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1 Introduction

These notes are intended for use in the course on real and complex functions at Aalborg
University. They start with the basic results on analytic functions, and end with a proof
of a version of the theorem on residues for a meromorphic function. These notes are used
in conjunction with the textbook [3], and several references will be made to this book.

2 Holomorphic functions

We start by defining holomorphic functions. These functions are simply functions of a
complex variable that can be differentiated in the complex sense.

Definition 2.1. Let G ⊆ C be an open subset. A function f : G → C is said to be
differentiable in the complex sense at z0 ∈ G, if

lim
z→z0

f(z) − f(z0)

z − z0

exists. The limit is denoted by f ′(z0).

Definition 2.2. Let G ⊆ C be an open subset. A function f : G → C is said to be
holomorphic in G, if it is differentiable in the complex sense at all points in G. The set of
holomorphic functions is denoted by H(G).

Let us note that the rules for differentiation of a sum, a product, and a quotient of two
complex functions are the same as in the real case. The proofs given in [3, Chapter 4] are
valid in the complex case.
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We recall that we can decompose a complex number into its real and imaginary parts.
Applying this decomposition at each value of a complex function we get a decomposition
f = u+ iv, where u = Re(f) and v = Im(f) will be viewed as functions of the real variable
pair (x, y) corresponding to z = x + iy. We often identify the point (x, y) in R2 with the
point z = x+ iy in C. This identification should be kept in mind at various places in these
notes. Thus a function from G ⊆ C to C can also be viewed as a function from a subset
of R2 to R2. Thus we may write a function as f(z) or f(x, y), depending on whether we
view it as defined on a subset of C, or a subset of R2.

An open ball in R2 centered at 0 and with radius δ is denoted by B(0, δ). Let G ⊆ R2 be
an open subset. We recall from [3, Section 11.2] that a function u : G → R is differentiable
in the real sense (or has a total derivative) at a point (x0, y0) ∈ G, if and only if there
exist a δ > 0, a function E : B(0, δ) → R with E(x, y) → 0 as (x, y) → (0, 0), and two real
numbers a and b, such that

u(x, y) = u(x0, y0) + a(x − x0) + b(y − y0)

+ ‖(x − x0, y − y0)‖E(x − x0, y − y0) (2.1)

for (x − x0, y − y0) ∈ B(0, δ). In this case the partial derivatives exist at (x0, y0), and we
have

∂u

∂x
(x0, y0) = a,

∂u

∂y
(x0, y0) = b. (2.2)

This result has an immediate generalization to the case of differentiability in the complex
sense.

Lemma 2.3. A function f : G → C is differentiable in the complex sense at z0 ∈ G, if

and only if there exist c ∈ C and E : B(0, δ) → C with E(h) → 0 as h → 0, such that

f(z) = f(z0) + c(z − z0) + |z − z0|E(z − z0) (2.3)

for z − z0 ∈ B(0, δ). If f is differentiable at z0, then f ′(z0) = c.

We have the following result.

Theorem 2.4. Let G ⊆ C be an open subset. A function f = u + iv from G to C
is differentiable in the complex sense at the point z0 = x0 + iy0 ∈ G, if and only if the

functions u and v both are differentiable in the real sense at (x0, y0) with partial derivatives

satisfying the Cauchy-Riemann equations

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0). (2.4)

In this case we have

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.5)
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Proof. Assume first that f is differentiable in the complex sense at z0 with derivative
f ′(z0) = c = a + ib. Then we can find a function E, such that (2.3) holds. Take the
real part of this equation, with the notation f = u + iv and E = E1 + iE2. Note that
|z − z0| = ‖(x − x0, y − y0)‖. The result is

u(x, y) = u(x0, y0) + a(x − x0) − b(y − y0)

+ ‖(x − x0, y − y0)‖E1(x − x0, y − y0). (2.6)

Thus it follows from [3, Lemma 11.21] (also quoted above) that u is differentiable in the
real sense at (x0, y0), and that we have

∂u

∂x
(x0, y0) = a,

∂u

∂y
(x0, y0) = −b. (2.7)

Analogously, taking the imaginary part of (2.3), we find that

v(x, y) = v(x0, y0) + b(x − x0) + a(y − y0)

+ ‖(x − x0, y − y0)‖E2(x − x0, y − y0). (2.8)

Thus v is differentiable in the real sense at (x0, y0), and we have

∂v

∂x
(x0, y0) = b,

∂v

∂y
(x0, y0) = a. (2.9)

Comparing (2.7) and (2.9), we see that the Cauchy-Riemann equations (2.4) hold. Since
f ′(z0) = a + ib, it also follows that (2.5) holds.

