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1 Introduction
These notes are intended for use in the course on real and complex functions at Aalborg University.
They start with the basic results on analytic functions, and end with a proof of a version of the
theorem on residues for a meromorphic function. These notes are used in conjunction with the
textbook [3], and several references will be made to this book.

2 Holomorphic functions
We start by defining holomorphic functions. These functions are simply functions of a complex
variable that can be differentiated in the complex sense.

Definition 2.1. Let G � C be an open subset. A function f WG ! C is said to be differentiable in
the complex sense at z0 2 G, if

lim
z!z0

f .z/ � f .z0/

z � z0

exists. The limit is denoted by f 0.z0/.

Definition 2.2. Let G � C be an open subset. A function f WG ! C is said to be holomorphic in
G, if it is differentiable in the complex sense at all points in G. The set of holomorphic functions
is denoted by H.G/.

Let us note that the rules for differentiation of a sum, a product, and a quotient of two complex
functions are the same as in the real case. The proofs given in [3, Chapter 4] are valid in the
complex case.

We recall that we can decompose a complex number into its real and imaginary parts. Applying
this decomposition at each value of a complex function we get a decomposition f D u C iv,
where u D Re.f / and v D Im.f / will be viewed as functions of the real variable pair .x; y/
corresponding to z D x C iy. We often identify the point .x; y/ in R2 with the point z D x C iy

in C. This identification should be kept in mind at various places in these notes. Thus a function
from G � C to C can also be viewed as a function from a subset of R2 to R2. Thus we may write
a function as f .z/ or f .x; y/, depending on whether we view it as defined on a subset of C, or a
subset of R2.

An open ball in R2 centered at 0 and with radius ı is denoted by B.0; ı/. Let G � R2 be
an open subset. We recall from [2] that a function uWG ! R is differentiable in the real sense
(or has a total derivative) at a point .x0; y0/ 2 G, if and only if there exist a ı > 0, a function
EWB.0; ı/! R with E.x; y/! 0 as .x; y/! .0; 0/, and two real numbers a and b, such that

u.x; y/ D u.x0; y0/C a.x � x0/C b.y � y0/

C k.x � x0; y � y0/kE.x � x0; y � y0/ (2.1)

for .x � x0; y � y0/ 2 B.0; ı/. In this case the partial derivatives exist at .x0; y0/, and we have

@u

@x
.x0; y0/ D a;

@u

@y
.x0; y0/ D b: (2.2)

This result has an immediate generalization to the case of differentiability in the complex sense.

Lemma 2.3. A function f WG ! C is differentiable in the complex sense at z0 2 G, if and only if
there exist c 2 C and EWB.0; ı/! C with E.h/! 0 as h! 0, such that

f .z/ D f .z0/C c.z � z0/C jz � z0jE.z � z0/ (2.3)

for z � z0 2 B.0; ı/. If f is differentiable at z0, then f 0.z0/ D c.
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We have the following result.

Theorem 2.4. Let G � C be an open subset. A function f D uC iv from G to C is differentiable
in the complex sense at the point z0 D x0 C iy0 2 G, if and only if the functions u and v both are
differentiable in the real sense at .x0; y0/ with partial derivatives satisfying the Cauchy-Riemann
equations

@u

@x
.x0; y0/ D

@v

@y
.x0; y0/;

@v

@x
.x0; y0/ D �

@u

@y
.x0; y0/: (2.4)

In this case we have

f 0.z0/ D
@u

@x
.x0; y0/C i

@v

@x
.x0; y0/: (2.5)

Proof. Assume first that f is differentiable in the complex sense at z0 with derivative f 0.z0/ D
c D aCib. Then we can find a functionE, such that (2.3) holds. Take the real part of this equation,
with the notation f D uC iv and E D E1 C iE2. Note that jz � z0j D k.x � x0; y � y0/k. The
result is

u.x; y/ D u.x0; y0/C a.x � x0/ � b.y � y0/

C k.x � x0; y � y0/kE1.x � x0; y � y0/: (2.6)

Thus it follows from [2] that u is differentiable in the real sense at .x0; y0/, and that we have

@u

@x
.x0; y0/ D a;

@u

@y
.x0; y0/ D �b: (2.7)

Analogously, taking the imaginary part of (2.3), we find that

v.x; y/ D v.x0; y0/C b.x � x0/C a.y � y0/

C k.x � x0; y � y0/kE2.x � x0; y � y0/: (2.8)

Thus v is differentiable in the real sense at .x0; y0/, and we have

@v

@x
.x0; y0/ D b;

@v

@y
.x0; y0/ D a: (2.9)

Comparing (2.7) and (2.9), we see that the Cauchy-Riemann equations (2.4) hold. Since f 0.z0/ D
aC ib, it also follows that (2.5) holds.

Conversely, assume now that both u and v are differentiable in the real sense at .x0; y0/, and
furthermore that the Cauchy-Riemann equations (2.4) hold. To simplify the notation, write

Qa D
@u

@x
.x0; y0/ and Qb D

@u

@y
.x0; y0/:

and also

˛ D
@v

@x
.x0; y0/ and ˇ D

@v

@y
.x0; y0/:

Since (2.4) hold, we have Qa D ˇ and Qb D �˛. Furthermore, we can find functions E1 and E2,
defined on a small ball around zero, such that (2.1) holds for u and v, with E1 and E2, respectively.
Now we compute as follows

f .z/ D u.x; y/C iv.x; y/

D u.x0; y0/C Qa.x � x0/C Qb.y � y0/
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C k.x � x0; y � y0/kE1.x � x0; y � y0/

C i
�
v.x0; y0/C ˛.x � x0/C ˇ.y � y0/

C k.x � x0; y � y0/kE2.x � x0; y � y0/
�

D u.x0; y0/C iv.x0; y0/

C Qa
�
.x � x0/C i.y � y0/

�
C i˛

�
.x � x0/C i.y � y0/

�
C k.x � x0; y � y0/k

�
E1.x � x0; y � y0/C iE2.x � x0; y � y0/

�
D f .z0/C . QaC i˛/.z � z0/C jz � z0jE.z � z0/;

where we have defined E D E1 C iE2 and used our notational conventions for points in C and
R2. It follows from Lemma 2.3 that f is differentiable in the complex sense at z0, and that (2.5)
holds.

The Cauchy-Riemann equations express the fact that the partial derivatives in the real sense of
the real and imaginary parts of a function differentiable in the complex sense cannot be arbitrary.
This fact has several important consequences. We have the following result, whose proof we will
omit. It can be found in [1, Theorem 5.23].

Theorem 2.5. Let G � C be an open and connected set, and let f D uC iv 2 H.G/. If any one
of u, v or jf j is constant on G, then f is constant on G. If f 0.z/ D 0 for all z 2 G, then f is
constant in G.

There is a useful criterion for determining whether a given function is differentiable in the
complex sense. It is obtained by combining Theorem 2.4 with [2].

Theorem 2.6. Let G � C be open and f D uC iv a complex valued function defined on G. Let
z0 D x0C iy0 2 G. If the partial derivatives of u and v exist in G, are continuous at .x0; y0/, and
satisfy the Cauchy-Riemann equations (2.4), then f is differentiable in the complex sense at z0.

Example 2.7. Let f .z/ D exp.z/, z 2 C. Then the decomposition f D uC iv is given by

u.x; y/ D ex cos.y/; v.x; y/ D ex sin.y/:

Clearly the partial derivatives of u and v exist and are continuous at all points in R2. Furthermore,
we have

@u

@x
.x; y/ D ex cos.y/;

@u

@y
.x; y/ D �ex sin.y/;

@v

@x
.x; y/ D ex sin.y/;

@v

@y
.x; y/ D ex cos.y/:

It follows that the Cauchy-Riemann equations are satisfied at all points in R2, and thus exp.z/ is
holomorphic on C.

3 Power series
An important class of holomorphic functions are the power series. We will show that every complex
power series defines a holomorphic function in its disk of convergence.

We start by recalling some results on power series. First we note that the definition of conver-
gence of a power series given in [3] applies to series with complex terms.

3



Definition 3.1. An infinite series is an expression
P1
kD0 ak , where ak 2 C. The sequence of partial

sums is defined by sn D
Pn
kD0 ak . The series is convergent with sum a, if limn!1 sn D a. This is

written as
P1
kD0 ak D a.

The series is said to be absolutely convergent, if the series
P1
kD0jakj is convergent.

We recall from [3] that an absolutely convergent series is convergent. This follows in the com-
plex case from the fact that C is a complete metric space.

We also recall the Weierstrass uniform convergence criterion for sequences of functions. We
formulate it for complex functions defined on a subset of the complex plane.

Proposition 3.2. Let G � C be a subset, and let fkWG ! C, k � 0, be a sequence of functions.
Assume there exists constants Mk � 0 and k0 2 N, such that

jfk.z/j �Mk for all k � k0 and all z 2 G. (3.1)

Assume that
P1
kDk0

Mk is convergent. Then the series
P1
kD0 fk.z/ is absolutely and uniformly

convergent on G.

Proof. This result is just a reformulation of [3, Theorem 9.29]. More precisely, we have

j

k2X
kDk1

fk.z/j �

k2X
kDk1

jfk.z/j �

k2X
kDk1

Mk

for k2 > k1 � k0. Thus we can apply [3, Theorem 9.29].

We need some further concepts from the theory of real sequences to formulate the results on
power series. A real sequence fcng is non-decreasing, if cn � cnC1 for all n 2 N. We have from
[3, Section 2.3] the result that such a sequence is convergent, if and only if it is bounded above. In
that case is converges to supfcng. We extend the concept of convergence a little by saying that it
converges to C1, if it is not bounded above. This is written as limn!1 cn D C1. Analogously
we have for a non-indreasing sequence, cn � cnC1, that it is convergent to a finite number if and
only if it is bounded below. If it is not bounded below, we write limn!1 cn D �1. With this
extension all monotone sequences of real numbers are convergent. We also extend the usage of
infinum and supremum to the case of unbounded sets, allowing the values �1 andC1.

We now introduce the definitions of limes superior and limes inferior of any real sequence.

