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1 Introduction

In this short note we give some comments and additional computations relat-
ing to the results in Chapter 5 of [3]. We assume that the reader is familiar
with the basic results in Complex Analysis. We refer to the lecture notes [1]
for results we need. The error estimate we give here for spectral differenti-
ation based on the choice of Chebyshev points made in [3], is based on the
paper [2].

2 Lagrange Interpolation

We state the Lagrange interpolation formula and derive an error estimate for
it. We limit outselves to interpolation points in the interval [−1, 1]. Let

x0, x1, . . . , xN ∈ [−1, 1] be N + 1 distinct points.

The Lagrange interpolation polynomials are defined by

Lj(x) =
N
∏

k=0
k 6=j

x − xk

xj − xk

. (2.1)

They have the property

Lj(xk) =

{

1, if k = j,

0, if k 6= j.
(2.2)
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Thus given a function u on [−1, 1], let uj = u(xj). Then the Lagrange
interpolation formula is the following expression:

pN(x) =
N

∑

j=0

ujLj(x). (2.3)

It is clear from (2.2) that pN is the interpolating polynomial, viz. pN (xj) =
uj, for all j = 0, 1, . . . , N .

We will now derive an expression for the error term

RN(x) = u(x) − pN(x). (2.4)

For this purpose we introduce the function

ωN+1(x) =
N
∏

k=0

(x − xk). (2.5)

We have the following expression for the Lagrange polynomials:

Lj(x) =
ωN+1(x)

(x − xj)ω
′
N+1(xj)

. (2.6)

Since the interpolating polynomial for a given set of nodes {(xj, uj)}j=0,1,...,N

is unique, it suffices to verify that the expression on the right hand side
of (2.6) satisfies (2.2). We first assume that k 6= j. Since by definition
ωN+1(xk) = 0, the right hand side in (2.6) is zero for x = xk. For k = j we
have to evaluate using a limit. We have, using ωN+1(xj) = 0, i

lim
x→xj

ωN+1(x)

(x − xj)ω′
N+1(xj)

=
1

ω′
N+1(xj)

lim
x→xj

ωN+1(x) − ωN+1(xj)

x − xj

=
ω′

N+1(xj)

ω′
N+1(xj)

= 1.

Thus equation (2.6) has been established.
In order to get an error estimate we now assume that the function u

extends to an analytic function in a domain Ω, which contains the interval
[−1, 1]. The approximating polynomial (2.3) is defined for all z ∈ C. Thus
the error term (2.4) is defined for all z ∈ Ω.

Now let Γ be a simple, positively oriented, closed contour, containing
[−1, 1] in its interior and contained in Ω. Then we have the following formula
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for the error term, valid for z inside the contour Γ.

RN (z) = u(z) − pN (z)

= u(z) −
N

∑

j=0

ωN+1(z)u(xj)

(z − xj)ω′
N+1(xj)

=
ωN+1(z)

2πi

∫

Γ

u(ζ)

(ζ − z)ωN+1(ζ)
dζ. (2.7)

The last equality in (2.7) is a consequence of the calculus of residues. See
Theorem 7.5 in [1]. More precisely, the integrand in (2.7) has simple poles
at the point z and at the points x0, x1, . . . , xN . The residue at the point z is

u(z)

ωN+1(z)
,

and the residue at a point xj is

u(xj)

ω′
N+1(xj)(xj − z)

.

Thus the residue theorem implies that (2.7) holds (note that the denominator
has the factor (xj − z), accounting for the sign in front of the sum in (2.7)).

3 Error Estimates in Polynomial Interpola-

tion

The formula (2.7) allows one to obtain error estimates in the polynomial in-
terpolation, if the function u has an analytic continuation to a neighborhood
of the interval [−1, 1]. Assume this is the case. Then we get from (2.7),
taking z = x ∈ [−1, 1],

|RN(x)| ≤
[

1

2π

maxz∈Γ|u(z)|
minz∈Γ|ωN+1(z)|

∫

Γ

1

|ζ − x| |dζ|
]

|ωN+1(x)|. (3.1)

The integral above is with respect to arc length. It follows from the above
formula that the approximation error for large N is governed by the behavior
of ωN+1(z) for large N , both on the curve Γ, and on the interval [−1, 1]. This
explains why the author in [3] concentrates on the study of this function, in
the book denoted by p(z), see page 43 in [3].
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Now let us try to explain Theorem 5 in [3]. We introduce the function

φN+1(z) =
1

N + 1

N
∑

k=0

log|z − xk|. (3.2)

We also as in [3] assume that the distribution of the points {xk} for N large is
given by a density function ρ(x). We define the associated potential function

φ(z) =

∫ 1

−1

ρ(x) log|z − x|dx. (3.3)

Let
φ[−1,1] = max

x∈[−1,1]
|φ(x)|.

