
Time-Frequency Analysis

PhD Course November 10, 11,
and December 1, 2, 2003.

Arne Jensen

Aalborg University

Time-Frequency Analysis – p.1/96



Overview

The purpose of this course is to give you an introduction to
time-frequency analysis. Many of you have already had
some exposure to this topic, so a secondary purpose is to
try to answer some of your questions concerning
time-frequency analysis. It is a highly nontrivial subject,
both from the theoretical side, and from the applied side.

Prerequisites: Some knowledge of Fourier Analysis and
Signal Processing.

Query: Your background?
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Course description

Description: The purpose of this course is to introduce the
participants to time-frequency analysis. A joint
time-frequency analysis of a signal can often reveal the
features in complicated signals. It is difficult to perform a
joint time-frequency analysis, due to the fundamental
limitations imposed by the uncertainty principle.
Compromises between resolution in time and in frequency
must always be made. The course will give an introduction
to this area. Topics include:
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Course description

A short review of the Fourier transforms and a short
introduction to wavelet analysis.

The time-frequency plane.

The uncertainty principle and its different formulations.

Time-frequency analysis in the following forms: (a) The
short time Fourier transform (windowed Fourier
transform, Gabor analysis), (b) The wavelet transform,
(c) The wavelet packet transform, (d) General tilings of
the time-frequency plane and associated transforms.

Examples and applications.

How to choose a method for time-frequency analysis
(can be based on signals supplied by the participants).
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References

I will use following the book for the material on the discrete
wavelet transform, the wavelet packet transform, and the
introduction to the time-frequency plane.

A. Jensen and A. la Cour-Harbo:
Ripples in Mathematics
The Discrete Wavelet Transform
Springer-Verlag 2001.

You will need to refer to your books on signal procesing or
other subjects for introductory Fourier Analysis.
A general introduction to the theory behind time-frequency
analysis is

K. Gröchenig: Foundations of Time-Frequency Analysis
Birkhäuser 2000.
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Monday November 10

Plan

09:00–10:15 Review of Fourier Analysis

10:30–12:00 Introduction to the Discrete Wavelet
Transform

12:00–13:00 Lunch break

13:00–13:15 Question session

13:15–14:30 The time-frequency plane

14:30–15:00 Exercise

15:00–16:00 Uncertainty relations I
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Tuesday November 11

09:00–10:15 Introduction to the wavelet packet
transform

10:30–12:00 Interpretation in the time-frequency plane

12:00–13:00 Lunch break

13:00–13:15 Question session

13:15–14:30 More Fourier analysis: Gabor transforms

14:30–15:00 Exercise

15:00–16:00 Problems sets
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Part 1

Review of Fourier Analysis
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The Fourier transform

Review of the Fourier transform. There are at least four
variants:

Acronym Time Frequency

CTCFFT Continuous Continuous
DTCFFT Discrete Continuous
CTDFFT Continuous Discrete
DTDFFT Discrete Discrete
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The Fourier transform

CTCFFT x(t)←→ x̂(ω)

x̂(ω) =

∫
∞

−∞

x(t)e−jωtdt x(t) =
1

2π

∫
∞

−∞

x̂(t)ejωtdω

∫
∞

−∞

|x(t)|2dt ==
1

2π

∫
∞

−∞

|x(ω)|2dω

x(t) real-valued:

x̂(ω) = x̂(−ω)
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The Fourier transform

DTCFFT x[n]←→ X(ω)

X(ω) =
∑

n∈Z

x[n]e−jnω x[n] =
1

2π

∫ 2π

0

X(ω)einωdω

∑

n∈Z

|x[n]|2 =
1

2π

∫ 2π

0

|X(ω)|2dω

x[n] real-valued:

X(ω) = X(−ω)

CTDFFT Interchange role of time and frequency above.
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The Fourier transform