Definition 3.3. Let fang be an arbitrary real sequence. Let rn D supfak j k � ng and define

lim sup
n!1

an D lim
n!1

rn: (3.2)

Let tn D inffak j k � ng and define

lim inf
n!1

an D lim
n!1

tn: (3.3)

These definitions make sense, since the sequence frng is non-increasing, and the sequence ftng
is non-decreasing. We should note that with the extended usage the values of lim supn!1 an and
lim infn!1 an may be �1 orC1.

We note that the definitions imply

lim inf
n!1

an � lim sup
n!1

an (3.4)

We note the following result, which is an immediate consequence of the definition.

4



Proposition 3.4. Let fang be an arbitrary real sequence.

(a) Let a D lim supn!1 an. If r > a, then there exists n0, such that an < r for all n � n0. If
r < a, then there exist infinitely many indices n, such that an > r .

(b) Let b D lim infn!1 an. If r < b, then there exists n0, such that r < an for all n � n0. If
r > b, then there exist infinitely many indices n, such that an < r .

Theorem 3.5. Let fang be a real sequence and a 2 R. Then limn!1 an D a, if and only if
lim supn!1 an D lim infn!1 an D a.

Proof. We first assume that limn!1 an D a. Let " > 0 be arbitrary, and determine n0, such that

a � " < an < aC " for all n � n0.

Writing again rn D supfak j k � ng, we get that

a � " � rn � aC " for all n � n0.

Since " is arbitrary, we conclude that a D limn!1 rn, such that

a D lim sup
n!1

an:

Similarly, we get with tn D inffak j k � ng that

a � " � tn � aC " for all n � n0,

such that a D limn!1 tn and then
a D lim inf

n!1
an:

Now assume that lim supn!1 an D lim infn!1 an D a. Let " > 0 be arbitrary. Since a D
limn!1 tn, we can determine n1, such that

a � " < tn < aC " for all n � n1.

It follows from the definition of tn that we have

a � " < an for all n � n1.

Analogously, we can determine n2 such that

a � " < rn < aC " for all n � n2.

It follows from the definition of rn that we have

an < aC " for all n � n2.

Taking n0 D maxfn1; n2g we conclude that

a � " < an < aC " for all n � n0.

Thus since " > 0 is arbitrary, we have shown limn!1 an D a.

We need one more convention. We define 1=C1 D 0 and 1=0 D C1. We can now state a
main result on power series.
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Theorem 3.6. Let an 2 C and z0 2 C and consider the power series
P1
nD0 an.z � z0/

n. Define
the extended number r , 0 � r � C1, by

r D
1

lim supn!1janj1=n
: (3.5)

Then the following results hold:

(a) For jz � z0j < r the power series
P1
nD0 an.z � z0/

n converges absolutely.

(b) For jz � z0j > r the power series
P1
nD0 an.z � z0/

n is divergent.

(c) For 0 < r1 < r the power series
P1
nD0 an.z � z0/

n converges uniformly on fz j jz � z0j �
r1g.

The number r is the only number having the two properties (a) and (b).

Proof. It suffices to prove the result in the case z0 D 0, so we impose this condition in the proof.
Let z 2 C satisfy jzj < r . Take t such that jzj < t < r . Then 1=r < 1=t and we can then
determine n0 such that janj1=n < 1=t for all n � n0. Then we get

janz
n
j <

�
jzj

t

�n
:

Now jzj=t < 1, such that we can use Proposition 3.2 with fn.z/ D anz
n, Mn D .jzj=t/n, and

G D fzg.
Let now r1 be given, with 0 < r1 < r . Choose t such that r1 < t < r . Repeating the estimates

above we get existence of an integer n0, such that janj < .1=t/n for n � n0, and then we have

janz
n
j <

�r1
t

�n
for all n � n0 and all jzj � r1:

The ansolute and uniform convergence of the power series on G D fz j jzj � r1g then follows from
Proposition 3.2. Thus we have proved parts (a) and (c). To prove (b), assume jzj > r and choose
t with jzj > t > r . It follows from Proposition 3.4 that there are infinitely many indices n with
1=t < janj

1=n. Thus we have

janz
n
j >

�
jzj

t

�n
for infinitely many n. Now jzj=t > 1, so the sequence janznj is not bounded above, and therefore
the power series diverges. This proves part (b).

The uniqueness statement is trivial.

The number r given by (3.5) is called the radius of convergence of the power series. The ball
B.z0; r/ is called the ball of convergence.

We now prove that the function given by a power series with a positive radius of convergence
is holomorphic in its ball of convergence. We start with a Lemma.

Lemma 3.7. Let fang and fbng be sequences of real numbers. Assume an � 0 for all n and
furthermore that fbng is convergent, b D limn!1 bn, where 0 < b <1. Then the following result
holds.

lim sup
n!1

.anbn/ D b.lim sup
n!1

an/ (3.6)
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Proof. Consider first the case lim supn!1 an D 1. We can find N1 such that bn > b=2 for all
n � N1. Fix K > 0. Find N2 such that given n � N2 we can find m > n with am > .2K=b/. But
this implies that for any n � maxfN1; N2g there exists m > n such that ambm > .2K=b/.b=2/ D

K. Thus the result is proved in this first case.
Assume now a D lim supn!1 an. Let " > 0 be given. Find an "1 > 0 such that "1.aCb/C"21 <

". Next find N such that b � "1 < bn < b C "1 and an < aC "1 for all n � N . It follows that we
have

anbn < .aC "1/.b C "1/ D ab C ."1.aC b/C "
2
1/ < ab C ";

which shows that
lim sup
n!1

.anbn/ � ab C "

for any " > 0. For the other inequality we now find "2 > 0 such that 0 < "2.aC b/� "22 < ". Then
we determine an integer N with following two properties: (i) For all n � N we have b � "2 <
bn < b C "2. (ii) Given n � N , there exists an m > n with am > a � "2. For this m we have then

ambm > .a � "2/.b � "2/ D ab � ."2.aC b/ � "
2
2/ > ab � ";

which implies
lim sup
n!1

.anbn/ � ab � ":

Since " > 0 is arbitrary, the result follows.

Theorem 3.8. Let
P1
nD0 an.z � z0/

n be a power series with radius of convergence r 2 .0;1�.
Then the function f defined by this power series is infinitely differentiable in the complex sense
in B.z0; r/. The function f .k/.z/ is given by the differentiated power series for each integer k.
Furthermore, we have

ak D
1

kŠ
f .k/.z0/; k D 0; 1; 2 : : : :

Proof. We can without loss of generality assume z0 D 0. Furthermore, it suffices to show that f
can be differentiated once in the complex sense, and that the derivative is given by the power series

f 0.z/ D

1X
nD1

nanz
n�1

with the same radius of convergence r . Let

� D
1

lim supn!1 jnanj1=.n�1/
:

We want to show that r D �. Now since limn!1 n
1=.n�1/ D 1, we can use Lemma 3.7 to conclude

that � D 1= lim supn!1 janj
1=.n�1/. This number � is the radius of convergence of the power series

1X
nD1

anz
n�1
D

1X
nD0

anC1z
n:

Now note that we have the identity

nC1X
kD0

akz
k
D a0 C z

nX
kD0

akC1z
k:

7



Let us first assume that jzj < �. Then for any integer n we have

nC1X
kD0

jakz
k
j � ja0j C jzj

nX
kD0

jakC1z
k
j � ja0j C jzj

1X
kD0

jakC1z
k
j <1;

which implies that the series
P1
kD0 akz

k is absolutely convergent. We conclude (see [3]) that
� � r .

Assume now 0 < jzj < r . Then we have for any integer n

nX
kD0

jakC1z
k
j �
ja0j

jzj
C

1

jzj

nC1X
kD0

jakz
k
j �
ja0j

jzj
C

1

jzj

1X
kD0

jakz
k
j <1;

which implies r � �. Thus we have shown that r D �.
Let us now prove differentiability in the complex sense. For a z satisfying jzj < r we now

define

g.z/ D

1X
nD1

nanz
n�1; sn.z/ D

nX
kD0

akz
k; Rn.z/ D

1X
kDnC1

akz
k;

such that f .z/ D sn.z/C Rn.z/. Fix z1 with jz1j < r . We want to prove that f is differentiable
at z1 with derivative g.z1/. Fix r1 such that jz1j < r1 < r . Next determine a ı > 0 such that
B.z1; ı/ � B.0; r1/. Now let z 2 B.z1; ı/, z ¤ z1. We have

f .z/ � f .z1/

z � z1
� g.z1/ D

sn.z/ � sn.z1/

z � z1
� s0n.z1/

C s0n.z1/ � g.z1/C
Rn.z/ �Rn.z1/

z � z1
:

The last term is rewritten as

Rn.z/ �Rn.z1/

z � z1
D

1

z � z1

1X
kDnC1

ak.z
k
� zk1 /

D

1X
kDnC1

ak

�zk � zk1
z � z1

�
:

We now estimate as follows

jzk � zk1 j

jz � z1j
D jzk�1 C zk�2z1 C : : :C zz

k�2
1 C zk�11 j � krk�11 : (3.7)

Thus ˇ̌̌̌
Rn.z/ �Rn.z1/

z � z1

ˇ̌̌̌
�

1X
kDnC1

jakjkr
k�1
1 :

The series
P1
kD0 jakjkr

k�1
1 is convergent, since r1 < r . Given " > 0, we can determine N1 such

that for n � N1 we have ˇ̌̌̌
Rn.z/ �Rn.z1/

z � z1

ˇ̌̌̌
<
"

3
:

Since limn!1 s
0
n.z1/ D g.z1/, we can determine N2 such that js0n.z1/ � g.z1/j < "=3 for all

n � N2. Now choose a fixed n given by n D maxfN1; N2g. The polynomial sn.z/ is clearly
differentiable, so we can find � > 0 such thatˇ̌̌̌

sn.z/ � sn.z1/

z � z1
� s0n.z1/

ˇ̌̌̌
<
"

3

8



for all z satisfying 0 < jz � z1j < �. If we combine the estimates, we have shown thatˇ̌̌̌
f .z/ � f .z1/

z � z1
� g.z1/

ˇ̌̌̌
< "

for all z satisfying 0 < jz � z1j < minfı; �g. Thus we have shown differentiability in the complex
sense at an arbitrary z 2 B.0; r1/, and since this holds for any r1 < r , we have differentiability in
the ball B.0; r/.