Assume that there exists a constant φu > φ[−1,1], such that u is analytic in a
domain slightly larger than the region

{x |φ(z) ≤ φu}.
Now to explain the estimate in Theorem 5, we first note that for N large we
have |ωN+1(z)| ≈ e(N+1)φ(z), as explained in [3]. Suppose we can take a curve
Γ, such that φ(z) ≈ φu for z ∈ Γ. Then we can conclude that

min
z∈Γ

|ωN+1(z)| ≥ ce(N+1)φ(z) ≥ ce(N+1)φu ,

for large N . Similarly, for x ∈ [−1, 1], we have

|ωN+1(x)| ≤ ce(N+1)φ(x) ≤ ce(N+1)φ[−1,1] .

Using these two estimates in (3.1), we get

|RN(x)| ≤ Ce−(N+1)(φu−φ[−1,1]),

which is the estimate in Theorem 5.
We should note that the detailed justification of the result in Theorem 5

uses a number of properties of the functions φN+1 and φ. Both functions are
harmonic, which means (identifying points in the complex plane z = x + iy
with points in R2) that

∂2φ

∂x2
(x, y) +

∂2φ

∂y2
(x, y) = 0

for all z = z + iy not in the interval [−1, 1], and analogously for φN+1. Har-
monic functions have many nice properties. For example, they are infinitely
often differentiable, and they obey the maximum principle, meaning that a
harmonic function cannot have a local maximum or a local minimum in the
interior of a bounded domain. It is these facts that allow us to choose an
integration contour above.
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4 An Error Estimate for Spectral Differenti-

ation

We will briefly show how the error formula derived above can be used to get
error estimates for spectral differentiation based on the Chebyshev points.
We start with a general formula, valid for any set of nodes {xj}. Take the
formula (2.7) for z = x ∈ [−1, 1] and differentiate with respect to x to get
the formula

R′
N(x) = u′(x) − p′N(x)

=
1

2πi

∫

Γ

(ω′
N+1(x)

ζ − x
+

ωN+1(x)

(ζ − x)2

) u(ζ)

ωN+1(ζ)
dζ. (4.1)

Now if we evaluate at the nodes and use that ωN+1(xj) = 0 for all j =
0, 1, . . . , N , we get the general formula

u′(xj) − p′N(xj) =
ω′

N+1(xj)

2πi

∫

Γ

u(ζ)

ωN+1(ζ)(ζ − xj)
dζ. (4.2)

From now on we assume that the points xj are the Chebyshev points
chosen in [3], i.e.

xj = cos(πj/N), j = 0, 1, 2, . . . , N.

We let TN (x) denote the Chebyshev polynomial of degree N , see [3]. The
Chebyshev points give the locations of the local extrema of TN (x) on the
interval [−1, 1]. By using properties of the Chebyshev polynomials one can
show that there is a constant c such that

ωN+1(x) = c(TN+1(x) − TN−1(x)).

Since in (4.2) only a ratio of two ωN+1 enters, we can change the definition
of ωN+1 to eliminate this constant. Thus from now on ωN+1 denotes this
‘renormalized’ function.

Now we need to chose an appropriate curve Γ in order to use (4.2) to
estimate the accuracy of spectral differentiation. As can be seen from the
computations in [3] an ellipse with foci in −1 and 1 seems to be a good choice.
Thus we take a parameter δ > 1 and let Γδ denote the ellipse given by

z(θ) = 1
2
(δeiθ + δ−1e−iθ), 0 ≤ θ ≤ 2π. (4.3)

It will follow from the estimates below that |ωN+1(z)| is nearly constant for
large N on the curve Γδ.
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Now we need one of the properties of the Chebyshev polynomials. We
have

TN (z) = 1
2

(

(z +
√

z2 − 1)N + (z −
√

z2 − 1)N
)

. (4.4)

If z ∈ Γδ, a simple calculation using (4.3) shows that

z +
√

z2 − 1 = δe−θ, (4.5)

z −
√

z2 − 1 = δ−1e−iθ. (4.6)

Inserted into (4.4) this leads to

TN (z) = 1
2

(

(δeiθ)N + (δ−1e−iθ)N
)

(4.7)

Then we get

ωN+1(z) = TN+1(z) − TN−1(z)

= 1
2

(

(δeiθ)N+1 + (δ−1e−iθ)N+1
)

− 1
2

(

(δeiθ)N−1 + (δ−1e−iθ)N−1
)

= 1
2

(

δeiθ − δ−1e−iθ
)(

δNeiNθ − δ−Ne−iNθ
)

.

