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Operations on vectors:
Vectoraddition: if v and w are vectors then v+ w is a vector.

(vo,v1, ..., vp—1)+(wo,wi,...,wy_1) = (vo+wo,vi+wy,...,Vp_1FtwWy_1).

Scalarmultiplication: if v is a vector and a is a number (scalar)
then av is a vector.
a(vo, v1,---,vp—1) = (avg,avy,...,av,_1).

Usual algebraic laws are valid for these operations.
E.g. lv=v og Ov=0.



If vo,vy,...,vq_1 are vectors and aqg,a1,...,a,—1 are numbers
then the expression

aovo -+ aivi + ...+ an—1Vn—1

is called a linear combination of vg,vy,...,vp_1.

The set of vectors that are can be written as linear combina-

tions of vg,vy,...,vp_1 IS called the set (or subspace) spanned
by vg,V1,...,Vp_1-
If one of the n vectors vg,vy,...,vp_1 Can be written as a linear

combination of the other n—1 vectors then the vectors are said to
be linearly dependent. Otherwise they are linearly independent.



The dotproduct of two vectors v = (vg,v1,...,v,—1) and
w = (wg,w1,...,w,_1) IS defined by

V-W =wvowg+viwy + ... +vp_1WyH_1-

The dotproduct also satisfies
v-w = ||v]| ||w|[cos6

where 6 is the angle between the vectors.

v and w are orthogonal if v-w = 0.

The length of vis ||v|| =V -v = \/vg—l—v%—l—...—l—v%_l.



The dotprodduct satisfies the following laws:

e (Uu+v) wW=u-w+v-w

e a(v-w) = (av)w = v-(aw)

e v-v>0 and

e v-v=0if and only if v=0.



The length of vectors satisfies:

e |[v]||>0 and |[|v||=0 if and only if v =0.

o [lav]] = |a] [[v]

o [[v+wi| <|[v[l + [lwll.

These laws are also satisfied by the Manhattan norm

[IVlley = lvol + |oa] 4. + [up—1]

where v = (’Uo, V1, - - ,’Un_l).



Normalizing a vector v # 0:

v has the same direction as v and it has length 1.

The projection of a vector v on a vector w =0 er

VW
w = (V- -W)W.

ProjwVv =
[|w||2

The vector
pPerpwv = v — pProjwVv

is orthogonal to w.



A set of vectors {wg,wy,...,Wy_1} iS said to be orthonormal if
the vectors are orthogonal and have length 1.

Gram-Schmidt orthogonalization of linearly independent vec-
tors vg, vy, ..., Vp_1:

® Wg — Vo

® Wi =Vy — DFO_]WOV1

® Wo = Vg — PrOjw,V2 — PrOjw, V2



In general:

W; = Vi — DFO_]WOVi — .. — projwi_lvi.

Finally compute

A

W0, W1,..-,Wpn_1-

T hese vectors are orthonormal.
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u,v,w : three linearly independent vectors in R3.
Use right hand:
index finger points in direction u

middle finger points in direction v.

Then we say that u,v,w is right-handed if w is on the same side
of the plane spanned by u,v as the thumb.

Otherwise u, v, w is left-handed.

Example: i,j,k is right-handed.



Let v = ('Ux,'Uy,'Uz) and w = (wx,w'y,wz).

Then the cross product is defined by

V XW = (’UyU)z — wyvz, VzWyx — WzVg, 'Ugjwy — wg[j’Uy)

v X W IS the vector orthogonal to v and w, satisfying that:
v,wW,v X W is right-handed and
v x wi| = ||v]| |[wl]sin®,
where 6 is the angle between v and w.

||v x w|| is the area of a parallelogram where v and w are two
edges.



Vector triple product:

If v and w are two vectors in R3 (non-parallel) then

W, VW, WX (VXW)

IS a right-handed orthogonal basis.
(Alternative to Gram-Schmidt.)



Scalar triple product:

u(vxw)=w-(uxv) =v(w xu)

IS a number which is

e positive if u,v,w is right-handed,

e negative if u,v,w is left-handed,

e O if u,v,w are linearly dependent.

lu-(v x w)| is the volume (rumfang) of a parallelopiped where
u,v,w are three edges.



