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1 Introduction

These lecture notes are intended for the courses “Introduction to Mathematical Methods”

and “Introduction to Mathematical Methods in Economics”. They contain a number of

results of a general nature, and in particular an introduction to selected parts of the theory

of difference equations.

2 Notation and basic concepts

The positive integers 1,2,3, . . . are denoted by N. The non-negative integers are denoted

by N0. All integers are denoted by Z. The rational numbers are denoted by Q. The real

numbers are denoted by R. We have the following obvious inclusions

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R.

All inclusions are strict.

The main object of study in the theory of difference equations is sequences. A sequence

of real numbers, indexed by either Z or N0, is written in either of two ways. It can be written

as xn or as x(n). The second notation makes it clear that a sequence is a function from

either Z or N0 to R. We always use the notation x(n) for a sequence.

There is one property of the set N0 which is important. The set is well-ordered, which

means that any non-empty subset of N0 contains a smallest element.

Sums play an important role in our presentation of the results on difference equations.

Here are some concrete examples.

1+ 2+ 3+ 4 =
4
∑

n=1

n = 10 and 22 + 32 + 42 + 52 =
5
∑

n=2

n2 = 54.

In general, the structure is
nlast
∑

n=nfirst

x(n)

Here nfirst is called the lower limit and nlast the upper limit. x(n) is called the summand.

It is a function of n, which we denote by x(n). Sometimes we also write it as x(n) the

emphasize that it is a function.

Our results are sometimes expressed as indefinite sums. Here are two examples.

N
∑

n=1

n = N(N + 1)

2
and

N
∑

n=1

n2 = N(N + 1)(2N + 1)

6
.

One important question is how to prove such general formulas. The technique used is

called proof by induction. We will give a description of this technique. We have a certain

statement, depending on an integer n ∈ N. We would like to establish its validity for all

n ∈ N. The proof technique comprises two steps.

1. Basic step. Prove that the statement holds for n = 1.

2. Induction step. Prove that if the statement holds for n, then it also holds when n is

replaced by n+ 1.
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Verification of these two steps constitutes the proof of the statement for all integersn ∈ N.

Let us illustrate the technique. We want to prove the formula

N
∑

n=1

n = N(N + 1)

2
for all N ∈ N.

For the first step we take N = 1. The formula then reads

1 = 1(1+ 1)

2
,

which obviously is true. For the second step we assume that the formula is valid for some

N and consider the left hand side for N + 1.

N+1
∑

n=1

n =
(

N
∑

n=1

n
)

+ (N + 1) =
(N(N + 1)

2

)

+(N + 1).

The second equality follows from our assumption. We now rewrite this last expression.

N(N + 1)

2
+N + 1 = N(N + 1)+ 2(N + 1)

2
= (N + 1)(N + 2)

2
.

Thus we have shown that
N+1
∑

n=1

n = (N + 1)((N + 1)+ 1)

2
,

i.e. the formula holds with N replaced by N + 1, and the proof is finished.

We also need a convenient notation for products. Here are two examples.

1 · 2 · 3 · 4 · 5 =
5
∏

n=1

n = 120 and 3 · 5 · 7 · 9 =
4
∏

n=1

(2n+ 1) = 945.

The terminology is analogous the the one used for sums. In particular, we will be using

indefinite products. The product
N
∏

n=1

n

appears so often that is has a name. It is called the factorial of N , written as N !. So by

definition

N ! =
N
∏

n=1

n.

It is a number that grows rapidly with N , as can be seen in these examples.

10! = 3628800,

20! = 2432902008176640000,

30! = 265252859812191058636308480000000.

We have the convention that

0! = 1.

The general structure of a product is

nlast
∏

n=nfirst

x(n).
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Important convention We use the following conventions. If n1 > n2, then by definition

n2
∑

n=n1

a(n) = 0 and

n2
∏

n=n1

a(n) = 1. (2.1)

By this convention we have that

−1
∑

n=0

a(n) = 0 and

−1
∏

n=0

a(n) = 1. (2.2)

We now introduce the binomial formula. Given x,y ∈ R, we have

(x +y)n =
n
∑

k=0

(

n

k

)

xkyn−k. (2.3)

Here the binomial coefficients are given by

(

n

k

)

= n!

k!(n− k)! , k = 0, . . . , n. (2.4)

Recall our convention 0! = 1. The binomial coefficients satisfy many identities. One of

them is the following.

(

n+ 1

k

)

=
(

n

k− 1

)

+
(

n

k

)

, k = 1, . . . , n. (2.5)

This result is the consequence of the following computation.

(

n

k− 1

)

+
(

n

k

)

= n!

(k− 1)!(n− k+ 1)!
+ n!

k!(n− k)!

= n!k

k(k− 1)!(n− k+ 1)!
+ n!(n+ 1− k)
k!(n− k)!(n+ 1− k)

= n!k+n!(n+ 1− k)
k!(n+ 1− k)! = (n+ 1)!

k!(n+ 1− k)!

=
(

n+ 1

k

)

.

Exercises

Exercise 2.1. Prove by induction that we have

N
∑

n=1

n2 = N(N + 1)(2N + 1)

6
.

Exercise 2.2. Let q ∈ R satisfy q ≠ 1. Prove by induction that

N
∑

n=0

qn = q
N+1 − 1

q − 1
. (2.6)

What is
∑N
n=0 q

n for q = 1?
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Exercise 2.3. Prove by induction that we have

N
∑

n=1

n3 = N
2(N + 1)2

4
.

Exercise 2.4. Prove that
N
∑

n=1

n3 =
(

N
∑

n=1

n
)2

.

Exercise 2.5. Prove (2.3).

Exercise 2.6. Prove the following result

n
∑

k=0

(

n

k

)

= 2n.

Exercise 2.7. Prove the following result

n
∑

k=0

(−1)k
(

n

k

)

= 0.

3 First order difference equations

In many cases it is of interest to model the evolution of some system over time. There

are two distinct cases. One can think of time as a continuous variable, or one can think of

time as a discrete variable. The first case often leads to differential equations. We will not

discuss differential equations in these notes.

We consider a time period T and observe (or measure) the system at times t = nT ,

n ∈ N0. The result is a sequence x(0), x(1), x(2), . . .. In some cases these values are

obtained from a function f , which is defined for all t ≥ 0. In this case x(n) = f(nT). This

method of obtaining the values is called periodic sampling. One models the system using

a difference equation, or what is sometimes called a recurrence relation.

In this section we will consider the simplest cases first. We start with the following

equation

x(n+ 1) = ax(n), n ∈ N0, (3.1)

where a is a given constant. The solution is given by

x(n) = anx(0). (3.2)

The value x(0) is called the initial value. To prove that (3.2) solves (3.1), we compute as

follows.

x(n+ 1) = an+1x(0) = a(anx(0)) = ax(n).

Example 3.1. An amount of USD10,000 is deposited in a bank account with an annual

interest rate of 4%. Determine the balance of the account after 15 years. This problem

leads to the difference equation

b(n+ 1) = 1.04b(n), b(0) = 10,000.

The solution is

b(n) = (1.04)n10,000,

in particular b(15) = 18,009.44.
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We write the equation (3.1) as

x(n+ 1)− ax(n) = 0. (3.3)

This equation is called a homogeneous first order difference equation with constant coef-

ficients. The term homogeneous means that the right hand side is zero. A corresponding

inhomogeneous equation is given as

x(n+ 1)− ax(n) = c, (3.4)

where we take the right hand side to be a constant different from zero.

The equation (3.3) is called linear, since it satisfies the superposition principle. Let

y(n) and z(n) be two solutions to (3.3), and let α,β ∈ R be two real numbers. Define

w(n) = αy(n) + βz(n). Then w(n) also satisfies (3.3), as the following computation

shows.

w(n+ 1)− aw(n) = αy(n+ 1)+ βz(n+ 1)− a(αy(n)+ βz(n))
= α(y(n+ 1)− ay(n))+ β(z(n+ 1)− az(n)) = α0+ β0 = 0.

