1 No member of U appears in a minimal

counterexample to the 4CT

PROOF Suppose one of them does.

REMINDER A configuration K appears in a

triangulation T if K is an induced subgraph of T and for

every vertex of K its label equals its degree in T .
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This gives a coloring of the entire graph, a contradiction.
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This procedure can be automated and carried out on a

computer. In fact, it must be carried out on a computer,

because for configurations with rings of size 14 there are

almost 200, 000 colorings to consider.
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THEOREM 2 For every internally 6-connected

triangulation T , some member of U appears in T .

PROOF In a triangulation e = 3n− 6 and so

d1 + d2 + · · ·+ dn = 2e = 6n− 12
or

(6− d1) + (6− d2) + · · ·+ (6− dn) = 12.

Initially, a vertex of degree d will receive a charge of

10(6− d). Thus the sum of the charges is 120. Charges

will be redistributed according to certain rules, but the

total sum will remain the same. Thus there is a vertex v

of positive charge. We show that a member of U appears

in the second neighborhood of v.
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initial charge of v is 10(6−deg(v))
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initial charge of v is 10(6−deg(v))
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These are the basic discharging rules. In addition, we

need 25 “secondary” rules. The secondary rules have no

geometric interpretation, and were designed by trial and

error.
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The final charge only depends on the second

neighborhood of a vertex:
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The final charge only depends on the second

neighborhood of a vertex:

The program examines all possible second neighborhoods.
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IS THIS REALLY A PROOF?

PROGRAM → COMPILER → HARDWARE →
RESULTS
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BEYOND THE 4CT
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BEYOND THE 4CT

Uniquely 4-colorable planar graphs:

THEOREM (Fowler) Every planar graph has at least two

4-colorings, unless it belongs to the above family.
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SUMMARY

• The 4CT inspired a lot of theory and problems

• Over two dozen equivalent formulations (in terms of

vector cross products, Lie algebras, divisibility,

Temperley-Lieb algebras,...)

• Proof is computer-assisted

• Conjectured generalizations

• See August 1998 Notices of the AMS for a survey


