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I will limit the discussion to the first two cases.



A result in the finite dimensional case. A an N X N matrix
with
ReA <0 forallA € o(A).

Then
u(t) =e4ug—-0 as t— o

for all initial conditions ug.

Some questions.
o How fast will the solution approach zero.



A result in the finite dimensional case. A an N X N matrix
with
ReA <0 forallA € o(A).
Then
u(t) =e4ug—-0 as t— o

for all initial conditions uy.
Some questions.

o How fast will the solution approach zero.
» How large will the solution get before approaching zero.



A result in the finite dimensional case. A an N X N matrix
with
ReA <0 forallA € o(A).
Then
u(t) =e4ug—-0 as t— o

for all initial conditions ug.

Some questions.

o How fast will the solution approach zero.

» How large will the solution get before approaching zero.
It is this last quantative question we will try to answer.



An example:
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We plot |le!4| and |le!®|| as functions of t.
Which is which?
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Here is an example from real life: Boing aircraft wing flutter.
Matrix is 55 X 55.
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Motivation—Resolvent and Spectrum

Operator equation Ax —Ax = b, A ¢ o(A). Solution
x=(A-AD"1h.

Perturb right hand side, ||u|| < ¢, i.e. consider
Ay — Ay = b + u. We have

lx =l < ell(A-AD71.

Thus the effect depends on the norm of the resolvent. It may
be large far from the spectrum. Recall general result:

1

— -1 vl — 7 AN
A =zD™"l = dist(z, 0 (A))



Definition of Pseudospectrum

Let A € B(H ) and &€ > 0. The e-pseudospectrum of A is
given by

Oe(A) =0(A) u{zeC\a(A) | II(A-zD7 Y > et



Definition of Pseudospectrum

Let A € B(H ) and &€ > 0. The e-pseudospectrum of A is
given by

0:(A) =0(A)ufzeC\a(A) | IIA-zD Y > e 1}.

Theorem

Let A € B(H) and € > 0. Then the following three statements
are equivalent.
(i) z € o:(A).
(ii) There exists B € B(H) with ||B|| < & such that
ze€ 0(A+ B).

(i) z € o (A) or there exists v € H with |v|| = 1 such that
(A —-zD)v] < .



Definition of Pseudospectrum, Finite Dimension

Let T be an N X N matrix. The eigenvalues of (T*T)1/2 are
called the singular values of T. The smallest singular value is
denoted smin(T).

Theorem

Assume that H is finite dimensional and T € B(JH ). Let
> 0. Then z € 0<(T) if and only if smin(T — zI) < &.



Definition of Pseudospectrum, Finite Dimension

Let T be an N X N matrix. The eigenvalues of (T*T)1/2 are
called the singular values of T. The smallest singular value is
denoted smin(T).

Theorem

Assume that H is finite dimensional and T € B(JH ). Let
> 0. Then z € 0<(T) if and only if smin(T — zI) < &.

Since the singular values of a matrix can be computed
numerically, this result provides a method for plotting the
pseudospectra of a given matrix. One chooses a finite grid of
points in the complex plane, and evaluates syin (T — zI) at
each point. Plotting level curves for these points provides a
picture of the pseudospectra of T.



Properties of g:(A)

Define Ds = {z € C| |z]| < &}.
Proposition

Let A € B(H). Each 0<(A) is a bounded open subset of C. We
have o¢, (A) C 0¢,(A) for 0 < &1 < €. Furthermore,
Ne>00e(A) = 0(A). For 6 > 0 we have Ds + 0:(A) € 0c15(A).
We have g:(A*) = 0:(A).




Properties of g:(A)

Define Ds = {z € C| |z]| < &}.

Proposition

Let A € B(H). Each 0<(A) is a bounded open subset of C. We
have o¢, (A) C 0¢,(A) for 0 < &1 < €. Furthermore,

Ne>00e(A) = 0(A). For 6 > 0 we have Ds + 0:(A) € 0c15(A).
We have g:(A*) = 0:(A).