We introduce the following definition:

Definition 3.9. Let G � C be an open subset. A function f WG ! C is said to be analytic in G,
if for every z0 2 G there exist an r > 0 and a power series

P1
nD0 an.z � z0/

n whose sum equals
f .z/ in B.z0; r/ � G.

Combining Definition 3.9 and Theorem 3.8 we can state the following result.

Proposition 3.10. Let G � C be an open subset. If a function f from G to C is analytic, then it is
holomorphic.

Stated briefly, analytic functions are holomorphic functions. One of the main results in complex
analysis is the converse, namely that every holomorphic function is analytic. The first rigorous
treatment of complex analysis was given by K. Weierstrass (1815–1897). He based his approach
on the concept of an analytic function. Later presentations, including the one given here, base their
study on the concept of a holomorphic function.

3.1 Exercises
1. Prove that every complex polynomial p.z/ D a0 C a1z C : : :C anzn is holomorphic on C.

2. Prove that sin.z/ and cos.z/ are holomorphic on C.

3. Verify that the proofs for the rules of differentiation in the real case, as for example given in
[3, Chapter 4], are valid in the complex case.

4. At which points are the following functions differentiable in the complex sense?

.a/ f .z/ D y; .b/ f .z/ D z; .c/ f .z/ D z2:

5. Prove that the function f .z/ D
p
jxyj is not differentiable in the complex sense at the origin,

even though it satisfies the Cauchy-Riemann equations at that point.

6. Give the details in the argument leading to Theorem 2.6.

7. Assume that G � C is open and connected, and that f 2 H.G/. Assume f 0.z/ D 0 for all
z 2 G. Prove that f is constant on G.

8. Verify the equality in (3.7).

9. Assume f 2 H.G/. Define g.z/ D f .z/ for z 2 G (the subset consisting of all complex
conjugates of points in G). Show that g 2 H.G/.

10. Prove Proposition 3.4.

9



4 Contour Integrals
A fundamental tool in the study of complex functions is the contour integral (or complex line
integral). We proceed to give the various definitions. The reader should note that terminology
concerning curves and paths is not consistent in the mathematical literature.

Definition 4.1. A path in the complex plane is a continuous function  W Œa; b� ! C. The path is
said to be closed, if .a/ D .b/. The path is said to be simple, if the restriction of  to Œa; b/ is
injective. The image of  is denoted by �, i.e. � D .Œa; b�/.

Given the image of a path in the complex plane, there can be many other paths having the same
image. We introduce the following equivalence relation.

Definition 4.2. Let  W Œa; b� ! C and � W Œc; d � ! C be two paths in the complex plane with
� D ��. The paths  and � are said to be equivalent, if there exists a continuous strictly increasing
function ' from Œa; b� onto Œc; d � such that � ı ' D  .

We want to define a contour integral along a path. For this purpose we need a restricted class
of paths. The continuous function  W Œa; b� ! C is said to be piecewise smooth, if there exists a
finite partition a D t0 < t1 < � � � < tn D b such that the restriction of  to Œtj�1; tj � is continuously
differentiable for j D 1; : : : ; n. Note that the derivatives  0.tj�/ can be different from  0.tjC/.
The function j 0.t/j is not defined at the points tj , but it is bounded and continuous on .tj�1; tj /,
and has limits at the end points. Since the values at a finite number of points are irrelevant in the
definition of the Riemann integral, we conclude that j 0.t/j is Riemann integrable over Œa; b�.

Definition 4.3. A path  W Œa; b�! C is called a circuit, if the function  is piecewise smooth.

Definition 4.4. Let  W Œa; b� ! C and � W Œc; d � ! C be two circuits with � D ��. They are said
to be equivalent, if there exists a continuously differentiable and strictly increasing function ' from
Œa; b� onto Œc; d � such that � ı ' D  .

When two circuits  and � are equivalent, we say that � is a reparametrization of  .

Definition 4.5. Let  be a circuit in the complex plane. Then the length of this circuit is given by
L./ D

R b
a
j 0.t/jdt .

The length is independent of parametrization, see Remark 4.12.
Let us note that our circuits are oriented. The parametrization determines the orientation. A

simple closed path can be either positively or negatively oriented, i.e. oriented in the counterclock-
wise or the clockwise direction.

Example 4.6. The unit circle S1 D fz 2 C j jzj D 1g is the image of many different paths and
circuits. Consider the following five circuits:

1.t/ D e
it ; t 2 Œ0; 2��;

2.t/ D e
�it ; t 2 Œ0; 2��;

3.t/ D e
2it ; t 2 Œ0; ��;

4.t/ D e
3it ; t 2 Œ0; 2��;

5.t/ D e
i jt j; t 2 Œ�2�; 2��:

Only the circuits 1 and 3 are equivalent, with '.t/ D t=2.

10



The circuits j , j D 1; 2; 3; are all simple closed paths. The circuit 4 is closed, but not simple,
since 4.0/ D 4.2�=3/ D 4.4�=3/ D 4.2�/. The circuit 5 is closed, but not simple, since
5.�2�/ D 5.0/ D 5.2�/.

As t varies from 0 to 2� , the point 1.t/ traverses the unit circle once in the positive direction,
and 2.t/ once in the negative direction, whereas 4.t/ traverses the unit circle three times in the
positive direction.

A circle in the complex plane is often described as the boundary of a ball, with the notation
@B.a; r/. Viewing this boundary as a circuit, our convention is to assume that this circuit is given
by

.t/ D aC reit ; t 2 Œ0; 2��:

The line segment from z to w in the complex plane is denoted by L.z;w/. Viewed as a circuit our
convention is that this circuit is given by

.t/ D z C t .w � z/; t 2 Œ0; 1�:

Example 4.7. Let � be a triangle with vertices a; b; c 2 C. The boundary @� is viewed as a
circuit. One possible circuit is given as follows:

.t/ D

8̂<̂
:
aC t .b � a/; t 2 Œ0; 1�;

b C .t � 1/.c � b/; t 2 Œ1; 2�;

c C .t � 2/.a � c/; t 2 Œ2; 3�:

The orientation depends on the relative location of the three vertices. Note that we are not excluding
the degenerate cases, where vertices coincide or lie on a straight line.

Example 4.8. A polygonal circuit is a circuit composed of a finite number of line segments
L.z1; z2/, L.z2; z3/; : : : ; L.zn�1; zn/. A parametrization can be given as follows:

.t/ D

8̂̂̂̂
<̂
ˆ̂̂:
z1 C t .z2 � z1/; t 2 Œ0; 1�;

z2 C .t � 1/.z3 � z2/; t 2 Œ1; 2�;
:::

:::

zn�1 C .t � nC 2/.zn � zn�1/; t 2 Œn � 2; n � 1�:

Given two polygonal circuits 1 and 2, such that the end point of 1 equals the starting point of
2, then we denote by 1 [ 2 the concatenation of the two circuits. It is again a polygonal circuit.
Finally we define the contour integrals.

Definition 4.9. Let  W Œa; b� ! C be a circuit. Let f W � ! C be a continuous function. The
contour integral of f along  is defined byZ



f .z/dz D

Z b

a

f ..t// 0.t/dt:

Often we simplify the notation and write
R

f instead of

R

f .z/dz.

We recall from [3] that we have defined the Riemann integrability of a complex function as the
joint Riemann integrability of the real and imaginary parts. We recall some results from [3]. The
space of Riemann integrable complex functions defined on Œa; b� is denoted by R.Œa; b�;C/.
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Proposition 4.10. R.Œa; b�;C/ is a complex vector space. For f1; f2 2 R.Œa; b�;C/ and c1; c2 2 C
the following results hold:Z b

a

.c1f1.t/C c2f2.t//dt D c1

Z b

a

f1.t/dt C c2

Z b

a

f2.t/dt; (4.1)ˇ̌̌̌
ˇ
Z b

a

f1.t/dt

ˇ̌̌̌
ˇ �

Z b

a

jf1.t/j dt: (4.2)

We need to show that the definition of the contour integral is independent of the choice of
parametrization.

Theorem 4.11. The value of a contour integral is unchanged under reparametrization of the circuit.

Proof. Let � D �� be a parametrization and a reparametrization of the circuit. By Definition 4.4
we have � ı ' D  . To simplify the proof we assume that all three functions are continuously
differentiable on their definition intervals. Using change of variables for Riemann integrals (see [3,
Section 7.2]) and the chain rule we findZ d

c

f .�.s//� 0.s/ds D

Z b

a

f .�.'.t///� 0.'.t//' 0.t/dt

D

Z b

a

f ..t// 0.t/dt:

This computation finishes the proof in the simplified case. In the general case, where  and � are
piecewise smooth, the integral is split into a sum over the intervals of smoothness, and the above
computation is performed on each interval.

Remark 4.12. A similar computation shows that the length of a circuit is unchanged under reparametriza-
tion.

The following estimate is used several times in the sequel.

Proposition 4.13. Let  W Œa; b�! C be a circuit. Let f W � ! C be a continuous function. Then
we have ˇ̌̌̌Z



f .z/dz

ˇ̌̌̌
� max

�
jf j � L./:

As a consequence, if fn ! f uniformly on �, then
R

fn !

R

f .

Proof. This estimate follows from the computationˇ̌̌̌Z


f .z/dz

ˇ̌̌̌
D

ˇ̌̌̌
ˇ
Z b

a

f ..t// 0.t/dt

ˇ̌̌̌
ˇ

�

Z b

a

jf ..t//j � j 0.t/jdt � max
�
jf j � L./;

where we used (4.2) and Definition 4.5.

We now look at primitives of complex functions, and their use in evaluation of contour integrals.

Definition 4.14. An open and connected subset G � C is called a domain.

Definition 4.15. Let f WG ! C be defined on a domain G. A function F WG ! C is called a
primitive of f , if F 2 H.G/ and F 0 D f .
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If F is a primitive of f , then F C c is also a primitive of f for all c 2 C. Conversely, assume
that F1 and F2 both are primitives of f . Then .F1 � F2/0 D f � f D 0 on G, and since G is
assumed to be connected, it follows from Theorem 2.5 that F1 � F2 is constant on G. Thus the
primitive is determined uniquely up to an additive constant.