If V is a set of vectors in R" satisfying

eveVandweV=v4+weV.

evclVandceR=cveV.

the we say that V is a subspace of R".

If by,...,by are linearly independent vectors spanning V then we
say that {by,...,by} is a basis for V.
d is then the dimensionen of V.

Subspace of dimension 0: {0}
Subspace of dimension 1: line through 0.
Subspace of dimension 2: plane through O.



Affine space of dimension 1: line (not through {0}).
Affine space of dimension 2: plan (not through {0}).

An affine space consists of points on the form

O+v, vevyv

where V is a subspace and O is a fixed point.



Py and P;: two different points.
There is a unique line passing through both points. It consists
of points on the form

tPh+ (1 —-t)P;, teR.

The line segment between Py and P; consists of points

tPhb+ (1 —t)P;, hvor0<t<1.

A set of points is said to be convex if for every pair of points
Py, P1 in the set, the line segment between them is also contained
in the set.



Let Pp,..., P, be points.
T he expression

aOPO—I-a1P1—|-...—|-akPk, Whel’eao—|-a1—|-...—|-ak=1

is called an affine combination of Fy,..., P..

The set of points that can be written as an affine combination
of Pp,... P, is an affine space.

Py, ..., P, are said to be affinely dependent if one of the points
can be written as an affine combination of the other points.
Otherwise Py, ..., P, are affinely independent.



W: an affine space, Py,..., P € W.

If every point in W is an affine combination of Fy,..., P, and if
these points are affinely independent then we say that Fy,..., P
IS a simplex.

Every point P in W can then be written (in one and only one
way) as

a0PO—|—CL1P1—|—...—|—CLkPk, Whel’eao—|—a1—|-...—|—ak=1.

ap,ai,--.,ar are called the barycentric coordinates for P.
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The polar coordinates for a point (x,y) in the planeis (r,0) where

r = \/a:Q—I—yQ is the distance from (0,0) to (z,vy), and @ is the
angel (in positive direction) from the z-axis to the vector (z,y).

Converting from (r,0) to (x,y):

xr =1rcosf, y=rsind.

Converting from (z,y) to (r,0):

)
arctan ¥
€T

arctan % + 7
7T

2

7

. 2

fr=\/:c2-|—y2, 0 = «

hvis = > O,
hvis x < 0O,
hvis £ = 0,y > 0,
hvis = 0,y < 0.

If you prefer to work with degrees then replace = by 180°.



The spherical coordinates for a point P = (x,y,%) in space are
(p, d,0) where p = \/xQ + y2 4+ 22 is the distance from (0,0, 0) to
(z,y,z), and ¢ is the angel between the z-axis and the vector
(z,vy,2).

0<op<m(or0<¢p<180°). 6 isthe same as in polar coordinates
for (z,vy).

Converting from (p, ¢,0) to (x,y, 2):

x = pSingpcosh, y=psingsinfh, =z = pcCOSa.

Converting from (z,vy,z) to (p, ¢,0):

p = \/:1:2 + y2 —+ 22, ¢ = arccosf.
P
0 is computed as on the previous page.



A line passing through points Py and P; consisits of points that
can be written in parametric form as

Py+td, teR,

where d = Py — Py is the vector from Py to P;.

For a line in the plane there a vector n = (a,b)
(e.g. if d = (b, —a)) perpendicular to the line.

A point Q = (z,y) lies on the line if and only if

n-(Q — Py) = 0.

If Py = (x0,yo) then this equation can be written as

ar + by + c = 0,



where ¢ = —axg — byg. This is called a generalized line equation.

If ||n|| = \/a?+b%2 =1 and ax + by + ¢ = d then the point (z,y)
is in distance |d| from the line — if d > 0 on the same side of the
line as indicated by n.



A plane passing through the points Py, P1, P> consists of points
that can be written in parametric form as

P+ su+tv, s,tekR,

where u = P — P and v =P, — F).

For a plane in R3 there is a vector n = (a, b, ¢)
(e.g. n = u x v) perpendicular to the plane.

A point Q = (z,y, z) lies on the plane if and only if

n-(Q — ) = 0.