Proposition

Let A € B(H) and assume that V € B(H) is invertible. Let
k =cond(V)( = ||V] - IV~Y]). Let B= VAV~L. Then

o(B) = 0(A),
and for € > 0 we have

US/K(A) S 0¢(B) € 0ke(A).



Properties of g:(A)

Proposition

Let A€ B(H) and € > 0. Then
{z] dist(z,0(A)) < €} € 0:(A).
If A is normal, then

0:(A) = {z]| dist(z,0(A)) < &}.



Example 1

Take

with o(A) = {1, -1, i}.
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Example 2

Let us look at the Jordan canonical form of this matrix. We
have J = Q" 1BQ, where

01 0 0 O -1 -1 -1 -1 1
00100 1 0 0 0 O
J=10 0 0 1 O and Q=10 1 0 O O
000 00O 0O 0 1 o0 O
0 00 01 O 0 0 1 o0

We have

cond(Q) = 3 + 22 ~ 5.828427125.



Example 2
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Example 2
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Example 3

A Toeplitz matrix

[ 1 0 0 0]
1/4 1 .-~ 0 0
0 1/4 0 --- 0 0
A=| . L
0 0 0 -+ 0 1
|0 0 0 --- 1/4 0]

We have A = SDS~! with D diagonal.
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Example 3

A + E, E random matrix with [|E|| < 10710, Plot of spectra:
blue. Spectrum of A: red.

Matrix size N=64 Number of iterations 400 Epsilon=1e-10
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Some definitions

Let A € B(H'). The numerical range of A is the set

W(A) = {u, Au) [ lull = 1}.

Theorem (Toeplitz-Hausdorff)

The numerical range W (A) is always a convex set. If H is
finite dimensional, then W (A) is a compact set.

Proposition
Let A € B(H). Then o (A) c cl(W(A)).




Some definitions

We define the following quantities.

x(A) =sup{Rez |z € o0 (A)},
xe(A) = sup{Rez |z € 0:(A)},
w(A) =sup{Rez|ze W(A)}.

We recall the relations

(A-z) ' = J e tZet4dt  for Re z sufficiently large.
0

etd = ij etZ(A -z tdz
2111 Jy

where y is a simple closed contour enclosing o.(A).
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We have the following results from semigroup theory:
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Estimates on ||ef4||

We have the following results from semigroup theory:

x(A) = tllngo%log||etA||

1
w(A) = ||e“‘|| | = lim  loglle']



Estimates on ||ef4||

Some simple estimates:
letd] = et®@A  forallt > 0

llefA|| < et@  forallt >0

An estimate based on pseudospectra:

Theorem
For all € > 0 we have

suplletA] > 24

t=0



Estimates on ||ef4||

Define the Kreiss constant

Xe(A)

K(A) = sup

>0

Theorem (Kreiss Matrix Theorem)

If A is an N x N matrix, then we have

let4]] < eNK(A).



Estimates on ||ef4||

Some further results

Leta =Rez. LetK =Rez||[(A—zI)~!|. Then for T > 0 we
have
eat -1 1

)

sup |letA| = e (1 +
O<t=<t K
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Some examples

Unstable Boing wing flutter matrix. Close-up near eigenvalue
with Rez > 0
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Some examples

Stable Boing wing flutter matrix.
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Some examples

Stable Boing wing flutter matrix. Close-up near eigenvalue
with Rez ~ 0
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Some examples

Stable Boing wing flutter matrix. Initial behavior.

x 10* Linear plot of transient behaviour of ||eA‘||
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Some examples

Stable Boing wing flutter matrix. Long time behavior.

x 10* Linear plot of transient behaviour of ||eA‘||
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Unstable Boing wing flutter matrix. Initial behavior.
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Some examples
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Some examples

Unstable Boing wing flutter matrix. Long time behavior.
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Matrix
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Boundary of numerical range included.
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The first examples
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