DTDFFT x←→ x̂

Orthogonal basis for C
N {ek}k=0,...,N−1 given by

ek[n] = ej2πnk/N , k, n = 0, . . . , N − 1

x̂[k] =

N−1∑

n=0

x[n]e−j2πnk/N x[n] =
1

N

N−1∑

k=0

x̂[k]ej2πnk/N

N−1∑

n=0

|x[n]|2 =
1

N

N−1∑

k=0

|x̂[k]|2
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The Fourier transform

x ∈ C
N realvalued. Then

x̂[k] =

N−1∑

n=0

x[n]ej2πnk/N =

N−1∑

n=0

x[n]e−j2πn(N−k)/N = x̂[N − k]

Comparing DTDF with DTCF we see that x̂ is obtained by
sampling X(ω) at the frequencies
0, 2π/N, . . . , 2π(N − 1)/N , ie

x̂[k] = X(2πk/N)
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Sampling

A continuous signal x(t) is sampled at times nT , n ∈ Z.
Fourier series with this time unit:

XT (ω) =
∑

n

x[n]e−jnTω

Relation to the CTCFFT:

XT (ω) =
1

T

∑

k∈Z

x̂
(

ω − 2kπ

T

)
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Sampling

Illustration of aliasing effect (undersampling):

0 125 250 375 500 625 750 875 1000
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Short Time Fourier Transform

The Short Time Fourier Transform (STFT) is based on
DTCFFT and a window function:

XSTFT(k, ω) =
∑

n∈Z

w[n− k]x[n]e−jnTω

Let x be a signal of length N . Usual choice of k is for N
even is k = mN/2, m ∈ Z, and for N odd k = m(N − 1)/2,
m ∈ Z.
The window function w gives a localization in time.
Example is Hanning window:

w[n] = sin2(π(n− 1)/N), n = 1, . . . , N
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Short Time Fourier Transform

Examples with N = 16: Rectangular, triangular, Hanning
and Gaussian windows.
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Short Time Fourier Transform

The spectrogram is obtained by plotting

1

2π
|XSTFT(k, 2πn/N)|2

for values of k determined by the length of the window, and
for n = 0, . . . , N − 1. Visualized in the time-frequency plane
by using cells of a size determined by the length of the
window in the frequency direction and by the length of the
signal and the overlap in the time direction.
Examples will be shown later.
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Part 2

Introduction to the Discrete Wavelet

Transform
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A first example 1

A signal with 8 samples:

56, 40, 8, 24, 48, 48, 40, 16

We compute a transform as shown here:

56 40 8 24 48 48 40 16

48 16 48 28 8 −8 0 12

32 38 16 10 8 −8 0 12

35 −3 16 10 8 −8 0 12

To interpretation

Time-Frequency Analysis – p.20/96



A first example 2

First row is the original signal. The second row in the table
is generated by taking the mean of the samples pairwise,
put them in the first four places, and then the difference
between the the first member of the pair and the computed
mean. Computations are repeated on the means.
Differences are kept in each step.
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48 8

56 + 40

2
56− 48
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A first example 3

The transform is invertible. We start from the bottom row.
We add and subtract the difference to the mean, and
repeat the process up to the first row.
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A first example 4

We replace samples in the transformed signal below 4 by
zero (thresholding) and then repeat the reconstruction
procedure:
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A first example 4

We replace samples in the transformed signal below 4 by
zero (thresholding) and then repeat the reconstruction
procedure:

59 43 11 27 45 45 37 13

51 19 45 25 8 −8 0 12
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A first example 5

We now replace samples in the transformed signal below 9
by zero (thresholding) and then repeat the reconstruction
procedure. The final result is:

51 51 19 19 45 45 37 13

51 19 45 25 0 0 0 12

35 35 16 10 0 0 0 12

35 0 16 10 0 0 0 12
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A first example 6

Here is now a graphical representation of the results. Full
line original signal, and dashed line for thresholding, left
hand side 4, right hand side 9.
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Lifting 1

We now look at the transform in the first example. The
direct transform (a, b)→ (d, s) is given by

s =
a + b

2
,

d = a− s.

and the inverse (d, s)→ (a, b) by

a = s + d; ,

b = s− d.
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Lifting 2

They can be realized as in-place transforms in two steps.
The direct transform as