We now solve (3.4). The idea is to compute a number of terms, guess the structure of

the solution, and then prove that we have indeed found the solution. First we compute a

number of terms. In the computation of x(2) we give all intermediate steps. These are

omitted in the computation of x(3) etc.

x(1) = ax(0)+ c,
x(2) = ax(1)+ c = a(ax(0)+ c)+ c = a2x(0)+ ac + c,
x(3) = ax(2)+ c = a3x(0)+ a2c + ac + c,
x(4) = ax(3)+ c = a4x(0)+ a3c + a2c + ac + c,
x(5) = ax(4)+ c = a5x(0)+ a4c + a3c + a2c + ac + c,

...

x(n) = anx(0)+ c
n−1
∑

k=0

ak.

Thus we have guessed that the solution is given by

x(n) = anx(0)+ c
n−1
∑

k=0

ak. (3.5)

To prove that (3.5) is a solution to (3.4), we must prove (3.5) satisfies this equation. We

compute as follows.

x(n+ 1) = an+1x(0)+ c
n
∑

k=0

ak

= an+1x(0)+ c(1+ a+ a2 + · · · + an−1 + an)
= a(anx(0))+ c + a

(

c(1+ a+ a2 + · · · + an−1)
)

= a
(

anx(0)+ c
n−1
∑

k=0

ak
)

+ c

5



= ax(n)+ c.

Thus we have shown that (3.5) is a solution to (3.4). For a ≠ 1 the solution (3.5) can be

rewritten using the result (2.6):

x(n) = anx(0)+ ca
n − 1

a− 1
. (3.6)

In the general case both a and c will be functions of n. We have the following result.

Theorem 3.2. Let a(n), and c(n), n ∈ N0, be real sequences. Then the linear first order

difference equation

x(n+ 1) = a(n)x(n)+ c(n) with initial condition x(0) = y0 (3.7)

has the solution

y(n) =
(

n−1
∏

k=0

a(k)

)

y0 +
n−1
∑

k=0

(

n−1
∏

j=k+1

a(j)

)

c(k). (3.8)

The solution is unique.

Proof. We define the sequence y(n) by (3.8). We must show that it satisfies the equation

(3.7) and the initial condition. Due to the convention (2.1) the initial condition is trivially

satisfied. We first write out the expression for y(n+ 1)

y(n+ 1) =
(

n
∏

k=0

a(k)

)

y0 +
n
∑

k=0

(

n
∏

j=k+1

a(j)

)

c(k).

We then rewrite the last term above as follows, using (2.1).

n
∑

k=0

(

n
∏

j=k+1

a(j)

)

c(k) =
n
∏

j=n+1

a(j)c(n)+
n−1
∑

k=0

(

n
∏

j=k+1

a(j)

)

c(k)

= c(n)+
n−1
∑

k=0

(

n
∏

j=k+1

a(j)

)

c(k) = c(n)+ a(n)
n−1
∑

k=0

(

n−1
∏

j=k+1

a(j)

)

c(k).

Using this result we get

y(n+ 1) = a(n)
(

n−1
∏

k=0

a(k)

)

y(0)+ c(n)+ a(n)
n−1
∑

k=0

(

n−1
∏

j=k+1

a(j)

)

c(k),

which implies

y(n+ 1) = a(n)y(n)+ c(n).

Thus we have shown that y(n) is a solution. Finally we must prove uniqueness. Assume

that we have two solutions y(n) and ỹ(n), which satisfy (3.7), i.e. both the equation and

the initial condition are satisfied by both solutions. Now consider {n ∈ N0 |y(n) ≠ ỹ(n)}.
Let n0 be the smallest integer in this set. Assume n0 ≥ 1. By the definition of n0 we have

y(n0 − 1) = ỹ(n0 − 1), and then

y(n0) = a(n0 − 1)y(n0 − 1)+ c(n0 − 1) = a(n0 − 1)ỹ(n0 − 1)+ c(n0 − 1) = ỹ(n0),

which is a contradiction. Thus we must have n0 = 0. But y(0) = ỹ(0), since the two

equations satisfy the same initial condition. It follows that the solution is unique.
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3.1 Examples

We now give some examples. Details should be worked out by the reader.

Example 3.3. Consider the problem

x(n+ 1) = −x(n), x(0) = 3.

Using (3.5) with c = 0 we get the solution

x(n) = (−1)n3.

Now consider the inhomogeneous problem

x(n+ 1) = −x(n)+ 4, x(0) = 3.

Using (3.6) we get the solution

x(n) = (−1)n3− 2
(

(−1)n − 1
)

= (−1)n + 2.

Example 3.4. Consider the problem

x(n+ 1) = 2x(n)+n, x(0) = 5.

Using the general formula (3.8) we get the solution

x(n) = 5 · 2n +
n−1
∑

k=0

k2n−1−k = 5 · 2n + 2n −n− 1.

The last equality requires results that are not covered by this course, so the first expression

is sufficient as the solution to the problem.

Example 3.5. Consider the problem

x(n+ 1) = (n− 4)x(n), x(0) = 1. (3.9)

This problem can be solved in two different manners. One can directly use the general

formula (3.8). In this case one gets the solution

x(n) =
n−1
∏

k=0

(k− 4).

But this solution is not very explicit. A more explicit solution can be found by noting that

for n ≥ 5 the product contains the factor 0, hence the product is zero. Thus one has the

explicit solution:

x(n) =























































1 n = 0,

−4 n = 1,

12 n = 2,

−24 n = 3,

24 n = 4,

0 n ≥ 5.

(3.10)
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Figure 3.1: Point plot of the solution (3.10). Points connected with blue lines

We illustrate the solution in Figure 3.1. Here we plot the values of x(n) as filled circles,

connected by blue line segments. We include the line segments to visualize the variations

in the values.

We note that the solution (3.10) is very sensitive to small changes in the equation. If

we add a small constant inhomogeneous term, the solution will rapidly diverge from the

solution zero for n ≥ 5. As an example we consider

x(n+ 1) = (n− 4)x(n)+ 1

20
, x(0) = 1. (3.11)

A plot of this solution is shown in Figure 3.2.

Figure 3.2: Point plot of the solution to (3.11). Points connected with blue lines
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Example 3.6. (Note: In version 2 of the notes this was Example 3.3.) Let us consider the

payment of a loan. Payments are made periodically, e.g. once a month. The interest rate

per period is 100r%. The payment at the end of each period is denoted p(n). The initial

loan is q(0). The outstanding balance after n payments is denoted q(n). Thus q(n) must

satisfy the difference equation

q(n+ 1) = (1+ r)q(n)− p(n). (3.12)

The solution follows from (3.8).

q(n) = (1+ r)nq(0)−
n−1
∑

k=0

(1+ r)n−k−1p(k). (3.13)

Often the loan is paid back in equal installments, i.e. p(n) = p for all n. Then the above

sum can be computed. We get the result

q(n) = (1+ r)nq(0)−
(

(1+ r)n − 1
)p

r
. (3.14)

Suppose that we want to pay back the loan in N installments. Then the installment is

determined by

p = q(0) r

1− (1+ r)−N (3.15)

Exercises

Exercise 3.1. Fill in the details in Example 3.6. In particular the computations leading to

(3.14).

Exercise 3.2. Discuss the applications of the results in Example 3.6.

Exercise 3.3. Adapt the results in the Example 3.6 to the case, where initially no install-

ments are paid.

Exercise 3.4. Discuss the application to loans with a variable interest rate of the results in

this section.

Exercise 3.5. Implement the various formulas for interest computation and loan amorti-

zation on a programmable calculator or in Maple. In particular, implement the formulas

for loans with a variable interest rate and try them out on some real world examples.

4 Difference calculus

Before we proceed to the study of general difference equations, we establish some results

on the difference calculus. We denote all functions from Z to R by S(Z), and all functions

from N0 to R by S(N0).

The set S(Z) is a real vector space. See [3] for the definition.

Proposition 4.1. The set S(Z) is a real vector space, if the addition is defined as

(x +y)(n) = x(n)+y(n), x,y ∈ S(Z),

and the scalar multiplication as

(ax)(n) = ax(n), a ∈ R, x ∈ S(Z).