If Py = (x0,y0,20) then this equation can be written as

ar + by +cz+d=0,

where d = —axg — byg — czg. This is called a generalized plane
equation.
If |n|| = \/a® 4+ b2+ 2 =1 and (x,y,2) is an arbitrary point in

space then |ax + by + cz + d| is the distance between the point
and the plane — if ax + by + cz + d > 0 on the same side of the
plane as indicated by n.



Let P be a point on the plane passing through Fy, Py, P>.
Then there exists unigue numbers s,t so that
P=PFPy+su+tv, whereu=PFP; — FPyand v=PFP, — F,.

If w=P— FPy=su-+tv then s and ¢t can be determined from the
equations

vxw=s(vxu), uxw=t(uxv).

Then

P=Py+s(P1—P)+t(Po—P)=(1—-s—1)Py+sP, +tP>.
Thus the barycentric coordinates for P are (1 —s—1t,s,t).

If P is inside the triangle with vertices Py, P1, P> then 1 —s—t >

0,s > 0,t > 0.
If one of the numbers is negative then P is outside the triangle.



A 3 x5 matrix:

1 O
A= |3 2
1 1

2 1 4

An m X n matrix has m rows, and n columns.
Rows are enumerated 0,1,...,m — 1.
Columns are enumerated 0,1,...,n — 1.

The element (number) in row ¢, column j is written (A);; or a;;.
In the example: (A)1o =7.



If A and B are m x n matrices then A + B is the m X n matrix
where (A + B);; = (A);j + (B)ij-

If Ais an m xn matrix and a € R is a number then aA is the
m X n matrix where (CLA)Z] = a(A),L]



A an m x n matrix.
B an r x s matrix.

The product AB exists if n=r
and then the result is an m X s matrix.

% sk %k k| - ) *
* 1 % *x x %

% sk k% *
x 2 k% ok ok %

% k% % 3 — |x x
x 3 x *x % %

5 6 7 8 * 70
x 4 % x k%

O a % %

0=5-146-24+7-3+8-4.

X ¥ X X% X

* X K X X

* Kk Kk K X

X ¥ X X% X




Algebraic rules, a few examples:

A(B+C)=AB+ AC
and
A(aB) = a(AB),

where a is a number and A, B,C are matrices with sizes so that
the addition and multiplication is defined.

Almost all usual algebraic rules are satisfied.
Except that multiplication is not commutative:

AB # BA.



The transposed of an m xn matrix A is an nxm matrix AT where
(AD)ij = Ay

If
1 2 3 4]
A=1|5 6 7 8
9 10 11 12
then
1 5 9]
T 2 6 10
A_3711
4 8 12]

(A+ B = At + BT, (4aB)l' = BTAT.



Identity matrix:

O~ OO
= O OO

Coowr
oo+ o

If Ais an m x n matrix then Al,, = A and [,,A = A.



An n x 1 matrix is a (column) vector.

A 1 x n matrix is a (row) vektor. It is written as the transposed
of a column vector.



Product of block matrices (if all sums and products are defined):

A B||E F| _[AE+ BG AF+ BH
C D||G H|~ |CE4+DG CF+ DH|"

[aO an_l} E =boao—|—...—|—bn_1an_1.




Let V and W be vector space, e.g. V =R" and W = R,

A function T : V — W is said to be a linear transformation if

o T'(v+w)=T(v)+ T(w) for all vectors v,w € V, and

e T'(av) = aT'(v) for all vectors v € V and all numbers a.



Example. Let v = [vg, vy, v2]T € R3.
Then T : R3 — R3 defined by T(x) = v x x is a linear transfor-
mation and T'(x) = ¥vx where Vv is the 3 x 3 matrix

0 —Vy Uy
vV = VUV 0 — Vg
—'Uy Vx 0

Example. Let v = R"”, with ||V|| = 1.

Then T : R™ — R™ defined by T(x) = projgx = (x-V)V is a linear

transformation and T'(x) = Ax where A is the n x n matrix
A=l =@ o).

In general

(vew) =vwl

IS called a tensor product.
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If A is an m X n matrix then the function
S:R"—R™
defined by
S(v) = Av

is a linear transformation.