Conversely, assume now that both u and v are differentiable in the real sense at (x0, y0),
and furthermore that the Cauchy-Riemann equations (2.4) hold. To simplify the notation,
write

ã =
∂u

∂x
(x0, y0) and b̃ =

∂u

∂y
(x0, y0).

and also

α =
∂v

∂x
(x0, y0) and β =

∂v

∂y
(x0, y0).

Since (2.4) hold, we have ã = β and b̃ = −α. Furthermore, we can find functions E1 and
E2, defined on a small ball around zero, such that (2.1) holds for u and v, with E1 and E2,
respectively. Now we compute as follows

f(z) = u(x, y) + iv(x, y)

= u(x0, y0) + ã(x − x0) + b̃(y − y0)

+ ‖(x − x0, y − y0)‖E1(x − x0, y − y0)

+ i [v(x0, y0) + α(x − x0) + β(y − y0)

+‖(x − x0, y − y0)‖E2(x − x0, y − y0)]
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= u(x0, y0) + iv(x0, y0)

+ ã((x − x0) + i(y − y0)) + iα((x − x0) + i(y − y0))

+ ‖(x − x0, y − y0)‖(E1(x − x0, y − y0) + iE2(x − x0, y − y0))

= f(z0) + (ã + iα)(z − z0) + |z − z0|E(z − z0),

where we have defined E = E1 + iE2 and used our notational conventions for points in C
and R2. It follows from Lemma 2.3 that f is differentiable in the complex sense at z0, and
that (2.5) holds.

The Cauchy-Riemann equations express the fact that the partial derivatives in the real
sense of the real and imaginary parts of a function differentiable in the complex sense
cannot be arbitrary. This fact has several important consequences. We have the following
result, whose proof we will omit. It can be found in [1, Theorem 5.23].

Theorem 2.5. Let G ⊆ C be an open and connected set, and let f = u + iv ∈ H(G). If

any one of u, v or |f | is constant on G, then f is constant on G. Also, f is constant, if

f ′(z) = 0 for all z ∈ G.

There is a useful criterion for determining whether a given function is differentiable in
the complex sense. It is obtained by combining Theorem 2.4 with [3, Theorem 11.15].

Theorem 2.6. Let G ⊆ C be open and f = u + iv a complex valued function defined on

G. Let z0 = x0 + iy0 ∈ G. If the partial derivatives of u and v exist in G, are continuous

at (x0, y0), and satisfy the Cauchy-Riemann equations (2.4), then f is differentiable in the

complex sense at z0.

Example 2.7. Let f(z) = exp(z), z ∈ C. Then the decomposition f = u + iv is given by

u(x, y) = ex cos(y), v(x, y) = ex sin(y).

Clearly the partial derivatives of u and v exist and are continuous at all points in R2.
Furthermore, we have

∂u

∂x
(x, y) = ex cos(y),

∂u

∂y
(x, y) = −ex sin(y),

∂v

∂x
(x, y) = ex sin(y),

∂v

∂y
(x, y) = ex cos(y).

It follows that the Cauchy-Riemann equations are satisfied at all points in R2, and thus
exp(z) is holomorphic on C.

An important class of holomorphic functions are the power series. We recall that the
basic results on real power series from [3] also apply to complex power series

∑∞
n=0 an(z −

z0)
n, where an ∈ C and z0, z ∈ C. In particular, [3, Theorem 7.21] holds, when the interval

4



of convergence is replaced by the ball of convergence. The radius of convergence is still
given by the formula

r =
1

lim supn→∞|an|1/n
,

with the usual conventions that 1/∞ = 0 and 1/0 = ∞. The ball of convergence is then
B(z0, r). We now prove that the function given by a power series with a positive radius of
convergence is holomorphic in its ball of convergence. We start with a Lemma.

Lemma 2.8. Let {an} and {bn} be sequences of real numbers. Assume an ≥ 0 for all n
and furthermore that {bn} is convergent, b = limn→∞ bn, where 0 < b < ∞. Then the

following result holds.

lim sup
n→∞

(anbn) = b(lim sup
n→∞

an) (2.10)

Proof. Consider first the case lim supn→∞ an = ∞. We can find N1 such that bn > b/2
for all n ≥ N1. Fix K > 0. Find N2 such that given n ≥ N2 we can find m > n with
am > (2K/b). But this implies that for any n ≥ max{N1, N2} there exists m > n such
that ambm > (2K/b)(b/2) = K. Thus the result is proved in this first case.