9



Below we give definitions and results for x ∈ S(Z). To apply these results to functions

(sequences) on N0, we consider S(N0) as a subset of S(Z). This is done in the following

manner. Given x ∈ S(N0), we define

(ιx)(n) =







x(n) for n ≥ 0,

0 for n < 0.

A function that maps a function x(n) to a new function y(n) is called an operator. An

example is the operator ι : S(N0) → S(Z) defined above. We define the operators ∆, S, and

I as follows:

Definition 4.2. The shift operator S : S(Z) → S(Z) is defined by

(Sx)(n) = x(n+ 1). (4.1)

The difference operator ∆ is defined by

(∆x)(n) = x(n+ 1)− x(n). (4.2)

The identity operator I is defined by

(Ix)(n) = x(n). (4.3)

The relation between the three operators is

∆ = S − I. (4.4)

The operators S and ∆ are linear. We recall from [3] that an operator U : S(Z) → S(Z) is

said to be linear, if it satisfies

U(x + y) = Ux + Uy for all x,y ∈ S(Z), (4.5)

U(ax) = aUx for all x ∈ S(Z) and a ∈ R. (4.6)

We recall that composition of two linear operators U,V : S(Z) → S(Z) is defined as (U ◦
Vx)(n) = (U(Vx))(n). If U = V , we write U ◦U = U2. Usually we also write UV instead of

U ◦ V .

5 Second order linear difference equations

We will now present the theory of second order linear difference equations. In contrast to

the first order case, there is no general formula that gives the solution to all such equations.

One has to impose additional conditions in order to get a general formula.

The general form of a second order linear difference equation is

x(n+ 2)+ b(n)x(n+ 1)+ c(n)x(n) = f(n), n ∈ N0. (5.1)

Here b(n), c(n), f(n) are given sequences. If f(n) = 0 for all n, then the equation is

homogeneous, viz.

x(n+ 2)+ b(n)x(n+ 1)+ c(n)x(n) = 0, n ∈ N0. (5.2)

10



If we define the operator

(Lx)(n) = x(n+ 2)+ b(n)x(n+ 1)+ c(n)x(n),

then L : S(N0)→ S(N0) is a linear operator, see Section 5.5.

We need some techniques and results from linear algebra in order to discuss the second

and higher order equations.

Definition 5.1. Let xj ∈ S(N0), j = 1, . . . , N . The list of vectors x1, x2, . . . , xN is said to be

linearly independent, if for all c1, c2, . . . , cN

c1x1 + c2x2 + · · · + cNxN = 0 implies c1 = 0, c2 = 0, . . . , cN = 0. (5.3)

If the list of vectors is not linearly independent, it is said to be linearly dependent.

Remark 5.2. We make a number of remarks on this definition.

(i) The definition is the same as in [3], and many of the results stated there carry over

to the present more abstract framework.

(ii) We call the collection of vectors x1, x2, . . . , xN a list, since the elements are viewed as

ordered. In particular, in contrast to a set, repetition of entries is significant.

(iii) Let us state explicitly what it means that the list of vectors x1, x2, . . . , xN is linearly

dependent. It means that there exist c1, c2, . . . , cN with at least one cj ≠ 0, such that

c1x1(n)+ c2x2(n)+ · · · + cNxN(n) = 0 for all n ∈ N0. (5.4)

We will need some results to prove linear independence of vectors in S(N0). We give

the general definition here. In this section we use it only for N = 2.

Definition 5.3. Let N ≥ 2. Let x1, x2, . . . , xN ∈ S(N0). Then we define the Casoratian by

W(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(n) x2(n) · · · xN(n)

x1(n+ 1) x2(n+ 1) · · · xN(n+ 1)
...

...
. . .

...

x1(n+N − 1) x2(n+N − 1) · · · xN(n+N − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(5.5)

Note that the Casoratian is a function of n. It also depends on the vectors x1, x2, . . . , xN ,

but this is not made explicit in the notation.

The Casoratian gives us a convenient method to determine, whether a given set of

vectors is linearly independent.

Proposition 5.4. Let N ≥ 2. Let x1, x2, . . . , xN ∈ S(N0). If there exists an n0 ∈ N0, such that

W(n0) ≠ 0, then x1, x2, . . . , xN are linearly independent.

Proof. We give the proof in the case N = 2. Thus we have sequences x1, x2, and n0 ∈ N0,

such that

W(n0) =
∣

∣

∣

∣

∣

x1(n0) x2(n0)

x1(n0 + 1) x2(n0 + 1)

∣

∣

∣

∣

∣

≠ 0. (5.6)

Now assume that we have a linear combination

c1x1 + c2x2 = 0.
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More explicitly, this means that c1x1(n) + c2x2(n) = 0 for all n ∈ N0. In particular, we

have

c1x1(n0)+ c2x2(n0) = 0,

c1x1(n0 + 1)+ c2x2(n0 + 1) = 0.

But then c1 = c2 = 0, by well-known results from linear algebra, see [3].

Let us explain in some detail how we use the results from [3] to get this result. We write

the two linear equations in matrix form,

[

x1(n0) x2(n0)

x1(n0 + 1) x2(n0 + 1)

][

c1

c2

]

=
[

0

0

]

.

Now the determinant condition W(n0) ≠ 0 implies that the coefficient matrix is invertible,

hence the only solution is the trivial one, c1 = 0 and c2 = 0.

The general case is left as an exercise.

Lemma 5.5. Assume that x1 and x2 are two solution to the homogeneous equation (5.2). Let

W(n) be the Casoration of these solutions, given by (5.5), N = 2. Then we have for n0 ∈ N0

that for all n ≥ n0

W(n) = W(n0)

n−1
∏

k=n0

c(n). (5.7)

Proof. The equation (5.2) implies

xj(n+ 2) = −c(n)xj(n)− b(n)xj(n+ 1).

Then we have

W(n+ 1) =
∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

x1(n+ 2) x2(n+ 2)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

−c(n)x1(n)− b(n)x1(n+ 1) −c(n)x2(n)− b(n)x2(n+ 1)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

−c(n)x1(n) −c(n)x2(n)

∣

∣

∣

∣

∣

= c(n)W(n).

Solving the linear first order difference equation W(n + 1) = c(n)W(n) with initial value

W(n0) (see Theorem 3.2), we conclude the proof.

5.1 The constant coefficient case: Homogeneous equation

In this case the functions b(n) and c(n) are constants, denoted by b and c. We start by

solving the homogeneous equation. Thus we consider the equation

x(n+ 2)+ bx(n+ 1)+ cx(n) = 0, n ∈ N0, with b, c ∈ R. (5.8)

We now go through the steps leading to the complete solution to this equation, and then

at the end we summarize the results in a theorem.

We assume that c ≠ 0, since otherwise the equation is a first order equation for the

function y(n) = x(n + 1), which we have already solved. To solve the equation (5.8) we

12



try to find solutions of the form x(n) = rn, where r ≠ 0, and r may be either real or

complex. We will see below why we have to allow complex solutions. Insert x(n) = rn into

(5.8) and use r ≠ 0 to get the equation

r 2 + br + c = 0. (5.9)

This equation is called the characteristic equation of (5.8).

There are now three possibilities.

Case 1 If b2−4c > 0, then (5.9) has two different real roots, which we denote by r1 and r2.

Case 2 If b2 − 4c = 0, then (5.9) has a real double root, which we denote by r0.

Case 3 If b2 − 4c < 0, then (5.9) has pair of complex conjugate roots, which we denote by

r± = α± iβ, β > 0.

Consider first Case 1. Let x1(n) = rn1 and x2(n) = rn2 , n ∈ N0. We now use Proposition 5.4

with n0 = 0. We have

W(0) =
∣

∣

∣

∣

∣

r 0
1 r 0

2

r 1
1 r 1

2

∣

∣

∣

∣

∣

= r2 − r1 ≠ 0.

Thus we have found two linearly independent solutions to (5.8). Note that the solutions

are real.