First step: a, b → a, 1
2
(a + b)

Second step: a, s → a− s, s.

and the inverse transform as

First step: d, s → d + s, s

Second step: a, s → a, 2s− a.
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Lifting 3

Notation: Finite sequence of numbers (samples of a signal)
of length 2j is denoted by sj = {sj [1], sj [2], . . . , sj [2

j ]}.
Basic idea in lifting is given in this figure:

evenj−1

oddj−1

−

sj−1

dj−1

split P U
sj

+

P : Predict
U : Update
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Lifting 4

An alternative to the first example is difference and mean
computation, in that order:

a, b→ δ, µ

where

δ = b− a

µ =
a + b

2
= a +

δ

2
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Lifting 5

Predict: In the difference-mean case:

dj−1[n] = sj [2n + 1]− sj [2n].

In general:
dj−1 = oddj−1 − P (evenj−1).

Update: In the difference-mean case:

sj−1[n] = sj [2n] + dj−1[n]/2.

In general:
sj−1 = evenj−1 + U(dj−1).
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Lifting 6

The transform sj → sj−1,dj−1 is called one step lifting. In
the the first example we repeatedly applied the transform
to the s-components, ending with s0 of length 1. Two step
discrete wavelet transform:

evenj−1

oddj−1

−

sj−1

dj−1

split P U
sj

+

evenj−2

oddj−2

−
dj−2

split P U

+
sj−2
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Lifting 7

The difference and mean computations in the in place
form:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P

s1[0] d2[0] d1[0] d2[1] s1[1] d2[2] d1[1] d2[3] U

s1[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] P

s0[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] U
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Lifting 8

The in place transform step by step:
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Lifting 8

The in place transform step by step:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U
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Lifting 8

The in place transform step by step:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P
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Lifting 8

The in place transform step by step:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P

s1[0] d2[0] d1[0] d2[1] s1[1] d2[2] d1[1] d2[3] U

Time-Frequency Analysis – p.33/96



Lifting 8

The in place transform step by step:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P

s1[0] d2[0] d1[0] d2[1] s1[1] d2[2] d1[1] d2[3] U

s1[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] P
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Lifting 8

The in place transform step by step:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P

s1[0] d2[0] d1[0] d2[1] s1[1] d2[2] d1[1] d2[3] U

s1[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] P

s0[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] U
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Lifting 8

The in place transform step by step:

In place transform with pattern of computed values:

s3[0] s3[1] s3[2] s3[3] s3[4] s3[5] s3[6] s3[7]

s3[0] d2[0] s3[2] d2[1] s3[4] d2[2] s3[6] d2[3] P

s2[0] d2[0] s2[1] d2[1] s2[2] d2[2] s2[3] d2[3] U

s2[0] d2[0] d1[0] d2[1] s2[2] d2[2] d1[1] d2[3] P

s1[0] d2[0] d1[0] d2[1] s1[1] d2[2] d1[1] d2[3] U

s1[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] P

s0[0] d2[0] d1[0] d2[1] d0[0] d2[2] d1[1] d2[3] U
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Lifting 9

A second example of lifting: Base prediction on assumption
that signal is linear, ie sj [n] = αn + β. Prediction of
sj [2n + 1] is then 1

2
(sj [2n] + sj [2n + 2]), and we need to

save only dj−1[n] = sj [2n + 1]− 1
2
(sj [2n] + sj [2n + 2]).

dj−1[n]

sj [2n + 1]

sj [2n]

sj [2n + 2]
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Lifting 10

The update step: Keep mean of sj [n] sequence equal to
mean of sj−1[n] sequence. Final result is

dj−1[n] = sj [2n + 1]− 1
2
(sj[2n] + sj [2n + 2]),

sj−1[n] = sj [2n] + 1
4
(dj−1[n− 1] + dj−1[n]).