Theorem 4.16. Assume that G is a domain and that f WG ! C is a continuous function. Assume
that F is a primitive of f in G. ThenZ



f .z/dz D F.z2/ � F.z1/

for any circuit in G from z1 to z2.

Proof. The result follows from the computationZ


f .z/dz D

Z b

a

ReŒf ..t// 0.t/�dt C i
Z b

a

ImŒf ..t// 0.t/�dt

D

Z b

a

ReŒ
d

dt
F..t//�dt C i

Z b

a

ImŒ
d

dt
F..t//�dt

D

Z b

a

d

dt
ReŒF ..t//�dt C i

Z b

a

d

dt
ImŒF ..t//�dt

D ReŒF ..b//� � ReŒF ..a//�C i ImŒF ..b//� � i ImŒF ..a//�
D F..b// � F..a//;

where we used results on the Riemann integral [3].

Theorem 4.17. Let f WG ! C be a continuous function on a domain G � C. Assume thatR

f D 0 for any closed polygonal circuit in G. Then f has a primitive in G.

Proof. Choose a point z0 2 G and define F.z/ D
R
z
f .�/d�, where z is a polygonal circuit

from z0 to z in G. Note that such a circuit exists due to results on connectedness, see [2]. Our
assumption implies that the value F.z/ is independent of the choice of such a circuit.

Given a z 2 G there exists r > 0 such that the ballB.z; r/ � G. Let h 2 C satisfy 0 < jhj < r ,
and let ` be the line segment from z to z C h. Then

F.z C h/ � F.z/ D

Z
z[`

f �

Z
z

f D

Z
`

f D

Z 1

0

f .z C th/hdt

and thus
1

h
.F.z C h/ � F.z// � f .z/ D

Z 1

0

.f .z C th/ � f .z//dt:

Since f is continuous, we can to a given " > 0 determine a ı > 0 such that jf .w/ � f .z/j < " for
all w 2 B.z; ı/, and thereforeˇ̌̌̌

1

h
.F.z C h/ � F.z// � f .z/

ˇ̌̌̌
�

Z 1

0

"dt D "; 0 < jhj < ı:

Thus F is differentiable at z with F 0.z/ D f .z/. Since z 2 G was arbitrary, the result is proved.

Let us show in an example how to compute a contour integral.
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Example 4.18. Let Cr denote the circle jzj D r traversed once in the positive direction (counter-
clockwise).

Cr.t/ D re
it ; t 2 Œ0; 2��:

Then for each integer n 2 Z we haveZ
Cr

dz

zn
D

Z 2�

0

rieit

rneint
dt D ir1�n

Z 2�

0

eit.1�n/dt D

(
0; n ¤ 1;

2�i; n D 1:

The result can also be obtained in the case n ¤ 1 by observing that the function z�n has as its
primitive the function .1 � n/�1z1�n, in C for any n � 0, and in C nf0g for n � 2. Since the
integral is nonzero for n D 1, we can conclude that the function z�1 has no primitive in C nf0g.

4.1 Exercises
1. Carry out all the details in the three examples 4.6, 4.7, and 4.8.

2. Compute the following contour integrals:Z i

0

dz

.1 � z/2
;

Z 2i

i

cos.z/dz; and
Z i�

0

ezdz;

where in each case the circuit is the line segment from the lower limit to the upper limit.
Repeat the computations using a primitive for the integrand in each of the three integrals.

3. Show that Z


z

.z2 C 1/2
dz D 0;

for any closed circuit  in C nf˙ig.

4. Show that Z


P.z/dz D 0;

for any polynomial P.z/, and any closed circuit  in C.

5 Cauchy’s theorems
In this section we first study the question of existence of a primitive to a given holomorphic func-
tion. Example 4.18 shows that a primitive need not exist. The existence of a primitive depends
on both the function and the domain we consider. One can obtain existence of a primitive for any
f 2 H.G/ by imposing a simple geometric condition on the domain G.

Definition 5.1. A domain G � C is said to be starshaped around a 2 G, if for all z 2 G the line
segment L.a; z/ D faC t .z � a/ j t 2 Œ0; 1�g � G. The domain is called starshaped, if there exists
at least one such a 2 G.

We will now prove that if a domain G is starshaped, then any holomorphic function on G has a
primitive in G. The starting point is the following Lemma.

Lemma 5.2 (Goursat’s lemma (1899)). LetG � C be an open subset, and assume that f 2 H.G/.
Then Z

@�

f .z/dz D 0

for any solid triangle � � G.
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Figure 5.1: Partition of �.

Proof. We connect the midpoints of the sides in the triangle � by line segments, thus dividing the
large triangle into four triangles, denoted by �.i/, see Figure 5.1.

It is easy to see that we have

I D

Z
@�

f D

4X
iD1

Z
@�.i/

f:

At least one of the four contour integrals
R
@�.i/

f must have an absolute value which is greater than
or equal to jI j=4. We select one such triangle and denote it by �1. Thus we have jI j � 4j

R
@�1

f j.
We now divide the triangle �1 into four triangles by connection midpoints on the sides, as above.
One of these four triangles, which we will denote by �2, will satisfy j

R
@�1

f j � 4j
R
@�2

f j. We
repeat this construction, obtaining a nested decreasing sequence of triangles � � �1 � �2 � � � � ,
which satisfy

jI j � 4n
ˇ̌̌̌Z
@�n

f

ˇ̌̌̌
; n D 1; 2; 3; � � � :

There exists a unique z0 such that \1nD1�n D fz0g. This result is obtained by first using Cantor’s
theorem, which proves that the intersection is nonempty. But since the diameter of the triangles is
strictly decreasing, the intersection can only contain one point.

We now use the differentiability of f at z0 to prove that I D 0. We have (recall Lemma 2.3)

f .z/ D f .z0/C f
0.z0/.z � z0/C jz � z0jE.z � z0/;

where E.z � z0/! 0 for z ! z0. Given " > 0 we can determine ı > 0 such that

jf .z/ � f .z0/ � f
0.z0/.z � z0/j � "jz � z0j; for all z 2 B.z0; ı/ � G:

Let now L0 denote the length of the original triangle circuit @�. The length of @�n is then 2�nL0.
Thus there exists N 2 N such that�n � B.z0; ı/ for n � N . For z 2 @�N the distance jz � z0j is
at most equal to half the circumference of �N , which implies jz � z0j � 2�.NC1/L0. We also note
that Z

@�N

�
f .z0/C f

0.z0/.z � z0/
�
dz D 0;

since a polynomial of degree at most one has a primitive, and the integral around a closed circuit
then is zero, see Theorem 4.16. We now have the following sequence of estimates.

jI j � 4N
ˇ̌̌̌Z
@�N

f .z/dz

ˇ̌̌̌
D 4N

ˇ̌̌̌Z
@�N

�
f .z/ � f .z0/ � f

0.z0/.z � z0/
�
dz

ˇ̌̌̌
15
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� 4N max
z2@�N

ˇ̌�
f .z/ � f .z0/ � f

0.z0/.z � z0/
�ˇ̌
L.@�N /

� 4N " max
z2@�N

jz � z0j 2
�NL0 �

1

2
"L20:

Since " > 0 is arbitrary, it follows that I D 0.

Goursat’s Lemma is used to prove the following important result.

Theorem 5.3 (Cauchy’s integral theorem). Let G be a starshaped domain, and let f 2 H.G/.
Then

R

f .z/dz D 0 for any closed polygonal circuit  in G.

Proof. Assume thatG is starshaped around a 2 G. Let  be a closed polygonal circuit with vertices
a0; a1; : : : ; an�1; an D a0. Let x be an arbitrary point on one of the line segments from ai�1 to ai ,
i D 1; : : : ; n. Since G is starshaped around a, the line segment L.a; x/ will be contained in G.
Thus the solid triangle with vertices fa; ai�1; aig, denoted by �fa; ai�1; aig, will be contained in
G. The integral of f around the circuit determined by the triangle, traversed in the order from a to
ai�1, then from ai�1 to ai , and finally from ai to a, will be zero. If the triangle is nondegenerate,
this result is an immediate consequence of Lemma 5.2. If the triangle is degenerate, which means
that the three points lie on a straight line, the result is obvious. See Figure 5.2. It follows that in all
cases

nX
iD1

Z
@�fa;ai�1;ai g

f .z/dz D 0:

Each of the line segments connecting a with ai is traversed twice, in opposite directions. If we split
the integrals into integrals over line segments, then these terms cancel, and we are left with

R

f ,

which then equals zero, as claimed in the theorem.

Combining Theorem 5.3 with Theorem 4.17, we get the following result.

Theorem 5.4. Let G � C be a starshaped domain. Then any function f 2 H.G/ has a primitive
in G.

An immediate consequence is that Cauchy’s integral theorem for a starshaped domain holds not
just for polygonal circuits, but for any closed circuit in G.

Corollary 5.5. Let G � C be a starshaped domain. Let f 2 H.G/ and let  be a closed circuit in
G. Then

R

f .z/dz D 0.

Cauchy’s integral theorem allows us to express the values of a holomorphic function in terms
of certain contour integrals.

We start with some preliminary considerations. Let G be a domain, z0 2 G, and let f 2
H.Gnfz0g/. We want to compute the contour integral of f along a closed simple circuitC inGnfz0g
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Figure 5.3: Decomposition in smaller circuits.

which encloses z0. Let us assume that C is oriented counterclockwise. A common application of
the Cauchy integral theorem is to replace the circuit C by another circuit K, positively oriented,
in a contour integral. This new circuit is also assumed to enclose z0 and to lie in G. The idea
is to select certain points on C and K and connect them to obtain a number of small circuits j .
See Figure 5.3. Assume that we can construct a finite number of j , such that each j lies in a
starshaped subdomain of G nfz0g. Then we get from the above generalization of Cauchy’s integral
theorem that we have

0 D
X
i

Z
i

f D

Z
C

f C

Z
�K

f;

or Z
C

f D

Z
K

f:

We have used the notation
R
�K
f to denote the integral alongK in the direction opposite to the one

given in the definition of K.
An important case where this construction can be performed, is described in the following

example.

Example 5.6. Let G be a domain, z0 2 G, and assume that f 2 H.G nfz0g/. Assume that for
some 0 < s < r we have B.z0; s/ � B.a; r/, B.a; r/ � G. Then we haveZ

@B.a;r/

f .z/dz D

Z
@B.z0;s/

f .z/dz:

This result is obtained by the technique described, by adding four line segments parallel to the axes
from @B.z0; s/ to @B.a; r/.