Next we consider Case 3. Since we assume that the coefficients in (5.8) are real, we

would like to find real solutions. We state the following result.

Proposition 5.6. Let y be a complex solution to (5.8). Then x1(n) = Rey(n) and x2(n) =
Imy(n) are real solutions to (5.8).

Proof. By assumption we have that

y(n+ 2)+ by(n+ 1)+ cy(n) = 0 for all n ∈ N0.

Taking the real part and using that b, c are real, we get

Rey(n+ 2)+ bRey(n+ 1)+ c Rey(n) = 0 for all n ∈ N0,

which proves the result for x1. The proof for x2 follows in the same manner by taking

imaginary parts.

We now use some results concerning complex numbers, see [3, Appendix C] and also [1].

We know that y(n) = rn+ is a solution, and we use Proposition 5.6 to find two real solutions,

given by x1(n) = Re rn+ and x1(n) = Im rn+ . We now rewrite these two solutions. Let

ρ = |r+| =
√

α2 + β2 and θ = Arg r+. (5.10)

We recall that we have 0 < θ < π , since we have β > 0. Now r+ = ρeiθ and then rn+ = ρneinθ.
Taking real and imaginary parts and using the de Moivre formula, we get

x1(n) = ρn cos(nθ) and x2(n) = ρn sin(nθ). (5.11)

We use Proposition 5.4 to verify that x1 and x2 are linearly independent. We have

W(0) =
∣

∣

∣

∣

∣

1 0

ρ cos(θ) ρ sin(θ)

∣

∣

∣

∣

∣

= ρ sin(θ) ≠ 0,

13



since ρ > 0 and 0 < θ < π .

It remains to consider Case 2. We have one real solution x1 given by x1(n) = rn0 .

We note that r0 = −b

2
. We need to find another solution. To do this we use a general

procedure known as reduction of order. We try to find the second solution in the form

y(n) = u(n)x1(n). Using the notation (∆u)(n) = u(n+ 1)−u(n), see (4.2), we have

y(n+ 1) = u(n)x1(n+ 1)+ (∆u)(n)x(n + 1), (5.12)

y(n+ 2) = u(n)x1(n+ 2)+ (∆u)(n)x1(n+ 2)+ (∆u)(n+ 1)x1(n+ 2). (5.13)

We now compute as follows, using x1(n+ 2)+ bx1(n+ 1)+ cx1(n) = 0,

y(n+ 2)+ by(n+ 1)+ cy(n)
= u(n)x1(n+ 2)+ (∆u)(n)x1(n+ 2)+ (∆u)(n + 1)x1(n+ 2)

+ b
(

u(n)x1(n+ 1)+ (∆u)(n)x1(n+ 1)
)

+ c
(

u(n)x1(n)
)

= (∆u)(n+ 1)x1(n+ 2)+ (∆u)(n)
(

x1(n+ 2)+ bx1(n+ 1)
)

. (5.14)

Now we look for y(n) satisfying y(n+ 2)+by(n+1)+ cy(n) = 0. Using x1(n) = rn0 , we

get from (5.14) after division by x1(n+ 2) the equation

(∆u)(n+ 1)+ (∆u)(n)
(

1+ bx1(n+ 1)

x1(n+ 2)

)

= (∆u)(n + 1)+ (∆u)(n)
(

1+ b 1

r0

)

= 0.

We have

1+ b 1

r0

= 1+ b 1

−b

2

= −1.

Solving the first order difference equation (∆u)(n+1)−(∆u)(n) = 0, we get (∆u)(n) = c1,

and then solving the first order equation u(n+ 1)−u(n) = c1, we get

u(n) = c1n+ c2, c1, c2 ∈ R.

Thus we have found the solutions y(n) = (c1n+ c2)r
n
0 . c1 = 0 leads to the already known

solutions c2r
n
0 , so we take c2 = 0 and c1 = 1 to get the solution x2(n) = nrn0 . We compute

the Casoration at zero of the two solutions that we have found.

W(0) =
∣

∣

∣

∣

∣

1 0

r0 1r0

∣

∣

∣

∣

∣

= r0 ≠ 0.

Thus we have found two linearly independent solutions.

We summarize the above results in the following Theorem.

Theorem 5.7. The second order homogeneous difference equation with constant real coeffi-

cients

x(n+ 2)+ bx(n+ 1)+ cx(n) = 0, b, c ∈ R, c ≠ 0, n ∈ N0, (5.15)

always has two real linearly independent solutions x1 and x2. They are determined from

the characteristic equation

r 2 + br + c = 0. (5.16)

(i) If b2 − 4c > 0, the two real solutions to (5.16) are denoted by r1 and r2. The two

linearly independent solutions to (5.15) are given by

x1(n) = rn1 and x2(n) = rn2 , n ∈ N0. (5.17)
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(ii) If b2−4c = 0, the real solution to (5.16) is denoted by r0. The two linearly independent

solutions to (5.15) are given by

x1(n) = rn0 and x2(n) = nrn0 , n ∈ N0. (5.18)

(iii) If b2−4c < 0, the two complex conjugate solution to (5.16) are denoted by r± = α±iβ,

β > 0. Let r+ = ρeiθ = ρ(cos(θ) + i sin(θ)), ρ = |r+|, θ = Arg r+. The two linearly

independent solutions to (5.15) are given by

x1(n) = ρn cos(nθ) and x2(n) = ρn sin(nθ), n ∈ N0. (5.19)

Next we show how to describe all solutions to the equation (5.15).

Theorem 5.8 (Superposition principle). Let x1 and x2 be solutions to (5.15). Let c1, c2 ∈ R.

Then y = c1x1 + c2x2 is a solution to (5.15).

Proof. The proof is left as an exercise.

Theorem 5.9 (Uniqueness). A solution y to (5.15) is uniquely determined by the initial values

y0 = y(0) and y1 = y(1).

Proof. Assume that we have two solutions y1 and y2 to (5.15), with the initial values y0

and y1, i.e. y1(0) = y2(0) = y0 and y1(1) = y2(1) = y1. We must show that y1(n) =
y2(n) for all n ∈ N0. Let y(n) = y1(n) − y2(n). Then by Theorem 5.8 y satisfies (5.15)

with initial values zero. It follows from (5.15), written as

x(n+ 2) = −bx(n+ 1)− cx(n),

that y(n) = 0 for all n ∈ N0. More precisely, one proves this by induction.

Before proving the next Theorem we need the following result, which complements

Proposition 5.4.

Lemma 5.10. Assume that x1 and x2 are two linearly independent solutions to (5.15). Then

their Casoration W(n) ≠ 0 for all n ∈ N0.

Proof. Assume that W(0) = 0. Then the columns in the matrix

[

x1(0) x2(0)

x1(1) x2(1)

]

are linearly dependent, and we can find α ∈ R such that x1(0) = αx2(0) and x1(1) =
αx2(1) (or x2(0) = αx1(0) and x2(1) = αx1(1)). Let x = x1 − αx2. Then x is a solution

to (5.15) and satisfies x(0) = 0, x(1) = 0. Thus by Theorem 5.9 we have x1 − αx2 = 0,

contradicting the linear independence of x1 and x2. Thus we must have W(0) ≠ 0. It

follows from Lemma 5.5 and the assumption c ≠ 0 that W(n) ≠ 0 for all n ∈ N0.

Theorem 5.11. Let y be a real solution to

x(n+ 2)+ bx(n+ 1)+ cx(n) = 0, b, c ∈ R, c ≠ 0, n ∈ N0. (5.20)

Let x1 and x2 be two real linearly independent solutions to this equation. Then there exist

c1, c2 ∈ R, such that

y(n) = c1x1(n)+ c2x2(n), n ∈ N0. (5.21)

15



Proof. Consider the system of linear equations

[

x1(0) x2(0)

x1(1) x2(1)

][

ξ1

ξ2

]

=
[

y(0)

y(1)

]

. (5.22)

By Lemma 5.10 the Casoration of x1 and x2 satisfies W(0) ≠ 0. Thus the equation (5.22)

has a unique solution, which we denote by
[ c1
c2

]

. Let u = c1x1+c2x2−y . Then we have that

u is a solution to (5.15) and satisfies u(0) = 0, u(1) = 0. The uniqueness result implies

that u = 0. Thus we have shown that y = c1x1 + c2x2.