If 7 : R" — R™ is a linear transformation, satisfying

T(ep) =ag, T(e1) =ay, ..., T(ep_1) =a,_1,
where
(1] 0 0
0 1 0
eO: O 7e1_ O 9 7en—1: : 9
s 0]
0 0 1
then
T(v) = Av,

where A is the matrix



If the linear transformation S : RP — R™ satifies S(w) = Aw

and the linear transformation 7 : R" — RP satisfies 7(v) = Bv

then
So7T :R"—» R™
is also a linear transformation and

(SoT)(v) = (AB)v.



If 7 :R"— R™ is a linear transformation then we define the null
space of 7 as

N(T)={veR"|T(v) =0}

This is a subspace of R™.
The dimensionen of N(7) is called nullity(T).

The range of T is

R(T) = {w € R™ | there exists v € R" so that 7T(v) = w}.

This is a subspace of R™,
The dimension of R(7) is called the rank of 7 and is written as
rank(T).

The dimensions satisfy the following equation:

nullity(T) 4+ rank(T) = n.



A system of linear equations

|
S
o

apoZo+ ag1T1 + ... T a0 n—1Tn—1 =
a10z0+ a11x1 + ...+ a1 p-1Tn—1 =

|
S
[y

Am—1,000FT Am—11%Z1+t ... T Apn_1p-1Tpn-1= by_1

can be denoted by its augmented coefficient matrix

ago apr .- G0n—1 bo
aigQ a1l .- G1p—1 b1

am—-10 4m—-11 --- Apu—1n—-1 bm—1_



Elementary row operations on matrices:

1. multiply a row by a number k # 0

2. replace row 7 by (row i) + k- (row j), 1 = j
3. swap two rows.

Two m X n matrices are said to be row equivalent if one of them
can be obtained from the other by using a number of elementary
row operations.

Two systems of linear equations have the same set solutions if
their augmented coefficient matrices are row equivalent.



A matrix is in echelon form if

1. rows with only O's are below non-zero rows

2. the first non-zero element in a row is 1 (it is called the leading
element or pivot)

3. a leading element in a row is in a column to the right of a
leading element in row above it.

A matrix in echelon form is in reduced echelon form if
4. a column with a leading element (pivot) has 0 i all other rows.



Solution to a system of linear equations (when the aug-
mented coefficient matrix is in reduced echelon form)

If the last column has a pivot then there is an equation of the
form:

Oxg+ ... +0x,_1 =1,

and the system of equations has no solutions (it is inconsistent).

If there is a pivot in all columns except the last column then
there is a unique solution to the system of equations.

If thre is no pivot in the last column and there is one more column
with no pivot then there are infinitely many solutions.
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A: an n X n matrix.

Entry (Z,]) IS ;-

le-j: an (n—1) x (n—1) matrix, obtained from A by deleting row
¢ and column j.

Determinant.
n=1: det([apo]) = aqo

n > 2.
det(A) = agp det(Agp) — ag1 det(Agy1)+
agp det(App) — ...+ (=1)""lag,_1 det(Ag n_1)



Expansion along row .

n—1 o _
det(A) = Y a;;(—1)"7 det(4;;).
j=0

Expansion along column j:

n—1 o _
det(A) = Y a;;(—1)"7 det(4;;).
1=0

Properties of determinants:

det(A1) = det(A), det(AB) = det(A) det(B).



Elementary row operations on determinants.
Matrix B obtained from A by an elementary row operation:

1. multiply one of the rows by a scalar k£ %= 0
det(B) = kdet(A) i.e., det(A) = Ldet(B).

2. replace row 7 by (row i) + k- (row j), 1 = j
the determinant is not changed: det(B) = det(A).

3. swap two rows.
the determinant changes sign: det(B) = —det(A).



Inverse matrix.
An n X n matrix A has inverse matrix A—1 if

AAT =1 A lA=1

(If one of these equations is satisfied then they both are.)
A has an inverse if and only if det(A) #= O.

If application of row operations on [A I} can lead to [I B} then
Al =01

If [I B} can not obtained from [A I} by using row operations
then A does not have an inverse.



If A and B are n x n matrices and both of them have an inverse
then AB has an inverse;:

(AB) "1 =B"14"1
Inverse of matrices of special type.