We can now state one of the main results.

Theorem 5.7 (Cauchy’s integral formula). Let G � C be an open subset, f 2 H.G/ and
B.a; r/ � G. For all z0 2 B.a; r/ we then have the formula

f .z0/ D
1

2�i

Z
@B.a;r/

f .z/

z � z0
dz;

where the circle is traversed once in the positive direction.
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Proof. Let z0 2 B.a; r/. Using Example 5.6 on the function g.z/ D .z � z0/
�1f .z/, which is

holomorphic in G nfz0g, we find thatZ
@B.a;r/

f .z/

z � z0
dz D

Z
@B.z0;s/

f .z/

z � z0
dz

for 0 < s < r � ja � z0j. We introduce the parametrization .t/ D z0 C se
it , t 2 Œ0; 2��, for

@B.z0; s/. Then we find that Z
@B.z0;s/

dz

z � z0
D

Z 2�

0

sieit

seit
dt D 2�i;

which implies

I D

Z
@B.a;r/

f .z/

z � z0
dz � 2�if .z0/ D

Z
@B.z0;s/

f .z/ � f .z0/

z � z0
dz:

Our goal is to show that I D 0. Proposition 4.13 implies the estimate

jI j � max
z2@B.z0;s/

fj.f .z/ � f .z0//=.z � z0/jgL.@B.z0; s//

D 2� max
z2@B.z0;s/

fjf .z/ � f .z0/jg:

Since f is continuous at z0, the right hand side will tend to zero for s ! 0, which implies the
result.

Cauchy’s integral formula implies that knowing the values of the holomorphic function f on
the circle jz � aj D r allows us to find the value at any point in the interior of this circle. Note that
if we take z0 D a and use the parametrization .t/ D a C reit , t 2 Œ0; 2��, for @B.a; r/, then we
get f .a/ D 1

2�

R 2�
0
f .a C reit/dt . In other words, the value at the center of the circle equals the

mean over the values on the circumference.
Cauchy’s integral formula can be used to evaluate some contour integrals.

Example 5.8. Let us show how to evaluate
R
@B.0;2/

sin.z/
1Cz2

dz. We haveZ
@B.0;2/

sin.z/
1C z2

dz D
1

2i

Z
@B.0;2/

sin.z/
z � i

dz �
1

2i

Z
@B.0;2/

sin.z/
z C i

dz

D � sin.i/ � � sin.�i/ D 2� sin.i/ D �i.e �
1

e
/:

5.1 Exercises
1. Evaluate Z

@B.0;1/

dz

.z � a/.z � b/

in the following cases

(a) jaj < 1 and jbj < 1.

(b) jaj < 1 and jbj > 1.

(c) jaj > 1 and jbj > 1.
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2. Evaluate Z
@B.0;2/

ez

z � 1
dz and

Z
@B.0;2/

ez

�i � 2z
dz:

3. Give a detailed proof of the result stated in Example 5.6.

4. Cantor’s theorem in R2 states the following. Let Ak , k 2 N be a sequence of non-empty
subsets of R2 with the following two properties

(a) AkC1 � Ak, k D 1; 2; : : :.

(b) Each Ak is closed and non-empty. A1 is bounded.

Then \1
kD1

Ak ¤ ;.

Prove this theorem.

6 Applications of Cauchy’s integral formula
Let G � C be an open subset, and fix a 2 G. In the case G D C we let � D 1 and B.a; �/ D C.
In the case G ¤ C we let � D minfjz � aj j z 2 C nGg. Then in all cases the ball B.a; �/ is the
largest ball centered at a and contained in G.

We will now use Cauchy’s integral formula to prove that a function f 2 H.G/ is analytic.
More precisely, we will prove that for any a 2 G the Taylor expansion

1X
nD0

f .n/.a/

nŠ
.z � a/n (6.1)

is convergent in the largest ball B.a; �/ contained in G, and the sum equals f .z/ for each z 2
B.a; �/

Theorem 6.1. Let G � C be an open subset, and let f 2 H.G/. Then f is infinitely often
differentiable in the complex sense, and the Taylor expansion (6.1) is convergent with sum f in the
largest open ball B.a; �/ contained in G.

Proof. The function .z � a/�.nC1/f .z/ is holomorphic in G nfag. Example 5.6 implies that the
numbers

an D
1

2�i

Z
@B.a;r/

f .z/

.z � a/nC1
dz; n D 0; 1; 2; � � �

are independent of r for 0 < r < �. For a given fixed z0 2 B.a; �/ we choose r satisfying
jz0 � aj < r < �. Cauchy’s integral formula implies

f .z0/ D
1

2�i

Z
@B.a;r/

f .z/

z � z0
dz:

The idea in the proof is to rewrite the integrand as a convergent series and integrate term by term.
Let z 2 @B.a; r/. Note that

j
z0 � a

z � a
j D
jz0 � aj

r
< 1: (6.2)

We have

1

z � z0
D

1

z � aC a � z0
D

1

z � a

1

1 � z0�a
z�a

D
1

z � a

1X
nD0

�z0 � a
z � a

�n
;
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which implies (with the obvious definition of gn.z/)

f .z/

z � z0
D

1X
nD0

f .z/.z0 � a/
n

.z � a/nC1
D

1X
nD0

gn.z/:

Since jf .z/j is a continuous function on the compact set @B.a; r/, it has a maximal value M <1

on this set. Thus we have for all z 2 @B.a; r/

jgn.z/j �
M

r

�
jz0 � aj

r

�n
;

1X
nD0

�
jz0 � aj

r

�n
<1;

see (6.2). The Weierstrass M-test Proposition 3.2 implies that the series
P1
nD0 gn.z/ converges

uniformly on @B.a; r/. Thus we can integrate term by term.

f .z0/ D
1

2�i

Z
@B.a;r/

f .z/

z � z0
dz D

1X
nD0

1

2�i

Z
@B.a;r/

gn.z/dz D

1X
nD0

an.z0 � a/
n:

We have shown that the power series
P1
nD0 an.z0 � a/

n is convergent with sum f .z0/ for all
z0 2 B.a; �/. It follows from Theorem 3.8 that f is infinitely differentiable in the complex sense,
and furthermore that the coefficients an above are given by .nŠ/�1f .n/.a/.

One consequence of this theorem is important enough to state separately.

Corollary 6.2. Assume f 2 H.G/. Then f 0 2 H.G/.

Using this result we can state the following important theorem.

Theorem 6.3 (Morera). Let G � C be an open set. Assume that f WG ! C is continuous, and
that Z

@�

f D 0

for every solid triangle � entirely contained in G. Then f 2 H.G/.

Proof. Let f satisfy the assumptions in the theorem. The property of being holomorphic is a local
property, so it suffices to prove that f is holomorphic in any ball B.a; r/ � G. Take such a ball.
Then the assumption implies

R
@�
f D 0 for any � � B.a; r/. Thus we can repeat the argument in

the proof of Theorem 4.17 to conclude that f has a primitive in B.a; r/. But then by Corollary 6.2
f is holomorphic in this ball.

Cauchy’s integral formula can be generalized as follows:

Theorem 6.4. Let G � C be an open subset, and let f 2 H.G/. For B.a; r/ � G and z0 2
B.a; r/ we have Cauchy’s integral formula for the n’th derivative

f .n/.z0/ D
nŠ

2�i

Z
@B.a;r/

f .z/

.z � z0/nC1
dz; n D 0; 1; 2; : : : : (6.3)

Proof. Let B.a; r/ � G and z0 2 B.a; r/. Theorem 6.1 implies that we have a Taylor expansion

f .z/ D

1X
kD0

f .k/.z0/

kŠ
.z � z0/

k (6.4)
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valid in some ball B.z0; �/. Choose r 0, 0 < r 0 < �, such that B.z0; r 0/ � B.a; r/. The series (6.4)
is uniformly convergent on @B.z0; r 0/. Thus we can interchange summation and integration in the
following computation.Z

@B.z0;r 0/

f .z/

.z � z0/nC1
dz D

1X
kD0

f .k/.z0/

kŠ

Z
@B.z0;r 0/

.z � z0/
k�n�1dz D

f .n/.z0/

nŠ
2�i:

In the last step we used a computation similar to the one in Example 4.18. Using Example 5.6 we
can change the integration contour from @B.z0; r

0/ to @B.a; r/. Thus

f .n/.z0/ D
nŠ

2�i

Z
@B.z0;r 0/

f .z/

.z � z0/nC1
dz D

nŠ

2�i

Z
@B.a;r/

f .z/

.z � z0/nC1
dz;

which proves the result.

It follows from the above results that a function f 2 H.C/ can be expanded in a convergent
power series around any z 2 C and that the radius of convergence is infinite. This class of functions
is important enough to have a name.

Definition 6.5. A function f 2 H.C/ is called an entire function.

There are many important results on entire functions. We state one of them without proof.

Theorem 6.6 (Picard). Let f be a nonconstant entire function. Then either f .C/ D C or f .C/ D
C nfag for some a 2 C. If f is not a polynomial, then f �1.fwg/ is an infinite set for all w 2 C,
except for at most one w.

Picard’s theorem has as a consequence that a bounded entire function is a constant function.
This result can be proved directly, using Theorem 6.4.

Theorem 6.7 (Liouville). A bounded entire function is a constant.

Proof. Let f 2 H.C/ and assume that jf .z/j � M for all z 2 C. For any r > 0 we can use (6.3)
with z0 D 0 to get

jf .n/.0/j D

ˇ̌̌̌
nŠ

2�i

Z
@B.0;r/

f .z/

znC1
dz

ˇ̌̌̌
�
nŠ

2�

M

rnC1
2�r D

M � nŠ

rn
:

Letting r ! 1 we find that f .n/.0/ D 0 for all n � 1. The result now follows from the Taylor
expansion around zero.

Liouville’s theorem is a deep result. For instance it leads to the following proof of the funda-
mental theorem of algebra.