Assume now a = lim supn→∞ an. Let ε > 0 be given. Find an ε1 > 0 such that
ε1(a + b) + ε2

1 < ε. Next find N such that b − ε1 < bn < b + ε1 and an < a + ε1 for all
n ≥ N . It follows that we have

anbn < (a + ε1)(b + ε1) = ab + (ε1(a + b) + ε2
1) < ab + ε,

which shows that
lim sup

n→∞
(anbn) ≤ ab + ε

for any ε > 0. For the other inequality we now find ε2 > 0 such that 0 < ε2(a+ b)−ε2
2 < ε.

Then we determine an integer N with following two properties: (i) For all n ≥ N we have
b − ε2 < bn < b + ε2. (ii) Given n ≥ N , there exists an m > n with am > a − ε2. For this
m we have then

ambm > (a − ε2)(b − ε2) = ab − (ε2(a + b) − ε2
2) > ab − ε,

which implies
lim sup

n→∞
(anbn) ≥ ab − ε.

Since ε > 0 is arbitrary, the result follows.

Theorem 2.9. Let
∑∞

n=0 an(z − z0)
n be a power series with radius of convergence r ∈

(0,∞]. Then the function f defined by this power series is infinitely differentiable in the

complex sense in B(z0, r). The function f (k)(z) is given by the differentiated power series

for each integer k. Furthermore, we have

ak =
1

k!
f (k)(z0), k = 0, 1, 2 . . . .
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Proof. We can without loss of generality assume z0 = 0. Furthermore, it suffices to show
that f can be differentiated once in the complex sense, and that the derivative is given by
the power series

f ′(z) =
∞

∑

n=1

nanzn−1

with the same radius of convergence r. Let

ρ =
1

lim supn→∞ |nan|1/(n−1)
.

We want to show that r = ρ. Now since limn→∞ n1/(n−1) = 1, we can use Lemma 2.8 to
conclude that ρ = 1/ lim supn→∞ |an|1/(n−1). This number ρ is the radius of convergence of
the power series

∞
∑

n=1

anzn−1 =

∞
∑

n=0

an+1z
n.

Now note that we have the identity

n+1
∑

k=0

akz
k = a0 + z

n
∑

k=0

ak+1z
k.

Let us first assume that |z| < ρ. Then for any integer n we have

n+1
∑

k=0

|akz
k| ≤ |a0| + |z|

n
∑

k=0

|ak+1z
k| ≤ |a0| + |z|

∞
∑

k=0

|ak+1z
k| < ∞,

which implies that the series
∑∞

k=0 akz
k is absolutely convergent. We conclude (see [3])

that ρ ≤ r.
Assume now 0 < |z| < r. Then we have for any integer n

n
∑

k=0

|ak+1z
k| ≤ |a0|

|z| +
1

|z|

n+1
∑

k=0

|akz
k| ≤ |a0|

|z| +
1

|z|

∞
∑

k=0

|akz
k| < ∞,

which implies r ≤ ρ. Thus we have shown that r = ρ.
Let us now prove differentiability in the complex sense. For a z satisfying |z| < r we

now define

g(z) =
∞

∑

n=1

nanzn−1, sn(z) =
n

∑

k=0

akz
k, Rn(z) =

∞
∑

k=n+1

akz
k,

such that f(z) = sn(z) + Rn(z). Fix z1 with |z1| < r. We want to prove that f is
differentiable at z1 with derivative g(z1). Fix r1 such that |z1| < r1 < r. Next determine a
δ > 0 such that B(z1, δ) ⊂ B(0, r1). Now let z ∈ B(z1, δ), z 6= z1. We have

f(z) − f(z1)

z − z1

− g(z1) =
sn(z) − sn(z1)

z − z1

− s′n(z1)
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+ s′n(z1) − g(z1) +
Rn(z) − Rn(z1)

z − z1

.

The last term is rewritten as

Rn(z) − Rn(z1)

z − z1

=
1

z − z1

∞
∑

k=n+1

ak(z
k − zk

1 )

=
∞

∑

k=n+1

ak

(

zk − zk
1

z − z1

)

.