Inverse transform:

sj [2n] = sj−1[n]− 1
4
(dj−1[n− 1] + dj−1[n]),

sj [2n + 1] = dj−1[n] + 1
2
(sj [2n] + sj [2n + 2]).
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Lifting 11

Summary of one step lifting and inverse lifting:

PU

+

−

merge

evenj−1

oddj−1

−

split P U

+

dj−1

sj−1 evenj−1

oddj−1

sjsj
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Generalized lifting 1

One can generalize the lifting step by allowing several pairs
of predictions and updates.

−

split P1 U1

sj

+

oddj−1

evenj−1

dj−1

−

P3 U3

+

−

P2 U2

+
sj−1
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Generalized lifting 2

An example, Daubechies 4

s
(1)
j−1[n] = sj [2n] +

√
3sj [2n + 1]

d
(1)
j−1[n] = sj [2n + 1]− 1

4

√
3s

(1)
j−1[n]− 1

4
(
√

3− 2)s
(1)
j−1[n− 1]

s
(2)
j−1[n] = s

(1)
j−1[n]− d

(1)
j−1[n + 1]

sj−1[n] =

√
3− 1√

2
s
(2)
j−1[n]

dj−1[n] =

√
3 + 1√

2
d

(1)
j−1[n]
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Generalized lifting 3

Last two steps are normalization steps, in order to
preserve the energy in the transform, ie

∑

n

|sj [n]|2 =
∑

n

|sj−1[n]|2 +
∑

n

|dj−1[n]|2

now holds. Note that
√

3− 1√
2
·
√

3 + 1√
2

= 1 .
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DWT 1

Finally we can introduce the Discrete Wavelet Transform
(DWT). Block diagrams are used for our lifting and inverse
lifting based one step transforms:

Ta Ts
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DWT 2

A DWT over four scales

Ta

dj−1

Ta

dj−2

Ta

dj−3

Ta

dj−4

sj−4

The inverse DWT over four scales

dj−3

dj−4

sj−4

dj−2
dj−1

Ts

Ts

Ts

Ts
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DWT 2

A DWT over four scales

Ta

dj−1

Ta

dj−2

Ta

dj−3

Ta

dj−4

sj−4

The inverse DWT over four scales

dj−3

dj−4

sj−4

dj−2
dj−1

Ts

Ts

Ts

Ts
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DWT 2

A DWT over four scales

Ta

dj−1

Ta

dj−2

Ta

dj−3

Ta

dj−4

sj−4

The inverse DWT over four scales

dj−3

dj−4

sj−4

dj−2
dj−1

Ts

Ts

Ts

Ts
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DWT 2

A DWT over four scales

Ta

dj−1

Ta

dj−2

Ta

dj−3

Ta

dj−4

sj−4

The inverse DWT over four scales

dj−3

dj−4

sj−4

dj−2
dj−1

Ts

Ts

Ts

Ts
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DWT 3

A family of transforms (Cohen, Daubechies, Faveau)

d
(1)
j−1[n] = sj [2n + 1]− 1

2(sj [2n] + sj [2n + 2])

CDF(2,2) s
(1)
j−1[n] = sj [2n] + 1

4 (dj−1[n− 1] + dj−1[n])

CDF(2,4) s
(1)
j−1[n] = sj [2n]− 1

64 (3dj−1[n− 2]− 19dj−1[n− 1]

− 19dj−1[n] + 3dj−1[n + 1])

CDF(2,6) s
(1)
j−1[n] = sj [2n]− 1

512 (−5dj−1[n− 3] + 39dj−1[n− 2]

− 162dj−1[n− 1]− 162dj−1[n]

+ 39dj−1[n + 1]− 5dj−1[n + 2])

dj−1[n] = 1
√

2
d
(1)
j−1[n]

sj−1[n] =
√

2s
(1)
j−1[n]
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Examples 1

Now some examples on synthetic signals: The first
problem is how to visualize the action of the wavelet
transform. We start with a simple signal and perform a
three-scale Haar transform.

0 50 100 150 200 250 300 350 400 450 500

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500
−3

−2

−1

0

1

2

3
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Examples 2

The coefficients separately. Note vertical range in plots.