Theorem 6.8 (Fundamental theorem of algebra). Any polynomial

p.z/ D

nX
kD0

akz
k

of degree n � 1 has at least one root in C.
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Proof. Let p.z/ be a polynomial of degree n � 1. Assume that p.z/ ¤ 0 for all z 2 C. Then

p.z/

anzn
D 1C

n�1X
kD0

ak

an
zk�n ! 1 for jzj ! 1;

hence we can find r > 0 such that ˇ̌̌̌
p.z/

anzn

ˇ̌̌̌
�
1

2
for jzj � r:

This estimate implies
1

jp.z/j
�

2

janjrn
for jzj � r:

Since jp.z/j�1 is a continuous function, it is also bounded on the compact set B.0; r/, and we
have shown that p�1 is a bounded entire function. By Liouville’s theorem p.z/ is a constant which
contradicts the assumption that the degree is at least one.

6.1 Exercises
1. Evaluate Z

@B.i;2/

ez

.z � 1/n
dz for all n � 1.

2. Assume that f is an entire function and also satisfies f 0 D af for some a 2 C. Prove that
there exists c 2 C such that

f .z/ D c exp.az/; z 2 C:

3. Let f 2 H.G/, and assume f 0.a/ ¤ 0. Prove that there exists r > 0 such that f is injective
on B.a; r/.

4. Let G ¨ C be an open subset, and let a 2 G. Prove that inffjz � aj j z 2 C nGg is attained
at some point, i.e. that the infimum is actually a minimum. Hint: Use the triangle inequality.

5. Use Theorem 6.3 to prove the following important result. Assume that fn 2 H.G/ and
fn ! f as n!1, uniformly on all compact subsets of G. Then f 2 H.G/.

7 Meromorphic functions
We now study zeroes and singularities of holomorphic functions. We start by defining the order of
a zero.

Theorem 7.1. Let f be holomorphic in a domain G. Assume that a 2 G is a zero of f , i.e.
f .a/ D 0. Then either f .n/.a/ D 0 for all n D 1; 2; : : :, and in this case f .z/ D 0 for all z 2 G,
or there exists a smallest n, n � 1, such that f .n/.a/ ¤ 0. In the latter case a is called a zero of
the n’th order, and the function defined by

g.z/ D

8̂̂<̂
:̂

f .z/

.z � a/n
; z 2 G nfag;

f .n/.a/

nŠ
; z D a;

is holomorphic in G, and satisfies the equation f .z/ D .z � a/ng.z/, z 2 G. Furthermore,
g.a/ ¤ 0.
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Proof. We start by proving that f .n/.a/ D 0, n D 0; 1; 2; : : :, for some a 2 G implies that the
function f is identically zero in G. Let

A D

1\
nD0

fz 2 Gjf .n/.z/ D 0g:

Since f .n/ is continuous for all n, the set A is the intersection of closed subsets of G, hence A is
a closed subset of G. If z0 2 A, then the Taylor series around this point is the zero series, and it
follows that f is identically zero in the largest ball B.z0; �/ � G. But then B.z0; �/ � A, and A is
an open subset of G. Since G is assumed to be a domain, it is a connected set, and therefore either
A D ; or A D G. Thus if A is nonempty, it equals G, and we have proved the first statement in
the theorem.

We now assume that f is not identically zero inG. By the definition of n we have f .k/.a/ D 0,
k D 0; : : : ; n � 1. Let � be the radius of the largest open ball B.a; �/ contained in G. The Taylor
expansion then has the form

f .z/ D

1X
kDn

f .k/.a/

kŠ
.z � a/k D .z � a/n

1X
kD0

f .kCn/.a/

.k C n/Š
.z � a/k:

The function

g.z/ D

8̂̂̂̂
<̂
ˆ̂̂:

f .z/

.z � a/n
; z 2 G nfag;

1X
kD0

f .kCn/.a/

.k C n/Š
.z � a/k; z 2 B.a; �/;

is a welldefined function, holomorphic inG. By definition it satisfies f .z/ D .z�a/ng.z/, z 2 G,
and g.a/ D .nŠ/�1f .n/.a/ ¤ 0.

The theorem shows that one can find the order of the zero a of f 6� 0 as the largest n, for which
one has a factorization f .z/ D .z � a/ng.z/ for some g 2 H.G/. We have the following result
concerning the set of zeroes of a holomorphic function. Let A � G be a subset of domain in C.
Recall that a point a 2 A is said to be an isolated point of A in G, if there exists a ı > 0 such that
B.a; ı/ � G and B.a; ı/ \ A D fag.

Theorem 7.2. Assume that f is holomorphic in a domain G. Let Z.f / denote the set of zeroes of
f in G. Then precisely one of the following three cases occurs.

1. Z.f / D ;, which means that f has no zeroes in G.

2. Z.f / D G, which means that f is identically zero in G.

3. Z.f / consists of at most a countable number of isolated points in G.

Proof. If f .a/ D 0 and f 6� 0, then we can find g 2 H.G/ and an integer n, such that f .z/ D
.z � a/ng.z/ and g.a/ ¤ 0. Since g is continuous, we can find a ıa > 0 such that g.z/ ¤ 0 for
all z 2 B.a; ıa/ � G. Thus Z.f / \ B.a; ıa/ D fag and a has been shown to be an isolated point
in G. To show that Z.f / is at most countable, we use the Lindelöf covering theorem [1, Theorem
3.28]. The open covering fB.a; ıa/ga2Z.f / of Z.f / can then be replaced by an at most countable
covering. It follows that Z.f / is at most countable.

The following theorem is often used to show that two holomorphic functions are identical in a
certain domain.
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Theorem 7.3 (Identity theorem). Let G be a domain, and let f; g 2 H.G/. Assume that A � G
has an accumulation point in G. If f .z/ D g.z/ for all z 2 A, then f .z/ D g.z/ for all z 2 G.

Proof. The set of zeroes Z.f � g/ is a closed set. By assumption A � Z.f � g/, and therefore
the accumulation point a of A belongs to Z.f � g/. But then a is a zero, which is not isolated. By
Theorem 7.2 we must have Z.f � g/ D G, which proves the theorem.

This theorem is often applied to the case where A is a subset of the real axis. We have the
following example.

Example 7.4. All usual trigonometric identities hold also in the complex domain, if the expressions
entering into the identities are holomorphic functions. As an example, we have sin2.z/Ccos2.z/ D
1 for all z 2 C. Both the left hand side and the right hand side are holomorphic in C, and the
formula is known to be valid for all real z.

We now study the singularities of holomorphic functions.

Definition 7.5. Let G � C be an open subset and let a 2 G. If f 2 H.G nfag/ then a is said to
be an isolated singularity of f . If a value can be assigned to f in this point such that f becomes
holomorphic in G, then a is said to be a removable singularity.

If f 2 H.G/ and f 6� 0, then the function 1=f is holomorphic in the open set G nZ.f /, and
all a 2 Z.f / are isolated singularities of 1=f .

Given a holomorphic function with certain isolated singularities, the removable singularities are
removed by assigning values at these points. As an example take the function f .z/ D z�1 sin.z/.
It can be extended from C nf0g to all of C by defining f .0/ D limz!0 z

�1 sin.z/ D 1. We have
the following result, which can be used to decide whether a given singularity is removable.

Theorem 7.6. Let G � C be an open subset, and let a 2 G. If f 2 H.G nfag/ is bounded in
B.a; r/ nfag � G nfag for some r > 0, then the singularity of f at a is removable.

Proof. Define a function hWG ! C by h.a/ D 0 and h.z/ D .z � a/2f .z/ for z 2 G nfag. Then
h is holomorphic in G nfag, and for z ¤ a we have

h.z/ � h.a/

z � a
D .z � a/f .z/;

which has the limit 0 for z ! a, since f is assumed to be bounded in B.a; r/nfag for some r > 0.
Thus we have shown that h is differentiable in the complex sense at a with h0.a/ D 0.

We now apply Theorem 7.1 to the function h 2 H.G/. If f � 0 on G nfag, the singularity
is removed by setting f .a/ D 0. If f 6� 0 on G nfag then h has a zero of order at least 2 at a,
and we can find a function g 2 H.G/, such that h.z/ D .z � a/2g.z/ for all z 2 G. Thus g is a
holomorphic extension of f to G, and we have proved that the singularity at a is removable.

If a is a singularity which is not removable, then Theorem 7.6 shows that f .B.a; r/ nfag/ is
an unbounded set for any sufficiently small r > 0. As a consequence, the limit limz!a f .z/ does
not exist. One could then try to investigate whether the function .z � a/mf .z/ has a removable
singularity at a, if m is a sufficiently large integer. In such a case a is said to be a pole of f .

Definition 7.7. An isolated singularity a of a holomorphic function f 2 H.G nfag/ is said to be a
pole of order m 2 N, if .z � a/mf .z/ has a limit different from zero as z ! a. A pole of order 1
is called a simple pole.
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We should note that the order of a pole is determined uniquely. If limz!a.z�a/
mf .z/ D c ¤ 0,

then limz!a.z � a/
kf .z/ D 0 for k > m, and for k < m the limit cannot exist.

Assume that f 2 H.G nfag/ has a pole of order m in a. The function defined by

g.z/ D

(
.z � a/mf .z/; z 2 G nfag;

lim
z!a

.z � a/mf .z/; z D a;

will then be a function holomorphic in G. Such a function has a power series expansion around
a, which we write as

P1
nD0 an.z � a/

n. The series is convergent in the largest open ball B.a; �/
contained in G. As a consequence we have

f .z/ D
a0

.z � a/m
C

a1

.z � a/m�1
C � � � C

am�1

z � a
C

1X
kD0

amCk.z � a/
k

for all z 2 B.a; �/ nfag. We define p.z/ D
Pm
kD1 am�kz

k and call p..z � a/�1/ the principal part
of f at a. Then f minus its principal part has a removable singularity at a. Thus the singularity is
localized in the principal part of f at a.

A singularity, which is neither removable nor a pole, is called an essential singularity. In the
neighborhood of an essential singularity the behavior of f is very complicated. Two examples
are sin.1=z/ and exp.1=z/, which both are holomorphic in C n f0g, and both have an essential
singularity at 0.

We will study holomorphic functions with singularities, but we want to avoid the complicated
essential singularities.

Definition 7.8. Let G � C be a domain, and let f WG nP ! C be a holomorphic function with
isolated singularities in P . If all points in P are poles, then f is said to be meromorphic in G.