Example 5.12. Consider the homogeneous equation

x(n+ 2)− x(n+ 1)− x(n) = 0. (5.23)

The characteristic equation is r 2 − r − 1 = 0, which has the solutions

r1 =
1+

√
5

2
and r2 =

1−
√

5

2
.

Thus the complete solution is given by

x(n) = c1

(1+
√

5

2

)n

+ c2

(1−
√

5

2

)n

, c1 ∈ R, c2 ∈ R.

With the initial conditions x(0) = 0 and x(1) = 1 the solution is called the Fibonacci

numbers Fn, where

Fn =
1√
5

(

(1+
√

5

2

)n

−
(1−

√
5

2

)n
)

.

With the initial conditions x(0) = 2 and x(1) = 1 the solution is called the Lucas numbers

Ln, where

Ln =
(1+

√
5

2

)n

+
(1−

√
5

2

)n

.

5.2 The constant coefficient case: Inhomogeneous equation

We now try to solve the inhomogeneous equation

x(n+ 2)+ bx(n+ 1)+ cx(n) = f(n), b, c ∈ R, c ≠ 0, n ∈ N0. (5.24)

Here f is a given sequence, where we assume f ≠ 0. First we show that to find all so-

lutions to the equation (5.24) it suffices to find one solution, which we call a particular

solution and then use our knowledge of the corresponding homogeneous equation, stated

in Theorem 5.7.

Theorem 5.13. Let xp be a solution to (5.24). Let x1 and x2 be two linearly independent

solutions to the corresponding homogeneous equation. Then all solutions to (5.24) are given

by

x = c1x1 + c2x2 + xp, c1, c2 ∈ R. (5.25)

Proof. Let x = c1x1 + c2x2 + xp. Then we have

x(n+ 2)+ bx(n+ 1)+ cx(n) = c1x1(n+ 2)+ c2x2(n+ 2)+ xp(n+ 2)

+ b
(

c1x1(n+ 1)+ c2x2(n+ 1)+ xp(n+ 1)
)
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+ c
(

c1x1(n)+ c2x2(n)+ xp(n)
)

= c1

(

x1(n+ 2)+ bx1(n+ 1)+ cx1(n)
)

+ c2

(

x2(n+ 2)+ bx2(n+ 1)+ cx2(n)
)

+ xp(n+ 2)+ bxp(n+ 1)+ cxp(n)

= c10+ c20+ f(n) = f(n).

Thus all sequences of the form (5.25) are solutions to (5.24).

Now let y be a solution to (5.24) and let u = y − xp. Then we have

u(n+ 2)+ bu(n+ 1)+ cu(n) = y(n+ 2)− xp(n+ 2)+ b
(

y(n+ 1)− xp(n+ 1)
)

+ c
(

y(n)− xp(n)
)

= y(n+ 2)+ by(n+ 1)+ cy(n)
−
(

xp(n+ 2)+ bxp(n+ 1)+ cxp(n)
)

= f(n)− f(n) = 0.

Thus u is a solution to the corresponding homogeneous equation. It follows from Theo-

rem 5.11 that there exist c1, c2 ∈ R, such that u = c1x1 + c2x2, or y = c1x1+ c2x2 +xp.

As a consequence of the above result we are left with the problem of finding a particular

solution to a given inhomogeneous equation. There are no completely general methods,

and, in general, the solution cannot be found in closed form. There are some techniques

available, and we will present some of them. One of them is based on a simple idea. One

tries to guess a solution. More precisely, if the right hand side is in the form of a linear

combination of functions of the form

rn, rn cos(an), or rn sin(an),

then the method may succeed. Here r and a are constants, inferred from the given right

hand side. We will start with some examples to clarify the method.

Example 5.14. We will find the complete solution to the equation

x(n+ 2)+ 2x(n+ 1)− 3x(n) = 4 · 2n.

We first solve the corresponding homogeneous equation

x(n+ 2)+ 2x(n+ 1)− 3x(n) = 0.

The characteristic equation is r2 + 2r − 3 = 0 with solutions r1 = 1 and r2 = −3. Thus the

complete solution is

y(n) = c1 + c2(−3)n, c1, c2 ∈ R.

To find one solution to the inhomogeneous equation we use the guess u(n) = c2n. We

insert into the equation to determine c. We get

c2n+2 + 2c2n+1 − 3c2n = 4 · 2n.

This leads to c22 + 2c21 − 3c = 4 or c = 4

5
. Thus a particular solution is yp(n) = 4

5
2n. The

complete solution is then

x(n) = c1 + c2(−3)n + 4

5
2n, c1, c2 ∈ R.
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Example 5.15. We will find the complete solution to the equation

x(n+ 2)+ 4x(n) = cos(2n). (5.26)

We first solve the corresponding homogeneous equation

x(n+ 2)+ 4x(n) = 0.

The characteristic equation is r2 + 4 = 0, with solutions r± = ±i2. We use Theorem 5.7(iii).

We have ρ = |r+| = 2 and θ = π/2. Thus the solution to the homogeneous equation is

y(n) = c12n cos(π
2
n)+ c22n sin(π

2
n).

If we try to find a particular solution of the form u(n) = c cos(2n), we find after sub-

stitution into the equation a term containing sin(2n). Thus the right form is u(n) =
c cos(2n)+ d sin(2n). We insert this expression into the left hand side of (5.26), and then

use the addition formulas to get the following result.

u(n+ 2)+ 4u(n) = c cos(2(n+ 2))+ d sin(2(n+ 2))+ 4
(

c cos(2n)+ d sin(2n)
)

= c
(

cos(2n) cos(4)− sin(2n) sin(4)
)

+ d
(

sin(2n) cos(4)+ cos(2n) sin(4)
)

+ 4
(

c cos(2n)+ d sin(2n)
)

=
(

c cos(4)+ d sin(4)+ 4c
)

cos(2n)

+
(

−c sin(4)+ d cos(4)+ 4d
)

sin(2n)

Thus to solve (5.26) we have to determine c and d, such that

(

c cos(4)+ d sin(4)+ 4c
)

cos(2n)+
(

−c sin(4)+ d cos(4)+ 4d
)

sin(2n) = cos(2n)

for all n ∈ N0. We now use that the sequences cos(2n) and sin(2n) are linearly indepen-

dent. Thus we get the linear system of equations

c(4+ cos(4))+ d sin(4) = 1,

c(− sin(4))+ d(4+ cos(4)) = 0.

The solution is

c = 4+ cos(4)

17+ 8 cos(4)
, d = sin(4)

17+ 8 cos(4)
.

Thus the complete solution to (5.26) is given by

x(n) = c12n cos(π
2
n)+ c22n sin(π

2
n)+ 4+ cos(4)

17+ 8 cos(4)
cos(2n)+ sin(4)

17+ 8 cos(4)
sin(2n).

Example 5.16. There is a different way to find a particular solution to (5.26), based on

computations with complex numbers. We note that cos(2n) = Re ei2n. We find a particular

solution to the equation

y(n+ 2)+ 4y(n) = ei2n.

The particular solution to (5.26) is then found as the real part of this solution.
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We note that ei2n = (e2i)n. Thus using the same technique as in Example 5.14 we guess

that the solution is of the form y(n) = ce2in, where now c can be a complex constant.

Insertion gives

y(n+ 2)+ 4y(n) = cei(2n+4) + 4cei2n

= c(e4i + 4)e2in = e2in.

Thus we must have

c = 1

e4i + 4
= e−4i + 4

(e4i + 4)(e−4i + 4)
= e−4i + 4

17+ 8 cos(4)
.

Thus the particular solution to (5.26) is given by

yp(n) = Re
(e−4i + 4)e2in

17+ 4 cos(4)
= 4+ cos(4)

17+ 8 cos(4)
cos(2n)+ sin(4)

17+ 8 cos(4)
sin(2n).