_ 4 —1 _ -

1 0 =z 1 0 —x
O 1 vy =10 1 —y
_O 0] 1_ _O O 1 |

If a, b and ¢ are non-zero then

o 0 0] Y a1 0 O

O O &

@ Ney
(@)
(@)
QI
|_l



Inverse of 2 x 2 matrix:

a b7 1 [d —b
c d ad—be|—c al|’

An n x n matrix is said to be an orthogonal matrix if its column
vectors are orthogonal and have length 1.

If A is an orthogonal matrix then A—1 = AT
Conversely, if A=l = AT then A is an orthogonal matrix.
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An affine transformation 7 : R"” — R™ is a function satisfying

T(agPo + a1P1) = agT (Po) + a1 T (1),
for all points Fp, P; and all numbers ag,a1 where ag + a1 = 1.
Let 7 be an affine transformation.
Let S(v) =T7TO+v)—T(O), where O = (0,...,0).

Then S is a linear transformation and therefore there exists a
matrix A so that S(v) = Av.

The columns of A are S(eg),...,S(e,—1).

(page 138)



T(v) =Av+y,
where y = 7(O).

T he affine transformation is represented by the following matrix

Ay
ol 1

The inverse affine transformation 71 is represented by the in-
verse matrix

A_l —A_ly
ol 1|



The point P in R"™ is represented by the following vector in R t1
P
K

A translation by the vector t maps the point P to the point
P+ t.

The matrix of this affine transformation is

I, t
ol 1




Pure rotation. (pure = around axis through O). The rotation
is then a linear transformation.

A linear transformation T'(v) = Av is a rotation
if and only if
A is an orthogonal matrix with det(A) = 1.

A composition of two rotations is a rotation.



Rotation in R3 around the z-axis by the angle 6 has matrix

(cosf® —sinf 0O
R, = |sing cosf O
0 0 1

The affine matrix is

R, 0
ol 1|°
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Rotation in R3 by angle 6 around axis with direction given by
the vector r.

If right hand thumb points in direction r then the fingers points
in positive direction for 6.

Rotation by angle —6 around axis with vector —r is the same as
rotation by angle 6 around axis with vector r.

Compute © = ﬁr.

An arbitrary vector v is rotated in the vector R(v), that can be
computed using Rodrigues formula:

R(v) = cos(0)v + (1 —cos(0))(v-t)t + sin(0)(f x v).



If r = |y| then the matrix of the rotation is:

T TY T2
R:p = (1—cos(8) |zy vy? yz|+cos(h)
xZ Yz 2

+sin(6)

oOor
OO
= O O

The matrix can also be written as

(tz2 4 ¢ try — sz txz 4+ sy
Rsp = |txy + sz ty2 +c¢  tyz — sz |,
| txz — sy tyz + sz 22 + c |

where

c=cos(d), s=sin(d), t=1—cos(h).




Rotation around the z-axis by angle 0, [take (z,y,z) = (1,0,0)]:

1 0] 0
Rz = Rjy, = |0 cos(0z) —sin(0z)] .
0 sin(fz) cos(0z) |

Rotation around the y-axis by angle 8y [take (z,y,z) = (0,1,0)]:
[ cos(6y) O sin(6y)]
Ry = Rjp, = 0 1 0 |.
|—sin(6y) 0 cos(6) |

Rotation around the z-axis by angle 0, [take (z,y,z) = (0,0, 1)]:

cos(#,) —sin(6,) O]
R; = Ry, = |sin(6,) cos(0:) O
0 0 1




The matrix for rotation around the z-axis followed by rotation
around the y-axis followed by rotation around the z-axis:

CyC'z —CySz SY
R:RyR, = | SzSyCz+ CzxSz —SxSySz+ CxCz —SxCy
|—CzSyCz+ SxSz CxSySz+ SxCz CxCy |

where

Cx = cos(6z), Sz =-sin(6y),
Cy = cos(8y), Sy =-sin(6y),

Cz =cos(6;), Sz=sin(6,).
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Reflection across a plane through O = (0,0,0) with normal
vector n, that has length 1.

The 3 x 3 matrix of the reflection:

_1 — 2n% —Qngjny —Qngjnz_
I-2h®n) = |—2ngny 1— 2n§ —2nyn | ,
__annz _Qnynz 1 — 277/3_

The 4 x 4 affine matrix is

I-2(h®n) O
ol 1|

Reflection across O has 3 x 3 matrix —I.