10 20 30 40 50 60
−4
−2

0
2
4

10 20 30 40 50 60
−0.2

0

0.2
20 40 60 80 100 120

−0.05

0

0.05
50 100 150 200 250

−0.02

0

0.02
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Examples 3

Multiresolution representation of the DWT of a signal:
Transform a signal W

(3)
a : s9 → s6,d6,d7,d8. Replace all

entries but one in the transform by zeroes, and do the
inverse transform. Schematically

W
(3)
a : s9 → s6,d6,d7,d8

︸ ︷︷ ︸

↓
W

(3)
s :

︷ ︸︸ ︷

06,d6,07,08 → s
′

9
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Examples 4

Multiresolution representation of sine signal, three scales,
Haar transform.

−0.02

0

0.02

−0.05

0

0.05

−0.05

0

0.05

0 50 100 150 200 250 300 350 400 450 500
−1

0

1
s6,06,07,08

06,d6,07,08

06,06,d7,08

06,06,07,d8
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Examples 5

Singularity detection. Singularities can be localized in time
using DWT. A sine plus a spike located at position 200:

0 50 100 150 200 250 300 350 400 450 500

−1

−0.8

−0.6

−0.4

−0.2

0
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0.4
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0.8

1

−2

0

2

−1

0

1
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0
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0
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Examples 6

We do some denoising examples. First based on the Haar
transform. Here is the sine plus spike, and its
multiresolution representation:

0 50 100 150 200 250 300 350 400 450 500

−1.5
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0
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2
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1
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0
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Examples 7

The idea in denoising is to keep largest coefficients. Left
hand side 15%, and right hand side 10%.
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Examples 8

To get better performance one must use better wavelets.
Same example, with CDF(2,2) (linear prediction) on the
left, Daubechies 4 on the right. 10% coefficiente retained.
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Examples 9

Same example with Daubechies transforms of length 8 and
12.
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Examples 10

In the last example we show how to separate slow and fast
variations in a signal. The function log(2 + sin(3π

√
t)),

0 ≤ r ≤ 1, sampled 1024 times, and spikes added:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Examples 11

Multiresolution analysis, 6 scales, CDF(2,2):

−1
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1

−2
0
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Examples 12

Slow variation removed: Reconstruction based on
d-components.
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Interpretation 1

We recall the first example. We now apply the inversion
procedure to the signals [1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0], and [0, 0, 1, 0, 0, 0, 0, 0].

1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
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Interpretation 2

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

1 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 1 −1 −1 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

Time-Frequency Analysis – p.56/96



Interpretation 3

Linear algebra interpretation as a matrix:

W
(3)
s =





















1 1 1 0 1 0 0 0

1 1 1 0 −1 0 0 0

1 1 −1 0 0 1 0 0

1 1 −1 0 0 −1 0 0

1 −1 0 1 0 0 1 0

1 −1 0 1 0 0 −1 0

1 −1 0 −1 0 0 0 1

1 −1 0 −1 0 0 0 −1





















.
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Interpretation 4

We do the same for the direct transform. Here is one
example computation:

1 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0

1
4 0 1

4 0 1
2 0 0 0

1
8

1
8

1
4 0 1

2 0 0 0

Time-Frequency Analysis – p.58/96



Interpretation 5

The result in matrix form for direct transform:

W
(3)
a =






















1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8 − 1

8 − 1
8 − 1

8 − 1
8

1
4

1
4 − 1

4 − 1
4 0 0 0 0

0 0 0 0 1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0 0 0 0 0

0 0 1
2 − 1

2 0 0 0 0

0 0 0 0 1
2 − 1

2 0 0

0 0 0 0 0 0 1
2 − 1

2






















.
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Interpretation 6

Here is a graphical representation of the contents of W
(3)
a :

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

−1

0

1

0 0.25 0.5 0.75 1
−1

0

1

0 0.25 0.5 0.75 1
−1

0

1
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Interpretation 6

It is one of the nontrivial results in wavelet theory that there
always are either 2 or 4 waveforms behind each DWT.
These waveforms get scaled and translated. By
reconstructing from signals with zeroes except a single 1,
one can find these waveforms. Here is an example using
the inverse of the Daubechies 4 transform. We take the
inverse transform of a signal with a one at place 6, and
take lengths 8, 32, 128, 512, and 2048. The result is
shown on the next slide.