This result is the same as the one in the previous example.

Example 5.17. We will find the complete solution to the equation

x(n+ 2)− x(n+ 1)− 6x(n) = 36n.

The characteristic equation is r 2 − r − 6 = 0 with solutions r1 = −2 and r2 = 3. To find a

particular solution we use the guess u(n) = d0 + d1n. Insert into the left hand side of the

equation and compute as follows.

u(n+ 2)−u(n+ 1)− 6u(n) = d0 + d1(n+ 2)− (d0 + d1(n+ 1))− 6(d0 + d1n)

= −6d1n+ (d1 − 6d0) = 36n.

Since the sequences {1} and {n} are linearly independent, we get the linear system of

equations d1 − 6d0 = 0 and −6d1 = 36, with the solutions d0 = −1 and d1 = −6. Thus we

have found the particular solution u(n) = −1− 6n. The complete solution is then

x(n) = c1(−2)n + c23n − 1− 6n.

The method used in the examples above is called the method of undetermined coeffi-

cients. As is evident from the second example, even simple right hand sides can lead to

rather complicated particular solutions. To give a general prescription for the use of the

method is rather complicated. We give a simplified description here.

Method of undetermined coefficients The method is applied to an inhomogeneous equa-

tion (5.24). There are four steps in the method:

1. Find the complete solution to the corresponding homogeneous equation in the form

x = c1x1 + c2x2, where x1 and x2 are linearly independent solutions.

2. Verify that the functions x1, x2,and f are linearly independent (this can be done by

computing their Casoratian, or sometimes seen by inspection). If they are linearly

dependent, this version of the method does not apply.

3. Verify that the right hand side is a linear combination of the functions in the left

hand column of Table 5.1. If this is not the case, the method cannot be applied.
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f(n) form of yp

rn crn

nν , ν an integer d0 + d1n+ · · · + dνnν
rn cos(an) crn cos(an)+ drn sin(an)

rn sin(an) crn cos(an)+ drn sin(an)

Table 5.1: Method of undetermined coefficients

4. Use the form of the solution given in the second column of Table 5.1, insert in the

inhomogeneous equation (5.24), and determine the coefficients, as in the examples.

In the case, where x1, x2, f are linearly dependent, and f is a linear combination of the

form of functions in Table 5.1, the particular solution from this table is multiplied by n.

As an example, if we instead of (5.26) consider

x(n+ 2)+ 4x(n) = 2n sin(π
2
n),

then the particular solution is of the form

cn2n cos(π
2
n)+ dn2n sin(π

2
n),

or, alternatively, of the form

Im(cn(2i)n),

where in the second case c may be a complex constant. One finds in both cases the

particular solution

xp(n) = −
n

4
sin(π

2
n).

5.3 The variable coefficient case: Homogeneous equation

We now briefly look at the general homogeneous second order difference equation (5.2).

As already stated, there is no general method for solving this equation. However, we can

prove a general existence and uniqueness theorem.

Theorem 5.18. Let b(n) and c(n), n ∈ N0 be real sequences. Let

x(n+ 2)+ b(n)x(n+ 1)+ c(n)x(n) = 0, n ∈ N0. (5.27)

Then there exist two linearly independent solutions x1 and x2 to (5.27). Let x be any solution

to (5.27). Then there exist c1, c2 ∈ R, such that x = c1x1 + c2x2. Furthermore, a solution to

(5.27) is uniquely determined by its initial values x(0) = y0 and x(1) = y1.

Proof. We define a sequence x1 as follows. Let x1(0) = 1 and x1(1) = 0. Then use (5.27)

to determine x1(2) = −b(0)x1(1) − c(0)x1(0) = −c(0), and then x1(3) = −b(1)x1(2) −
c(1)x1(1) = b(1)c(0). In general, we determine x1(n), n ≥ 2, from x1(n−1) and x1(n−2).

Thus we get a solution x1 to (5.27). A second solution x2 is determined by letting x2(0) = 0

and x2(1) = 1, and then repeating the arguments above. Now we use Proposition 5.4 to

show that the solutions x1 and x2 are linearly independent. We have

W(0) =
∣

∣

∣

∣

∣

x1(0) x2(0)

x1(1) x2(1)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

∣

= 1,

20



which proves the claim.

Now we prove the last statement in the theorem. Let u and v be solutions to (5.27),

satisfying u(0) = v(0) = y0 u(1) = v(1) = y1. Let z = u−v. Then z(0) = 0 and z(1) = 0,

and (5.27) implies that z(n) = 0 for all n ∈ N0, such that u = v, as claimed. Finally, if x is

any solution to (5.27), then x = x(0)x1 + x(1)x2, by this uniqueness result.

Sometimes one can guess one solution to (5.27). Then one can use the reduction of

order method to find a second, linearly independent, solution. We state the result in the

following theorem.

Theorem 5.19 (Reduction of order). Let x1 be a solution to (5.27) satisfying x1(n) ≠ 0 for

all n ∈ N0. Then a second solution x2 can be found by the following method. Let v be the

solution to the first order homogeneous difference equation

v(n+ 1)+
(

1+ b(n)x1(n+ 1)

x1(n+ 2)

)

v(n) = 0, v(0) = 1. (5.28)

and let u be a solution to the first order inhomogeneous difference equation

u(n+ 1)−u(n) = v(n). (5.29)

Let x2(n) = u(n)x1(n). Then x2 is a solution to (5.27), and x1, x2 are linearly independent.

Proof. Let u be a sequence, and let v = ∆u. Let y(n) = u(n)x1(n). Repeating the com-

putations in (5.14), one finds immediately that in order for y to solve (5.27), y must be a

solution to the equation in (5.28). We take the solution v, which satisfies the initial con-

dition in (5.28). The existence and uniqueness of this solution follows from Theorem 3.2.

Then we solve (5.29), using again Theorem 3.2, and define x2(n) = u(n)x1(n). It remains

to verify that the two solutions are linearly independent. We compute their Casoratian at

zero.

W(0) =
∣

∣

∣

∣

∣

x1(0) x2(0)

x1(1) x2(1)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

x1(0) u(0)x1(0)

x1(1) u(1)x1(1)

∣

∣

∣

∣

∣

= x1(0)x1(1)(u(1)−u(0)) = x1(0)x1(1)v(0).

By assumption x1(0) ≠ 0 and x1(1) ≠ 0, and furthermore v(0) = 1. Thus x1 and x2 are

linearly independent.

5.4 The variable coefficient case: Inhomogeneous equation

We consider the inhomogeneous equation

x(n+ 2)+ b(n)x(n+ 1)+ c(n)x(n) = g(n), n ∈ N0. (5.30)

We need to determine one solution to this equation, which we again call a particular so-

lution. First we note that Theorem 5.13 is valid also in the variable coefficient case. The

verification is left as an exercise.

We have the following general result. The method used is called variation of parame-

ters.
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Theorem 5.20 (Variation of parameters). Assume that c(n) ≠ 0 for all n ∈ N0. Assume

that x1 and x2 are two linearly independent solutions to the homogeneous equation (5.27).

Then a particular solution to (5.30) is given by

xp(n) = u1(n)x1(n)+u2(n)x2(n), n ∈ N0,

where u1 and u2 are given by

u1(n) = −
n−1
∑

k=0

g(k)x2(k+ 1)

W(k+ 1)
, (5.31)

u2(n) =
n−1
∑

k=0

g(k)x1(k+ 1)

W(k+ 1)
. (5.32)

Here W(n) denotes the Casoratian of x1 and x2.

Proof. We define

y(n) = u1(n)x1(n)+u2(n)x2(n)

and compute

y(n+ 1) = u1(n)x1(n+ 1)+u2(n)x2(n+ 1)

+ (∆u1)(n)x1(n+ 1)+ (∆u2)(n)x2(n+ 1).