Orthogonal matrices.

An orthogonal matrix has determinant 1 or —1.

En matrix A is an orthogonal matrix with determinant 1
if and only if
A is the matrix of a rotation.

The matrix of a reflection is an orthogonal matrix with determi-
nant —1.

But only a small fraction of all orthogonal matrices with deter-
minant —1 are matrices of a reflection.



Shear.
n.: a vector with length 1.
s: a vector orthogonal to n.

Shear plane: the plane through O with normal vector n.
Points on this plane are fixed.
An arbitrary vector v is mapped to v + (n-v)s.
The 4 x 4 affine matrix for a shear is
I4+s®n O
o= | |

Y

ol 1

SrNoy Saj’n;y STz
S ® ﬁ — Synaj Syny Synz 3
SNy Szny SzTz




Affine transformation around an arbitrary point.

R is the 3 x 3 matrix for a rotation around an axis through O or
a shear or reflection around a plane through O.

The corresponding transformation around C = O + x has affine
matrix

I x
ol 1

R 0
ol 1

I —x|
ol 1|




R: 3 x 3 matrix for a rotation.

Compute Euler angles 0;,0y,0, so that

where

R, is rotation around the z-axis by angle 6,
Ry is rotation around the y-axis by angle 6,
R is rotation around the z-axis by angle 6.

The angle 0y is determined by:

sinf, = Rgp, cosf, = /1 —sin24,.



If cosfy = 0 then 0, and 0, are determined by

. R R
Sinfy = ———2,  COSfp = ——=,
COS Oy COS Oy

. R R
Sinf, = — 01 , CO0s6, = 00
COS 0Oy COS 0Oy

If cosfy = 0 then choose 6, = 0 and 605 is determined by

sinf,; = Ropy, co0sb;=R;q;1.
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R is a 3 x 3 rotation matrix.

Determine axis-angle representation of this rotation,
X

i.e., a vector r = |y| and an angle 8 so that R = Ryy.
Z

Compute trace(R) = Rgg + R11 + Roo.

Then 6 = cos—l(trace(zR)_l). This gives 0° < 6 < 180°.
cos— ! is also written as arccos.



If 6 = 0°: no rotation, t is arbitrary (and R=1).

If § % 0° and 6 # 180°:
~ 1
r = (Ro1 — R12,Roo — Roo, R10 — Ro1), T = mr-



A quaternion q is written as

q= (w,x,y, 2),

or

If we let v=rzxi+yj+ zk =

X

Y
z

then we also write

q = (w,Vv),

or

q=w—+V.



Addition of quaternions:

(w1, 21,Y1,21) + (w2, x2,y2, 20) = (w1 +wo, z1+2x2,y1 +Y2, 21+22).
Scalar multiplication:
a(w,z,y,z) = (aw, az, ay, az).

Magnitude of a quaternion ¢ = (w, z,vy, 2):

lall = Vw? + 22 + 42 + 22,
If ¢ #(0,0,0,0) then the quaternion

1

o 4
lq]|
has magnitude 1 and is said to be normalized.



Rotation around the axis r with angle 6 is represented by the

quaternion

Or by

g = (cos (g) ,Sin <Q

2>f)

360° — 6 . (360°—46 . 0 .
(cos ( 5 ) ,Sin ( 5 ) (—1)) = (—cos (5) ,—Sin (2

The matrix for the rotation, represented by the normalized quater-
nion q = (w, x,y, 2):

(1 — 2y2 — 222

2xy + 2wz
2xz — 2wy

2xy — 2wz
1 — 222 — 222
2yz + 2wx

2xz + 2wy |
2yz — 2wx
1 — 222 — 2y?]
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Multiplication of quaternions:
When computing

(wo + x2i + yoj + z0k) (w1 + x1i + y1j + 21k)

we may use the following:

ij=k, ji= -k, jk=1i, kji=—i, ki=j, ik = —j.



We can also compute the product as

(wo,vo)(wy,v1) = (wawy — Vo:Vvy, w1Vo + wovy + Vo X V1),

and in particular
(0,v2)(0,vy) = (—Vvovy, vo X V).

All algebraic rules except the commutative law are valid.
Usually:

4192 7 q24q1.