Time-Frequency Analysis – p.61/96



Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 7

Iterations, signal lengths 8, 32, 128, 512, 2048.
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Interpretation 8

Another example: inverse CDF(2,2), signal length 64, 1 at
positions 40, 50, and 60.

−5

0

5

10

−5

0

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10
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Interpretation 9

Example using direct CDF(2,2):

0.35 0.4 0.45 0.5 0.55 0.6 0.65
−0.1

−0.05

0

0.05

0.1

CDF(2,2), scale function, place k=8

0.35 0.4 0.45 0.5 0.55 0.6 0.65
−0.1

−0.05

0

0.05

0.1

CDF(2,2), wavelet, place 24
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A generalization 1

We now present a generalization of the DWT to the
Wavelet Packet Transform. Block diagram representation
of one step DWT:

TsTa

Note that we now put the average s components on the
top, and the difference d components on the bottom, in this
one step representation.
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A generalization 2

1 2 3

Ta

Ta

Ta

Ta

Ta

Ta

Ta

1 2 3 4

Ta

Ta

Ta

4

(a) (b)
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A generalization 3

Our first example, full decomposition:
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A generalization 3

Our first example, full decomposition: Recall example

56 40 8 24 48 48 40 16

48 16 48 28 8 −8 0 12

32 38 16 10 8 −8 0 12

35 −3 16 10 8 −8 0 12
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A generalization 3

Our first example, full decomposition:

56 40 8 24 48 48 40 16

48 16 48 28 8 −8 0 12

32 38 16 10 0 6 8 −6

35 −3 13 3 3 −3 1 7
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A generalization 3

Our first example, full decomposition:

56 40 8 24 48 48 40 16

48 16 48 28 8 −8 0 12

32 38 16 10 0 6 8 −6

35 −3 13 3 3 −3 1 7

8 + (−8)

2
8− 0
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A generalization 4

56 40 8 24 48 48 40 16

−33

0 6 8 −6

Reconstruction

48 16 48 28 8 −8 0 12

40 8 24 48 48 40 16

48 16 48 28 8 −8 0

32 38 16 10 0 6 8 −6

1 7−33313−335

Decomposition

12

56

Time-Frequency Analysis – p.68/96



A generalization 5

Possible representations of the signal:

56 40 8 24 48 48 40 16 48 16 48 28 8 −8 0 12

16 10 8 −8 0 1235 −3

35 −3 16 10 0 6 1 7 35 −3 1 713 3 3 −3

32 38 16 10 8 −8 0 12

Time-Frequency Analysis – p.69/96



WPT complexity 1

The number of possible representations of a signal grows
very fast with the number of decomposition steps. We
have:

Number of levels Minimum signal length Number of bases

1 1 1

2 2 2

3 4 5

4 8 26

5 16 677

6 32 458330

7 64 210066388901

8 128 44127887745906175987802
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WPT complexity 2

AjAj

Aj+1

The number of possible decompositions of a signal using j
levels is denoted by Aj. We have Aj+1 = 1 + A2

j . We have

the estimate 22j−1

< Aj < 22j

. Example j = 10: 229 ≈ 10154

and 2210 ≈ 10308.
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Best basis algorithm 1

Solution to complexity problem is the best basis algorithm.
This is a very flexible algorithm, based on a cost function.
A cost function is denoted by K. It maps a finite length
signal a to a number K(a). [ab] denotes the concatenation
of two signals a and b. We require two properties:

K(0) = 0

K([ab]) = K(a) +K(b)

An example: K(a) = number of nonzero entries in a.