Meromorphic functions are often given as the quotient of two holomorphic functions. Assume
f; g 2 H.G/ and g 6� 0. If f � 0 then by convention the quotient is the zero function. We will
therefore assume f 6� 0. Since Z.g/ is an isolated set in G, the function h D f=g is holomorphic
in G nZ.g/ with isolated singularities in Z.g/. Let a 2 Z.g/. Then from Theorem 7.1 we find
that we can write

f .z/ D .z � a/pf1.z/; g.z/ D .z � a/qg1.z/

with f1; g1 2 H.G/, f1.a/ ¤ 0, g1.a/ ¤ 0, and q � 1 is the order of the zero of g at a.
Furthermore, p � 0 is zero, if f .a/ ¤ 0, and otherwise equal to the order of the zero of f at a.
Choose r > 0 sufficiently small, such that g1.z/ ¤ 0 for all z 2 B.a; r/ � G. Then

h.z/ D .z � a/p�q
f1.z/

g1.z/

for all z 2 B.a; r/ nfag. Thus we have shown that h is meromorphic in G. The poles are those a
in Z.g/, where either f .a/ ¤ 0, or the order of the zero of f at a is strictly smaller than the order
of the zero of g.

One can prove that any function meromorphic in G can be expressed as the quotient of two
holomorphic functions in G. A special class of meromorphic functions are the rational functions,
which are the functions that can be expressed as the quotient of two polynomials.

The sum and the product of two meromorphic functions is again meromorphic, since the union
of the two pole sets is again a set of isolated points in G. Obviously, some of the poles in the sum
or product may actually be removable singularities.

In the terminology used in algebra the meromorphic functions in a fixed domain G constitute a
commutative field.
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7.1 Exercises
1. Let G be a domain in C. Assume that f 2 H.G/ only has a finite number of zeroes in G.

Prove that there exist a polynomial p.z/, and a function ' 2 H.G/ without zeroes, such that
f .z/ D p.z/'.z/ for z 2 G.

2. Determine a 2 C such that the function sin.z/ � z.1C az2/ cos.z/ has a zero of order 5 at
z D 0.

8 The residue theorem
We start by defining the residue at a pole of a meromorphic function.

Definition 8.1. Let f WG nP ! C be a function meromorphic in G with poles in P . Let a 2 P be
a pole of order m. The coefficient to the term .z � a/�1 in the principal part of f at a is called the
residue and is denoted by Res.f; a/.

We have at a pole a a representation

f .z/ D
cm

.z � a/m
C � � � C

c1

z � a
C '.z/;

where ' is a function holomorphic in a small ball around a, and furthermore ' is meromorphic in
G with poles in P n fag.

The definition of a pole of orderm implies cm D limz!a.z�a/
mf .z/ ¤ 0. As a consequence,

if a is a simple pole, then Res.f; a/ ¤ 0.

Theorem 8.2. Let f WG nP ! C be meromorphic in a domain G with poles in P . Let a0 2 P .
Then we have

Res.f; a0/ D
1

2�i

Z
@B.a0;r/

f .z/dz;

where r > 0 is chosen such that B.a0; r/ � G n.P nfa0g/.

Proof. Assume that a0 is a pole of order m. Let B.a0; �/ denote the largest open ball contained in
G n.P nfa0g/, We use

f .z/ D
cm

.z � a0/m
C � � � C

c1

z � a0
C '.z/;

as above. Since ' is holomorphic in the starshaped domain B.a0; �/, it has a primitive in B.a0; �/.
Let r > 0 be chosen as in the theorem. Then

R
@B.a0;r/

'.z/dz D 0. Analogously we haveR
@B.a0;r/

.z � a0/
�kdz D 0 for k � 2, since .z � a0/�k for k � 2 has a primitive in C nfa0g.

We now have Z
@B.a0;r/

f .z/dz D c1

Z
@B.a0;r/

1

z � a0
dz D 2�ic1:

Since c1 D Res.f; a0/, the result is proved.

In Section 5 we have seen that the circuit @B.a; r/ in some cases can be replaced by another
circuit enclosing the singularity. We have the following result.

Proposition 8.3. Let  W Œa; b�! C be a simple, closed, positively oriented circuit. For z0 62 � D
.Œa; b�/ we have Z



1

z � z0
dz D

(
2�i; if  surrounds z0,
0; otherwise.
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Proof. The proof is only given in a special case. We assume that we can define piecewise continu-
ous functions r W Œa; b� ! .0;1/ and 'W Œa; b� ! R such that the given circuit can be represented
as

.t/ D z0 C r.t/e
i'.t/; t 2 Œa; b�:

In the case where r.t/ and '.t/ are differentiable in Œa; b� we haveZ


1

z � z0
dz D

Z b

a

 0.t/

.t/ � z0
dt

D

Z b

a

r 0.t/ei'.t/ C r.t/i' 0.t/ei'.t/

r.t/ei'.t/
dt

D

Z b

a

d

dt
Œlog.r.t//�dt C i

Z b

a

' 0.t/dt

D i Œ'.b/ � '.a/�:

In the general case we have to split the integral into a sum of integrals over the subintervals of Œa; b�,
where r.t/ and '.t/ both are differentiable. The result now follows from the fact that '.b/�'.a/ D
2� , if the circuit circumscribes z0, and zero otherwise. This property is easily verified for explicit
circuits, such as circles and polygonal paths. The general case is proved by using a deep result
called the Jordan curve theorem.

We can now explain the term ‘residue’. It is the remainder (up to a factor 2�i ) left in the contour
integral, when integrating a meromorphic function along a circuit circumscribing the singularity
once. In French remainder is ‘residu’.

We need the following result in the proof of the main theorem in this section.

Lemma 8.4. Let  W Œa; b� ! G be a simple closed circuit in a starshaped domain G � C. Then
there exists a bounded starshaped domain G1 such that � � G1 and G1 � G.

Proof. To each z 2 � there exists rz > 0 such that B.z; rz/ � G. We introduce the covering
fB.z; rz=2/gz2� of �. Since � is a compact set, this covering can be replaced by a finite covering
� � [n

kD1
B.zk; rk=2/ D A � G. Assume that G is starshaped around a 2 G. We can find r > 0

such that B.a; r/ � G. We now define

G1 D
[
z2A

L.a; z/
[
B.a;

r

2
/:

It follows from this definition that G1 is starshaped around a and that � � A � G1. Furthermore,
G1 is contained in the ball with center a and radius equal toR D maxkD1:::nfjzk�ajCrk=2gCr=2,
implying that G1 is bounded. Finally we note that

G1 �
[

z2[n
kD1

B.zk ;rk/

L.a; z/
[
B.a; r/ � G:

We can now prove the main theorem in this section.

Theorem 8.5 (Cauchy’s residue theorem). Let f be meromorphic in a starshaped domain G. Let
P denote the poles of f . Let  be a simple, closed, positively oriented circuit in G nP . Let
a1; : : : ; an, denote the poles surrounded by  . ThenZ



f .z/dz D 2�i

nX
kD1

Res.f; ak/:
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Proof. We use Lemma 8.4 to determine a bounded and starshaped domain G1, such that � � G1
and G1 � G. The set of poles P is a closed subset of G with no accumulation points in G. Thus
P \ G1 has no accumulation points in G. It now follows from the Bolzano-Weierstrass theorem
[3] that the set P1 D P \G1 is a finite set. We write

P1 D fa1; : : : ; an; anC1; : : : ; anCmg;

where anC1; : : : ; anCm are those poles in G1 not surrounded by  .
Let pk denote the principal part of f at ak , k D 1; : : : ; nCm. Let ' D f �

PmCn
kD1 pk. This

function has a removable singularity at each of the points a1; : : : ; anCm. By assigning the right
values in these points we get a function ' 2 H.G1/. Since G1 is starshaped, Corollary 5.5 shows
that ' has a primitive in G1. Thus

R

'.z/dz D 0. Using the definitions we have shown

Z


f .z/dz D

nCmX
kD1

Z


pk.z/dz:

The principal part pk is holomorphic in C nfakg, and has a representation

pk.z/ D
ck
Qm

.z � ak/ Qm
C � � � C

ck2
.z � ak/2

C
Res.h; ak/
z � ak

:

For each k we have
R

.z � ak/

�jdz D 0 for j � 2, since .z � ak/�j for j � 2 has a primitive in
C nfakg, by Proposition 8.3. We also have that

R

.z � ak/

�1dz equals 2�i , if  surrounds ak , and
0 otherwise.

We will now give some prescriptions for finding the residue of a meromorphic function, which
is represented as h D f=g. We assume that h has a pole in a and want to calculate Res.h; a/:

1. Assume that h has a simple pole at a. Then Res.h; a/ D limz!a.z � a/h.z/.

2. Assume f .a/ ¤ 0, g.a/ D 0, g0.a/ ¤ 0. Then Res.h; a/ D f .a/=g0.a/. This result follows
from the first result, since h has a simple pole in a, and

Res.h; a/ D lim
z!a

f .z/
z � a

g.z/
D lim

z!a
f .z/

�
g.z/ � g.a/

z � a

��1
D
f .a/

g0.a/
:

3. Assume that h has a pole of order m at a. Then

Res.h; a/ D
H .m�1/.a/

.m � 1/Š
;

where H.z/ D .z � a/mh.z/, such that H has a removable singularity at a. This result is
proved by using the representation

h.z/ D
cm

.z � a/m
C � � � C

c1

z � a
C '.z/

of h in a ball around a.

Example 8.6. The function

h.z/ D
z sin.z/
1 � cos.z/
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is meromorphic in C. The denominator has zeroes at 2j� , j 2 Z. All zeroes are of order 2. The
numerator has a zero of order 2 at z D 0 and zeroes of order 1 at z D j� , j 2 Z nf0g. It follows
that z D 0 is a removable singularity and that z D 2j� , j 2 Z nf0g, are simple poles.

The value to be assigned at the removable singularity is found using the power series expansions
for sin and cos:

lim
z!0

h.z/ D lim
z!0

z.z � z3

3Š
C � � � /

z2

2Š
�
z4

4Š
C � � �

D 2:

The residue at a pole 2j� , j ¤ 0, is found using w D z� 2j� and the periodicity of trigonometric
functions:

Res.h; 2j�/ D lim
z!2j�

.z � 2j�/h.z/ D lim
w!0

w.w C 2j�/ sin.w/
1 � cos.w/

D 4j�:

8.1 Exercises
1. Carry out the details in the proofs of the three prescriptions for determining residues given

above.