Furthermore

la1a2|| = lla1l] - lla2]l-



Identity:
(w,v)(1,0) = (1,0)(w,v) = (w, V).

Inverse: if ¢ = (w,v) #= (0,0) then ¢ has inverse

1
—1
¢ = —s(w,—v).
qll2
If g is normalized (||q|| = 1) then
q_l — (wa _V)'

The inverse quaternion satifies:

gt =q¢1¢=(1,0).



Rotation by angle 6 around the axis r is represented by the

quaternion
6 AW
= (cos|—=|,sin{=]T).
7= (2) (2) )
This quaternion satisfies ||q|| = 1.

If p is a vector in 3D-space then let R4(p) be the vector that p
is rotated into.

We think of p as a quaternion, (0,p), and then we can compute
Rq¢(p) as follows

Ry(p) = qpq .

If ¢ = (w,v) then this can also be computed as

Ry(p) = (2w? — 1)p + 2(v-p)v + 2w(v x p).



Converting from matrix representation of rotation to quaternion
representation. (page 191)

R: a rotation matrix.

Compute:
trace(R) = Roo + R11 + Roo.
r = (Rp1 — R12, Ro2 — Rog, R10 — Ro1)-

g = (trace(R) + 1,r) =
(Roo + R11 + Roo + 1, Ro1 — R12, Ro2 — Rog, R10 — Ro1)-

Then the rotationen is represented by the normalized quaternion
1
——q.
lq]|
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Converting from rotation matrix to normalized quaternion:
R: a 3 x 3 rotation matrix.

Compute:
q = (Roo + R11 + Ro2 + 1, Ro1 — R12, Ro2 — Rog, R10 — Ro1).
The rotation is then represented by the normalized quaternion

1
=
[lal]



Alternative method (if trace(R) < 0):
Find the largest of the numbers Rpg, R11, Roo.

Rgp largest: normalize the quaternionen

(Rp1 — R12,Roo — R11 — Rop + 1, Ro1 + Ri0, Ro2 + Rop).

R411 largest: normalize the quaternionen

(Ro2 — Roo, Ro1 + R10,R11 — Roo — Roo + 1, R10 + Ro1).

R->> largest: normalize the quaternionen

(R10 — Ro1, Ro2 + Rop, Ro1 + R12, Roo — Roo — R11 + 1).



If rotation around the axis ry with angle 61 is represented by the
quaternion g1

and rotation around the axis ro with angle 6, is represented by
the quaternion ¢»

then the composed rotation consisting of
rotation around the axis r1 with angle 64
followed by
rotation around the axis ro with angle 65
IS represented by the quaternion g->q;.



Linear interpolation:

Find a parameterized line Q(t), satisfying that Q(¢;) = P, and
Q(ti+1) = P;41, where P; and P,y are points.

Solution

t—1t;
Q(t) = P + y (Piy1— F5),

i+1 — b
when t; <t < tit1-



Hermite curves:

Determine a curve Q(t) satisfying that Q(0) = Py, Q(1) = Py,
Q'(0) =P and Q'(1) = P/, where Py and P; are points and Py
and P are vectors.

Let Q(t) = at3 + bt2 4 ct + D, where a, b, c are vectors and D is
a point.
Then Q'(t) = 3at? 4 2bt +c.

Requirement:
QRQO)=D=PFP,, Q(1)=a+b+4+c+ D= P;.
Q(0)=c=P) Q(1)=3a+2b+c=P].

Solution:
aZQ(Po—P1)+P/O+P/, b:3(P1—PO)—2P6—P/,
c =Py and D = P.



The Hermite curve satisfying the above condition can also be
written as

2 -2 1 17 /[P
—3 3 -2 —-1||P
0 0 1 o0]]|P,
1 0 0 O0]|P

where the 'vector' (G is in fact a 4 x 3 matrix.

Q(u)=[u3 u? u 1 = UMG,
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Piecewise Hermite curves.
Py, Py, ..., P, points.

We want to find Hermite curves

Qo(u),Q1(u),...,Qn-1(u),

so that each Q;(u) is a curve moving from P; to P,y when u
increases from O to 1:
Q;(0) = P, and Q;(1) = P44 foralli=0,1,...,n—1

In order to compute a unique Hermite Qg(u) we need to choose
vectors Pj and P} and require that Q'(0) = Pj and Q'(1) =P}
and similar for the other curves.