5 = K([1, 0, −1, 22, 0, 0, 2, −7]

= K([1, 0, −1, 22]) +K([0, 0, 2, −7]) = 3 + 2
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Best basis algorithm 2

Cost functions
Threshold Kthres(a) equals number of elements in a with
absolute value greater than the threshold εεε. Example:

εεε = 2.0 : Kthres([1, 2, 3 0, −1, −4]) = 2

εεε = 1.0 : Kthres([1, 2, 3 0, −1, −4]) = 3

εεε = 0.5 : Kthres([1, 2, 3 0, −1, −4]) = 5

Problem: Look out for rescaling hidden in transforms.
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Best basis algorithm 3

Cost functions
`p-norm
Notation: a = {a[n]}, 0 < p <∞ (useful values are
0 < p < 2)

K`p(a) =
∑

n

|a[n]|p.

Note that for p = 2 this is the energy in the signal.

Shannon entropy

KShannon(a) =
∑

n

|a[n]|2 log(|a[n]|2)
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Best basis algorithm 4

The best basis algorithm through the first example. Do a
full decomposition. Result is:

56 40 8 24 48 48 40 16

48 16 48 28 8 −8 0 12

32 38 16 10 0 6 8 −6

35 −3 13 3 3 −3 1 7

Cost function: Number of entries with absolute value > 1.

Compute cost of each vector in full decomposition:
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Best basis algorithm 5

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Cost values are computed, and components are marked
with cost values.
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Best basis algorithm 5

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Last row is marked. Compare cost of a pair of elements
with the one just above. In case of lower or equal cost,
move up. Adjust marking, if necessary.
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Best basis algorithm 5

2 = 1 + 1

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary.
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Best basis algorithm 5

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary.
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Best basis algorithm 5

1 < 1 + 1

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary.
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Best basis algorithm 5

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary.
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Best basis algorithm 5

2 > 0 + 1

8

4 3

2 2 1 2

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
components kept.
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Best basis algorithm 5

8

4 3
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1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
components kept.

Time-Frequency Analysis – p.76/96



Best basis algorithm 5

4 = 2 + 2

8

4 3

2 2 1 1

1 1 1 1 1 1 0 1
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Best basis algorithm 5
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Best basis algorithm 5

3 > 1 + 1

8

4 3

2 2 1 1

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
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Best basis algorithm 5

8

4 2

2 2 1 1

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
components kept.
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Best basis algorithm 5

8 > 4 + 2
8

4 2

2 2 1 1

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
components kept.
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Best basis algorithm 5

6

4 2

2 2 1 1

1 1 1 1 1 1 0 1

Compare cost of a pair of elements with the one just
above. In case of lower or equal cost, move up. Adjust
marking, if necessary. If lower component is cheaper,
keep, and replace cost value above with total cost of
components kept.
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Best basis algorithm 6

Some things to note:

The best basis is not unique.

A best basis with all components at the same level is
called a best level basis.

With J levels the search algorithm is of order
O(J log J). The full decomposition and the costs have
to be computed only once.

The size of the tree to be searched is independent of
the length of the signal.
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Time and frequency 1

Discrete signal with finite energy

x = {x[n]}n∈Z,
∑

n∈Z

|x[n]|2 <∞

Frequency contents (j =
√
−1):

X(ω) =
∑

n

x[n]e−jnω,

or with period T , ie n corresponds to sampling time nT ,

XT (ω) =
∑

n

x[n]e−jnTω.
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Time and frequency 2

For a real signal XT (ω) = XT (−ω). Frequency contents in
any interval [kπ/T, (k + 1)π/T ].

0

|XT (ω)|

ω− π
T

− 3π
T

3π
T

π
T

− 2π
T

2π
T
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Time and frequency 3

Discrete signal x[0], x[1], x[2], x[3], frequency interval
[0, π/T ].

|x[0]|2 |x[1]|2 |x[2]|2 |x[3]|2

0T 1T 2T 4T

π
T

3T
0

Time-Frequency Analysis – p.80/96



Time and frequency 4

Same signal downsampled by 2, frequency interval
[0, π/2T ].

|x[2]|2|x[0]|2

0T 1T 2T 4T

π
T

3T
0

π
2T
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Time and frequency 5

Original signal

FT of signal
Filter response

Product of FT
and filters

DWT low pass DWT high pass

DWT IFT and 2 ↓
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Time and frequency 6