2. Find the poles and their orders, and calculate the residues, for each of the following functions:

(a) f .z/ D
1

sin.z/
;

(b) g.z/ D
z2

.z2 C 1/2
;

(c) h.z/ D
1

ez
2
� 1

:

3. Let f; g 2 H.G/. Assume that f has a zero of order n > 0 at a 2 G, and that g has a zero
of order nC 1 at a. Prove that f=g has a simple pole at a, and show that

Res.f =g; a/ D .nC 1/
f .n/.a/

g.nC1/.a/
:

4. Prove that the function sin.z�1/ has an essential singularity at z D 0.

9 Applications of the residue theorem
We have the following result for meromorphic functions.

Theorem 9.1. Let h be a meromorphic function defined on a starshaped domain G. Let  be a
simple, closed, positively oriented circuit in G, which does not intersect any of the poles or zeroes
of h in G. Let N.P / denote the sum of the orders of the poles of h surrounded by  . Let N.Z/
denote the sum of the orders of the zeroes of h surrounded by  . Then

1

2�i

Z


h0.z/

h.z/
dz D N.Z/ �N.P /:

Proof. Let D denote all zeroes and poles of h in G. The function h0=h is holomorphic in G nD.
We now prove that h0=h is meromorphic in G with poles contained in D. Let P denote the poles
of h in G. Assume that a is a zero of order n of h. Then we have the expansion

h.z/ D an.z � a/
n
C anC1.z � a/

nC1
C � � � ; an ¤ 0;
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valid in the largest ball B.a; �/ contained in G nP . Thus

h0.z/ D nan.z � a/
n�1
C .nC 1/anC1.z � a/

n
C � � � :

It follows that in this case the function h0=h has a simple pole at a with residue equal to n. Assume
now that a is a pole of order m of h. Then we have the expansion

h.z/ D a�m.z � a/
�m
C a�mC1.z � a/

�mC1
C � � � ; a�m ¤ 0

valid in B.a; �/n fag, where B.a; �/ is the largest open ball contained in G n.P nfag/. We now
have

h0.z/ D �ma�m.z � a/
�m�1

� .m � 1/a�mC1.z � a/
�m
� � � � :

We conclude that the function h0=h in this case has a simple pole at a, with residue equal to �m.
The result in the theorem now follows from the residue theorem.

We now show how to use the residue theorem to evaluate certain types of definite integrals. We
start by defining improper Riemann integrals, which are Riemann integrals over finite or infinite
open intervals.

For a; b 2 R [ f˙1g, a < b, assume that f is Riemann integrable over all finite closed
subintervals of .a; b/. Then we defineZ

.a;b/

f .x/dx D lim
c!aC;d!b�

Z
Œc;d�

f .x/dx

if the limit exists.
One of the ideas used in computing an improper Riemann integral

R1
�1

f .x/dx can be de-
scribed briefly as follows: Let  be a closed circuit in C, which contains the interval Œ�R;R�, for
example this line segment concatenated with the semi-circle in the upper half plane connecting R
with �R. Suppose we can find a meromorphic function F which agrees with f on the real axis.
The integral from�R toR plus the integral along the semi-circle then equals 2�i times the residues
at some of the poles of F in the upper half plane. One then tries to evaluate the limit R ! 1. In
many cases the integral along the semi-circle will tend to zero. In the limit one then gets the value
of the integral over the real axis. Let us illustrate this procedure in the next proposition.

Proposition 9.2. Let f be a rational function

f .z/ D
p.z/

q.z/
D
a0 C a1z C � � � C amz

m

b0 C b1z C � � � C bnzn
; am ¤ 0; bn ¤ 0:

Assume that n � m C 2 and that f has no poles on the real axis. Then the following improper
integral exists and is evaluated as shown.Z 1

�1

f .x/dx D 2�i

kX
jD1

Res.f; zj / D �2�i
lX

jD1

Res.f; wj /;

where z1; : : : ; zk are the poles of f located in the upper half plane and w1; : : : ; wl the poles in the
lower half plane.

Proof. We start by noting that
lim
jzj!1

zn�mf .z/ D am=bn:

We can then determine R0 > 0 such that

jzjn�mjf .z/j �M D jam=bnj C 1 for jzj � R0:
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In particular, we have

jf .z/j �
M

jzj2
for jzj � maxf1;R0g:

Choose R > 0 sufficiently large such that it is larger than maxf1;R0g and such that all the poles
of f are contained in B.0;R/, then the residue theorem gives (with 1 the line segment and the
semi-circle in the upper half plane traversed in the positive direction)Z

1

f .z/dz D

Z R

�R

f .x/dx C

Z �

0

f .Rei�/iRei�d� D 2�i

kX
jD1

Res.f; zj /:

Analogously, with 2 denoting the line segment traversed from R to �R, and the semi-circle in the
lower half plane, traversed in the positive direction, we haveZ

2

f .z/dz D

Z �R
R

f .x/dx C

Z 2�

�

f .Rei�/iRei�d� D 2�i

lX
jD1

Res.f; wj /:

Since ˇ̌̌̌Z �

0

f .Rei�/iRei�d�

ˇ̌̌̌
� �

RM

R2
;

the contribution from the semi-circle tends to zero for R ! 1. A similar result holds for the
integral over the semi-circle in the lower half plane.

Example 9.3. We consider the rational function f .z/ D z2.z2 C 1/�2. It has no poles on the real
axis, and in the upper half plane it has a pole at z D i with residue equal to �i=4. Proposition 9.2
then yields Z 1

�1

x2

.x2 C 1/2
dx D 2�i Res.f; i/ D

�

2
:

The method in Proposition 9.2 can be applied to many other classes of functions. We can state
the following result.

Proposition 9.4. Let f be meromorphic in C with no poles on the real axis, and with at most a
finite number of poles in the upper half plane, denoted by z1; : : : ; zk. If

max
0�t��

jf .Reit/j ! 0 for R!1,

then the improper Riemann integral
R1
�1

f .x/ei�xdx exists for any � > 0, and is given byZ 1
�1

f .x/ei�xdx D 2�i

kX
jD1

Res.f .z/ei�z; zj /:

Proof. Let  denote the closed circuit consisting of the line segment from �R to R and the semi-
circle jzj D R, Im.z/ � 0, in the upper half plane. Assume that R is sufficiently large, such that
this circuit surrounds all the poles in the upper half plane. Using the residue theorem we findZ



f .z/ei�zdz D

Z R

�R

f .x/ei�xdx C

Z �

0

f .Reit/ei�Re
it

iReitdt

D 2�i

kX
jD1

Res.f .z/ei�z; zj /:
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We have

IR D

ˇ̌̌̌Z �

0

f .Reit/ei�Re
it

iReitdt

ˇ̌̌̌
� max
0�t��

jf .Reit/j

Z �

0

Re��R sin.t/dt:

Since sin.t/ � 2t=� for t 2 Œ0; �=2�, we get with a D 2�R=�Z �

0

e��R sin.t/dt D 2

Z �=2

0

e��R sin.t/dt

� 2

Z �=2

0

e�atdt D
2

a
.1 � e�a

�
2 /

�
2

a
D

�

�R
;

which implies the estimate
IR �

�

�
max
0�t��

jf .Reit/j:

By assumption the right hand side tends to zero for R!1.

Example 9.5. The rational function f .z/ D z.z2C1/�1 has no poles on the real axis. In the upper
half plane it has a simple pole at z D i . We have the estimate

max
0�t��

jf .Reit/j �
R

R2 � 1
for R > 1.

Thus all assumptions in Proposition 9.4 are satisfied, and we getZ 1
�1

f .x/ei�xdx D 2�i Res.f .z/ei�z; i/ D �ie�� for � > 0:

Taking the imaginary part on both sides we getZ 1
�1

x sin.�x/
x2 C 1

dx D �e�� for � > 0:

Finally we note that an integral of the formZ 2�

0

f .cos.t/; sin.t//dt

can be rewritten as a contour integral over the unit circleZ
@B.0;1/

f .
1

2
.z C

1

z
/;
1

2i
.z �

1

z
//
1

iz
dz;

since z D eit , t 2 Œ0; 2��, is a parametrization of the unit circle @B.0; 1/. In some cases one can
then use the residue theorem to find the contour integral.

Example 9.6. For a > 1 we consider the integralZ 2�

0

dt

aC cos.t/
D

Z
@B.0;1/

dz

iz.aC 1
2
.z C 1

z
//
D �2i

Z
@B.0;1/

dz

z2 C 2az C 1
:

The denominator in the last integrand can be factored as .z � q/.z � p/, where q < �1 < p < 0

are the numbers �a ˙
p
a2 � 1. Thus the integrand has a simple pole at z D p inside the unit

circle, and the residue is given by .p � q/�1, which impliesZ 2�

0

dt

aC cos.t/
D .�2i/.2�i/

1

p � q
D

2�
p
a2 � 1

:
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9.1 Exercises

1. Show that
Z 1
�1

dx

1C x4
D

�
p
2

.

2. Show that
Z 1
0

xdx

1C x4
D
�

4
.

3. Show that
Z 1
�1

x2

.x2 C 1/.x2 C 4/
dx D

�

3
.

4. Show that
Z 1
�1

ei�x

x2 � 2x C 2
dx D ��e�� .

5. Show that for any a > 1 we have
Z 2�

0

cos.x/
aC cos.x/

dx D 2�.1 �
a

p
a2 � 1

/.

References
[1] T. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley, New York 1974.

[2] A. Jensen, supplerende materiale til Analyse 1, efterår 2010.

[3] P. M. Fitzpatrick, Advanced Calculus, Second Edition, American Mathematical Society 2006.

33


	Introduction
	Holomorphic functions
	Power series
	Exercises

	Contour Integrals
	Exercises

	Cauchy's theorems
	Exercises

	Applications of Cauchy's integral formula
	Exercises

	Meromorphic functions
	Exercises

	The residue theorem
	Exercises

	Applications of the residue theorem
	Exercises