We may also use an automatic way to generate these conditions.



Automatic generation of Hermite curves.
A way to generate a piecewise Hermite curve through the points
Py, P1,...,Pn. The following conditions must be satisfied:

o Q;i(1) =Q;4+1(0) = F;foralli=0,1,...,n—2 (previous slide)

e Qi(1)=Q},,(0) foralli=0,1,...,n—2
Q;4+1 starts with the same velocity as @Q; has in the end.

e Q/(1) =Q/,,(0) for allei=0,1,...,n—2
Q;41 starts with the same acceleration as @; has in the end.

e Qj(0) =009 Q! (1) =0 (natural end conditions).
No acceleration in the beginning and at the end.



In order to determine P; = Q(0),P] = Q4 (0) = Qp(1),..., P, =
' 1(0) = Q. _,(1),P;, = Q] _,(1) we derive the following sys-

tem of equations from the equations on the previous slide

(the matrix has size (n+ 1) x (n+1)):

2 1 0 0 --- 0 0][ Py [ 3(P; — Py) ]
14 1 0 --- 00 le 3(P> — Py)
01 4 1 --- 0 0|]| P 3(P3 — P;)

0 0 - 1 4 10 P%_Q 3(P,_1— P,_3)
oo o o 1al8 |amInT
i 1 L n i n n—1) |




When Pf, P/, ..., P/ have been determined from the above equtions
we can compute each Q; as follows:

Q;(u) =UMG,
where
2 2 1 17 P, ]
-3 3 -2 -1 P;
— 1,3 ,2 — — |t
U= |u> wu ul}, M = 0 0 1 ol G = Pg
'1 0 0 O] Pl




We have the following general formula:

n

(z+y)" =) (?)xn_zyz, hvor (ZJ) = - n

= il(n —4)l’
and n!l=1-2-3....-n.

In particular (z 4+ y)? = z2 + 2zy + y° and

(x4 y)3 = 23 + 322y + 3zy® + ¢

Ifweletx=1—u and y = u we get

1=(1-uw)34+3(1 —u)?u—+3(1 —w)u?+ 3



Bézier kurver:
Py, Py, ..., P, are points, called control points.

The Bézier curve is then

n

Qu) = Y (?)(1 — w)" P

i=0
It satisfies Q(0) = Py and Q(1) = P,.

The most interesting case is n = 3:

Q(u) = (1 —u)3Py 4 3u(l — w)?P; + 3u?(1 — w) P> + u3Ps.



In the case n = 3 the Bézier curve can also be written as

Q(u) = Jz o(u) Py + J3,1(u)P1 + J32(u) P> + J3 3(u) P3,

where

J3o(u) = (1 — wW)3=1-3u+3u?—u3
J3.1(u) = 3u(l — w)? = 3u — 6u? + 3u3
J32(u) = 3u?(1 — u) = 3u? — 343
J33(u) = u3

As J3o(u) + J31(u) + J32(u) + J33(u) = 1 Q(u) is an affine
combination of Fy, P1, P>, P3.

Furthermore J370(u) > 0, J3,1(u) > 0, J3’2(u) > 0 and J373(u) >
0. Thus Q(u) is a convex combination of Py, P;, P>, P3 and the
curve is contained in the convex hull of Py, P1, P>, P3.



The Bézier curve with n = 3 satifies Q'(0) = 3(P; — Py) and
Q'(1) = 3(P3— P») and the curve is the same as a Hermite curve

Q(u) = UMG,
where
(2 -2 1
-3 3 =2
— 3 2 —
U—[u U ul}, M = 0 o0 1
1 0 0

1
—1
O
O
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Interpolation of rotation.
p and ¢g: rotation quaternions.
Spherical linear interpolation:

Determine the angle 6 between p and g from cosf = p-q (dot
product of p and q).

Then the interpolation can be computed as follows:

sin((1 —t)0)p + sin(tf)q
sin(0) '

slerp(p, q,t) =



Linear interpolation:

Let

r=(1-1)p+tq.
Then we get the linear interpolation by normalizing r:
1

Ierp(pa q, t) — WT'