One step DWT, eight samples. Energy distribution.

|s2[1]|2|s2[0]|2 |s2[2]|2 |s2[3]|2

|d2[0]|2 |d2[1]|2 |d2[2]|2 |d2[3]|2

0 1 4

π

3
0

π
2

6 7 852
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Time and frequency 7

Two step DWT, eight samples. Energy distribution.

|d2[0]|2 |d2[1]|2 |d2[2]|2 |d2[3]|2

|s1[0]|2 |s1[1]|2
|d1[1]|2|d1[0]|2

0 1 4

π

3
0

π
2

6 7 852
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Time and frequency 8

Three step DWT, eight samples. Energy distribution.

|d2[0]|2 |d2[1]|2 |d2[2]|2 |d2[3]|2

|d1[1]|2|d1[0]|2

0 1 4

π

3
0

π
2

6 7 852

|s0[0]|2
|d0[0]|2
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Time and frequency 9

The first example, again:

(1) (2)

(3) (4)

56

40

8

24

48

48

40

16

−8 0 128

3832
−3
35

35 −3

32 38

28481648

56 40 8 24 16404848(1)

(2)

(4)

(3)

48 16 48 28

−8 0 128

10161016

−8 0 128

0

016 10

8 0 12

16 10

−8

−8

8

−8

8

12

12
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Time and frequency 10

More examples:
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Time and frequency 11

Explanation for previous example:

4
4

4
4

4
4

4
4

8
8

8
8

16
16

32
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Time and frequency 12

Frequency contents in WP decomposition, ideal filters:

2↓2↓ 2↓2↓

G

2↓

H G

H

H G

2↓

0 (0) 2 (2) 4 (4)

0 (0)

2 (2)

0 (4)

0 (0) 4 (4) 2 (6) 4 (4)0 (8)

0 (8) 2 (6)

4 (4)0 (8)

0 (4) 2 (6)2 (2)2 (2)

2 (6)

4 (4)2 (2)0 (0)

0 2 4 6 8 Hz

0 2 4 6 8 Hz

Hz86420

4 (4)2 (6)0 (8)
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Time and frequency 13

H G H G H G H G

H G H G

GH

0

000

1

001

3

011

2

010

6

110

7

111

5

101

4

100

0− 16

0− 16 16− 0

16− 32

0− 16

32− 16

16− 0

16 Hz0 Hz 32 Hz 16 Hz 48 Hz 64 Hz 48 Hz 32 Hz

0 − 8

0 − 8 8 − 16

8 − 0

16 − 8

0 − 8

8 − 0

8 − 0

0 − 8

0 − 8

8 − 16

8 − 0

16 − 8

0 − 8

8 − 0

8 − 0

0 8 16 8 24 32 24 16 48 56 64 56 40 48 40 32

0− 32 0− 32 32− 64 32− 0

0 Hz 32 Hz 64 Hz 32 Hz

0− 64

64 Hz0 Hz

16− 0
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Time and frequency 14

Solution: Swap order in every other application of the DWT:

H

0 − 8 16 − 8 16 − 24 24 − 32 32 − 40 48 − 40 56 − 48 56 − 64

G G H H G G H

GH G H

G

32− 160− 16 32− 48 64− 48

0− 32 64− 32

0− 64

0 1 2 3 4 5 6 7

H
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Time and frequency 15

Significance of ordering, linear chirp.

Time
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Time
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Time and frequency 16

Three frequencies, DWT and best level, J = 6.

Time
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Time
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Time and frequency 17

A complicated signal, length 1024: Sum of

x[n] =







25 if n = 300 ,

1 if 500 ≤ n ≤ 700 ,

15 if n = 900 ,

0 otherwise .

and
sin(ω0t) + sin(2ω0t) + sin(3ω0t) ,

with ω0 = 405.5419.
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Time and frequency 18

The signal

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

15

20

25
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Time and frequency 19

Time-frequency plane, Daubechies 4, DWT and best level,
J = 6.
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