Now

|δNeiNθ − δ−Ne−iNθ| = |(δN − δ−N) cos(Nθ) + i(δN + δ−N) sin(Nθ)|
=

√

δ2N + δ−2N − 2 cos(2Nθ),

where in the last step we used the double angle formula for the cosine. This
computation, also used for N = 1, gives the result

|ωN+1(z)| = 1
2

√

δ2 + δ−2 − 2 cos(2θ)
√

δ2N + δ−2N − 2 cos(2Nθ). (4.8)

We use this result to get upper and lower bounds on |ωN+1(z)|. The minimal
value occurs for θ = 0, giving the lower bound

1
2
(δ − δ−1)(δN − δ−N).

To get the upper bound we maximize the two terms individually. The maxi-
mal value of each term occurs for values of θ such that the cosine term equals
1. This leads to an upper bound

1
2
(δ + δ−1)(δN + δ−N).

To use these bounds, let η = log δ, such that δ = eη. Note that η > 0, since
we assume δ > 1. Then we have for example

1
2
(δ + δ−1) = 1

2
(eη + e−η) = cosh(η).
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This identity and similar ones then allow us to summarize the lower and
upper bounds as

2 sinh(η) sinh(Nη) ≤ |ωN+1(z)| ≤ 2 cosh(η) cosh(Nη). (4.9)

We need a bound on the derivative ω′
N+1(xj). This bound can be obtained

from standard bounds on the derivative of Chebyshev polynomials. The
result is

max
0≤j≤N

|ω′
N+1(xj)| = 4N.

Furthermore, we need an estimate for the arc length for the ellipse Γδ. We
denote this arc length by `δ. From calculus we have that

`δ =

∫ 2π

0

|z′(θ)|dθ.

Since
|z′(θ)| = | i

2
(δeiθ − δ−1e−iθ)| ≤ 1

2
(δ + δ−1),

we have the simple estimate

`δ ≤ π(δ + δ−1). (4.10)

We also need an estimate for the minimal distance from points on the ellipse
Γδ to points in the interval [−1, 1]. This distance can be computed exactly.
It is a very easy exercise in calculus (or geometry), so I just state the result.
The minimal distance is

dδ = 1
2
(δ + δ−1) − 1. (4.11)

Now we can state the estimate for the approximation error. We assume
that u is analytic in a region larger than the closed ellipse bounded by Γδ.
We define

Cδ = max
z∈Γδ

|u(z)|.

Then using (4.2) and the above estimates we can estimate the approximation
error as follows.

|u′(xj) − p′N(xj)| ≤
|ω′

N+1(xj)|Cδ

2π minz∈Γδ
|ωN+1(z)|

∫

Γδ

1

|ζ − xj|
|dζ| (4.12)

≤ 4NCδ

2π

1

sinh(η) sinh(Nη)

`δ

dδ

. (4.13)
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Now we need to look at some of the terms individually. First, we have

`δ

dδ

=
π(δ + δ−1)

1
2
(δ + δ−1) − 1

=
2π cosh(η)

cosh(η) − 1
.

This quantity tends to infinity as η → 0. It is easy to estimate its size
numerically. For example, it is less than 100 for η ≥ 0.365, corresponding to
δ > 1.441.

The exponential decay for N → ∞ comes from the sinh(Nη) term. A
simple estimate is

1

sinh(t)
=

cosh(t)

sinh(t)

1

cosh(t)
= coth(t)

2

et + e−t
≤ coth(t)2e−t,

valid for any t > 0. Thus if we assume as above η ≥ 0.365, we have
coth(Nη) ≤ 2.9, for all N ≥ 1. Thus the decay rate is

e−Nη = (δ−1)N .

Now finally to compare with Theorem 6 in [3], we note that δ is the sum
of the major and minor semi-axes in the ellipse Γδ, which is called K in
Theorem 6.
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