We impose the condition

(∆u1)(n)x1(n+ 1)+ (∆u2)(n)x2(n+ 1) = 0. (5.33)

Using this condition we compute once more

y(n+ 2) = u1(n)x1(n+ 2)+u2(n)x2(n+ 2)

+ (∆u1)(n)x1(n+ 2)+ (∆u2)(n)x2(n+ 2).

Now insert the expressions for y(n), y(n+ 1), and y(n+ 2) in (5.30) and simplify, using

the fact that both x1 and x2 satisfy the homogeneous equation. This leads to the equation

(∆u1)(n)x1(n+ 2)+ (∆u2)(n)x2(n+ 2) = g(n). (5.34)

For each n ∈ N0 we can view the equations (5.33) and (5.34) as a pair of linear equations

to determine (∆u1)(n) and (∆u2)(n). Explicitly, we have

(∆u1)(n)x1(n+ 1)+ (∆u2)(n)x2(n+ 1) = 0. (5.35)

(∆u1)(n)x1(n+ 2)+ (∆u2)(n)x2(n+ 2) = g(n). (5.36)

The determinant of the coefficient matrix is

∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

x1(n+ 2) x2(n+ 2)

∣

∣

∣

∣

∣

= W(n+ 1),

where W(n) is the Casoratian of x1 and x2. We use the assumption that c(n) ≠ 0 for all

n ∈ N0, the linear independence of x1, x2, and Lemma 5.5 to get that W(n) ≠ 0 for all
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n ∈ N0. Thus we have a unique solution to the linear system. We use Cramer’s method

(see [3]) to solve the system. The result is

(∆u1)(n) =

∣

∣

∣

∣

∣

0 x2(n+ 1)

g(n) x2(n+ 2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

x1(n+ 2) x2(n+ 2)

∣

∣

∣

∣

∣

= −x2(n+ 1)g(n)

W(n+ 1)
, (5.37)

(∆u2)(n) =

∣

∣

∣

∣

∣

x1(n+ 1) 0

x1(n+ 2) g(n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1(n+ 1) x2(n+ 1)

x1(n+ 2) x2(n+ 2)

∣

∣

∣

∣

∣

= x1(n+ 1)g(n)

W(n+ 1)
. (5.38)

Solving the two difference equations yields the expressions for u1 and u2 in the theorem.

Let us verify that u1 given by (5.31). We have

(∆u1)(n) = u1(n+ 1)−u1(n)

=
(

−
n
∑

k=0

g(k)x2(k+ 1)

W(k+ 1)

)

−
(

−
n−1
∑

k=0

g(k)x2(k+ 1)

W(k+ 1)

)

= −g(n)x2(n+ 1)

W(n+ 1)
.

We can also use Theorem 3.2 with the initial condition y0(n) = 0 to get the same solution.

5.5 Second order difference equations: Linear algebra

In this section we connect the results obtained in the previous sections with results from

linear algebra. We refer to [3] for the results that we use. First, we recall from Section 4

that S(N0) denotes all real functions x : N0 → R, or equivalently, all real sequences indexed

by N0. It is a real vector space, as stated in Proposition 4.1.

We now formulate some of the results above in the language of linear algebra. We

limit the statements to the results in the case of a second order difference equation with

constant coefficients.

Thus we consider the inhomogeneous equation

x(n+ 2)+ bx(n+ 1)+ cx(n) = f(n), n ∈ N0, (5.39)

and the corresponding homogeneous equation

x(n+ 2)+ bx(n+ 1)+ cx(n) = 0, n ∈ N0. (5.40)

We define the operator

L(x)(n) = x(n+ 2)+ bx(n+ 1)+ cx(n), n ∈ N0, x ∈ S(N0). (5.41)

Proposition 5.21. The operator L defined in (5.41) is a linear operator from S(N0) to S(N0).
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Proof. The proof is the same as the proof of the superposition principle, Theorem 5.8.

Here are the details. Let x1, x2 ∈ S(N0) and c1, c2 ∈ R. Then we have

(L(c1x1 + c2x2))(n) = (c1x1 + c2x2)(n+ 2)+ b(c1x1 + c2x2)(n+ 1)

+ c(c1x1 + c2x2)(n)

= c1x1(n+ 2)+ c2x2(n+ 2)+ bc1x1(n+ 1)+ bc2x2(n+ 1)

+ cc1x1(n)+ cc2x2(n)

= c1

(

x1(n+ 2)+ bx1(n+ 1)+ cx1(n)
)

+ c2

(

x2(n+ 2)+ bx2(n+ 1)+ cx2(n)
)

= c1L(x1)(n)+ c2L(x2)(n).

This equality is valid for all n ∈ N0. Thus we have shown that

L(c1x1 + c2x2) = c1L(x1)+ c2L(x2),

which is linearity of L.

Based on this result we can reformulate the problem of solving the inhomogeneous

equation (5.39) as follows. Given f ∈ S(N0), find x ∈ S(N0) satisfying L(x) = f . We state

the following two results. We recall that the null space of the linear operator L is defined

as

kerL = {x ∈ S(N0) |L(x) = 0}. (5.42)

Theorem 5.22. The linear operator L : S(N0)→ S(N0) has the following two properties.

(i) The operator L maps S(N0) onto S(N0).

(ii) We have dim kerL = 2.

Proof. To prove part (i), let f ∈ S(N0). We must find x ∈ S(N0), such that L(x) = f . Go

back to the difference equation and write it as

x(n+ 2) = −bx(n+ 1)− cx(n)+ f(n), n ∈ N0.

We look for a solution x, which satisfies x(0) = 0, x(1) = 0. Using the equation, we find

x(2) = f(2), x(3) = −bf(n)+ f(n), etc. More formally, we prove by induction that x(n)

is defined and satisfies the equation for all n. This proves part (i). Note that in the proof

the choice x(0) = 0 and x(1) = 0 is arbitrary. Any other choice would also lead to a proof

of existence.

Concerning part (ii), then the equation L(x) = 0 is the homogeneous equation (5.40)

written in linear algebra terms. The dimension statement is then a reformulation of Theo-

rems 5.7 and 5.11.

Exercises

Exercise 5.1. Fill in the details in the proof of Theorem 5.20

24



6 Higher order linear difference equations

In this section we give a short introduction to the theory of higher order linear difference

equation. A difference equation of order k has the following structure

x(n+ k)+ bk−1(n)x(n+ k− 1)+ bk−2(n)x(n+ k− 2)+
· · · + b1(n)x(n+ 1)+ b0(n)x(n) = f(n), n ∈ N0. (6.1)

Here bk−1(n), bk−2(n), . . . , b0(n) are given sequences. The right hand side f(n) is also a

given sequence. We only consider the case of real coefficients and right hand side. The

terminology is the same as in the case of the second order equations. If f(n) = 0 for all

n ∈ N0, then the equation is said to be homogeneous, otherwise it is inhomogeneous.

Several results on the second order equations are valid also for higher order equations,

with proofs that are essentially the same.

Theorem 6.1 (Superposition principle). Let x1, x2, . . . , xN be solutions to the homogeneous

difference equation of order k,

x(n+ k)+ bk−1(n)x(n+ k− 1)+ bk−2(n)x(n+ k− 2)+
· · · + b1(n)x(n+ 1)+ b0(n)x(n) = 0, n ∈ N0. (6.2)

Let c1, c2, . . . , cN ∈ R. Then y = c1x1 + c2x2 + · · · + cNxN is a solution to (6.2).

A solution to (6.1) in the case f ≠ 0 is called a particular solution.

Theorem 6.2. Let f ≠ 0 and let xp be a particular solution to (6.1). Then the complete

solution to (6.1) can be written as

x = xh + xp, (6.3)

where xh is any solution to the homogeneous equation (6.2).

It follows from this last result that in order to find all solutions to an equation (6.1) we

must solve two problem. One is to find a particular solution to the inhomogeneous equa-

tion, and the other is to find the complete solution to the corresponding inhomogeneous

equation (6.2). In the general case this is quite complicated. We will here limit ourselves to

considering the case where bk−1(n), . . . , b0(n) are constant.

Thus we consider now the constant coefficient homogeneous difference equation of

order k,

x(n+ k)+ bk−1x(n+ k− 1)+ bk−2x(n+ k− 2)+
· · · + b1x(n+ 1)+ b0x(n) = 0, n ∈ N0, (6.4)

where bk−1, . . . , b0 ∈ R. The technique used to find a solution to (6.4) is the same as in the

order two case. We guess a solution of the form y(n) = rn, r ≠ 0, insert in the equation

to get

rn+k + bk−1r
n+k−1 + · · · + b1r

n+1 + b0r
n = 0.

Cancelling the common non-zero factor rn we get a polynomial equation of degree k,

r k + bk−1r
k−1 + · · · + b1r

1 + b0 = 0.

Thus we need to know the structure of the roots of a polynomial. We state the result here.

The proof will be given in another course.
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Theorem 6.3. Let

r k + bk−1r
k−1 + · · · + b1r

1 + b0

be a polynomial of degree k with real coefficients bk−1, . . . , b0. Then there exist integers K ≥
0 and L ≥ 0, real numbers κ1, . . . , κK , κj ≠ κj′ , j ≠ j

′, nonnegative integers k1, k2, . . . , kK ,

complex numbers ζ1, . . . , ζL, ζj ≠ ζj′ , j ≠ j
′, with Imζ1 ≠ 0, . . . , ImζL ≠ 0, and nonnegative

integers l1, l2, . . . , lL, such that

r k + bk−1r
k−1 + · · · + b1r

1 + b0

= (r − κ1)
k1 · · · (r − κK)kK(r − ζ1)

l1(r − ζ1)
l1 · · · (r − ζL)lL(r − ζL)lL . (6.5)

Thus the κj, ζj′ , and ζj′ are the distinct zeroes of the polynomial. The integers kj and 2lj′

are called the multiplicities of the zeroes.

We have
K
∑

j=1

kj + 2

L
∑

j′=1

lj′ = k. (6.6)

The general statement above is rather complicated. We will give a number of examples

to clarify the statement. Consider first the polynomial of degree two r 2 + b1r + b0. In the

case b2 − 4c > 0 there are two distinct real roots κ1 and κ2, given by

κ1 =
−b −

√
b2 − 4c

2
, κ2 =

−b +
√
b2 − 4c

2
,

and the factorization in (6.5) takes the form

r 2 + b1r + b0 = (r − κ1)(r − κ2).

In this case k1 = 1 and k2 = 1.

In the case b2 − 4c = 0 there is a real double root κ1 = −b/2 and the factorization in

(6.5) takes the form

r 2 + b1r + b0 = (r − κ1)
2.

In this case k1 = 2.

Finally, in the case b2 − 4c < 0 one of the complex roots is given by

ζ1 =
−b + i

√
4c − b2

2
.

The other complex root is the complex conjugate of ζ1. The factorization (6.5) now takes

the form

r 2 + b1r + b0 = (r − ζ1)(r − ζ1).

In this case l1 = 1.

These examples also exemplifies the notational convention used in the statement of

Theorem 6.3. In the first two cases there are no complex roots. In this case one has L = 0

in the statement of the theorem, and there are no complex roots. Analogously, in the third

case, there are no purely real roots, hence K = 0 in the statement of the theorem.

For polynomials of degree three there is a general formula for the roots. However,

it is very complicated, and is rarely used. For polynomials of degree four there are also

formulas, but they are even more complicated.
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For polynomials of degree five of higher there is no closed formula for the roots. It can

be proved that this is the case. On the other hand, the existence of the factorization (6.5)

can be proved for polynomials of any degree.

We now continue with the examples. For polynomials of degree three or higher we can

only give examples with explicit choice of the coefficients, as explained above. One can

show that one has

r 3 − 7 r 2 + 14 r − 8 = (r − 1) (r − 2) (r − 4) . (6.7)

In this case K = 3, κ1 = 1, k1 = 1, κ2 = 2, k2 = 1, and κ3 = 4, k3 = 1. By convention L = 0.

Next we consider

r 3 + r 2 − 21 r − 45 = (r + 3)
2
(r − 5) . (6.8)

In this case K = 2, κ1 = −3, K1 = 2 and κ2 = 5, k2 = 1. By convention L = 0.

As the next example of polynomials of degree three we consider

r 3 − 12 r 2 + 22 r − 20 = (r − 10) (r − 1− i) (r − 1+ i) . (6.9)

In this case K = 1, κ1 = 10, k1 = 1 and L = 1, ζ1 = 1+ i, l1 = 1.

As the final example of polynomials of degree three we consider

r 3 + 9 r 2 + 27 r + 27 = (r + 3)
3
. (6.10)

In this case K = 3, κ1 = −3, k1 = 3. By convention L = 0.

The four examples of polynomials of degree three cover all the cases that may occur.

In (6.7) we have three real distinct roots, each with multiplicity one. In (6.8) we have two

real distinct roots, one with multiplicity two, and one with multiplicity one. In (6.9) we

have one real root, with multiplicity one, and a pair of complex conjugate roots. Finally, in

(6.10) we have one real root of multiplicity three.

Concerning polynomials of degree four we give just one example. We consider

r 4 − 2 r 3 + 6 r 2 − 2 r + 5 = (r − 1− 2 i) (r − 1+ 2 i) (r + i) (r − i) . (6.11)

In this case K = 0, L = 2, ζ1 = 1+ 2i, l1 = 1, and ζ2 = i, l+ 2 = 1.

Now we state a result for constant coefficient homogeneous difference equations of

order three, based on the general result Theorem 6.3.

Theorem 6.4. For a constant coefficient homogeneous difference equations of order three,

x(n+ 3)+ b2x(n+ 2)+ b1x(n+ 1)+ b0x(n) = 0, n ∈ N0, (6.12)

with b2, b1, b0 ∈ R we have the following results. Let p(r) = r 3+b2r
2+b2r +b0 denote the

characteristic polynomial.

(i) Assume that p(r) has three distinct real roots κ1, κ2, and κ3. Define

xj(n) = κnj , n ∈ N0, j = 1,2,3. (6.13)

Then xj, j = 1,2,3 are three linearly independent solutions to (6.12).

(ii) Assume that p(r) has two distinct real roots κ1 and κ2, with multiplicities two and one,

respectively. Define

x1(n) = κn1 , x2(n) = nκn1 , x3(n) = κn2 . (6.14)

Then xj, j = 1,2,3 are three linearly independent solutions to (6.12).
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(iii) Assume that p(r) has one real root κ1 and a pair of complex roots ζ1, ζ1. Let ζ1 =
ρ1(cos(θ1)+ i sin(θ1)). Define

x1(n) = κn1 , x2(n) = ρn1 cos(nθ1), x3(n) = ρn1 sin(nθ1). (6.15)

Then xj, j = 1,2,3 are three linearly independent solutions to (6.12).

(iii) Assume that p(r) has one real root κ1 of multiplicity three. Define

x1(n) = κn1 , x2(n) = nκn1 , x3(n) = n2κn1 . (6.16)

Then xj, j = 1,2,3 are three linearly independent solutions to (6.12).

As an example, we consider the difference equation

x(n+ 3)− 7x(n+ 2)+ 14x(n+ 1)− 8x(n) = 0.

The characteristic equation is given by (6.7). Using the factorization and the theorem we

have three linearly independent solutions

x1(n) = 1, x2(n) = 2n, x3(n) = 4n.

Concerning the inhomogeneous equation, then one can again use the method of unde-

termined coefficients. As an example we consider

x(n+ 3)− 7x(n+ 2)+ 14x(n+ 1)− 8x(n) = 3n.

We try y(n) = c3n, which we insert into the equation. A simple computation yields that a

particular solution is given by y(n) = −1

2
3n. Thus the complete solution is given by

x(n) = c1 + c22n + c34n − 1

2
3n.

A result similar to Theorem 5.11 holds for third order difference equations. This means

that once we have found three linearly independent solutions to the homogeneous equa-

tion (6.12), any other solution to this equation can be written as a linear combination of

these three solutions.
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