We now estimate as follows

|zk − zk
1 |

|z − z1|
= |zk−1 + zk−2z1 + . . . + zzk−2

1 + zk−1
1 | ≤ krk−1

1 . (2.11)

Thus
∣

∣

∣

∣

Rn(z) − Rn(z1)

z − z1

∣

∣

∣

∣

≤
∞

∑

k=n+1

|ak|krk−1
1 .

The series
∑∞

k=0 |ak|krk−1
1 is convergent, since r1 < r. Given ε > 0, we can determine N1

such that for n ≥ N1 we have
∣

∣

∣

∣

Rn(z) − Rn(z1)

z − z1

∣

∣

∣

∣

<
ε

3
.

Since limn→∞ s′n(z1) = g(z1), we can determine N2 such that |s′n(z1) − g(z1)| < ε/3 for all
n ≥ N2. Now choose a fixed n given by n = max{N1, N2}. The polynomial sn(z) is clearly
differentiable, so we can find µ > 0 such that

∣

∣

∣

∣

sn(z) − sn(z1)

z − z1
− s′n(z1)

∣

∣

∣

∣

<
ε

3

for all z satisfying 0 < |z − z1| < µ. If we combine the estimates, we have shown that

∣

∣

∣

∣

f(z) − f(z1)

z − z1
− g(z1)

∣

∣

∣

∣

< ε

for all z satisfying 0 < |z − z1| < min{δ, µ}. Thus we have shown differentiability in the
complex sense at an arbitrary z ∈ B(0, r1), and since this holds for any r1 < r, we have
differentiability in the ball B(0, r).

We introduce the following definition:

Definition 2.10. Let G ⊆ C be an open subset. A function f : G → C is said to be
analytic in G, if for every z0 ∈ G there exist an r > 0 and a power series

∑∞
n=0 an(z − z0)

n

whose sum equals f(z) in B(z0, r) ⊆ G.
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Combining Definition 2.10 and Theorem 2.9 we can state the following result.

Proposition 2.11. Let G ⊆ C be an open subset. If a function f from G to C is analytic,

then it is holomorphic.

Stated briefly, analytic functions are holomorphic functions. One of the main results in
complex analysis is the converse, namely that every holomorphic function is analytic. The
first rigorous treatment of complex analysis was given by K. Weierstrass (1815–1897). He
based his approach on the concept of an analytic function. Later presentations, including
the one given here, base their study on the concept of a holomorphic function.

2.1 Exercises

1. Prove that every complex polynomial p(z) = a0 + a1z + . . . + anzn is holomorphic on
C.

2. Prove that sin(z) and cos(z) are holomorphic on C.

3. Verify that the proofs for the rules of differentiation in the real case, as for example
given in [3, Chapter 4], are valid in the complex case.

4. At which points are the following functions differentiable in the complex sense?

(a) f(z) = y, (b) f(z) = z, (c) f(z) = z2.

5. Prove that the function f(z) =
√

|xy| is not differentiable in the complex sense at
the origin, even though it satisfies the Cauchy-Riemann equations at that point.

6. Give the details in the argument leading to Theorem 2.6.

7. Assume that G ⊆ C is open and connected, and that f ∈ H(G). Assume f ′(z) = 0
for all z ∈ G. Prove that f is constant on G.

8. Verify the equality in (2.11).

9. Assume f ∈ H(G). Define g(z) = f(z) for z ∈ G (the subset consisting of all complex
conjugates of points in G). Show that g ∈ H(G).

3 Contour Integrals

A fundamental tool in the study of complex functions is the contour integral (or complex
line integral). We proceed to give the various definitions. The reader should note that
terminology concerning curves and paths is not consistent in the mathematical literature.

Definition 3.1. A path in the complex plane is a continuous function γ : [a, b] → C. The
path is said to be closed, if γ(a) = γ(b). The path is said to be simple, if the restriction of
γ to [a, b) is injective. The image of γ is denoted by γ∗, i.e. γ∗ = γ([a, b]).
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Given the image of a path in the complex plane, there can be many other paths having
the same image. We introduce the following equivalence relation.

Definition 3.2. Let γ : [a, b] → C and τ : [c, d] → C be two paths in the complex plane
with γ∗ = τ ∗. The paths γ and τ are said to be equivalent, if there exists a continuous
strictly increasing function ϕ from [a, b] onto [c, d] such that τ ◦ ϕ = γ.

We want to define a contour integral along a path. For this purpose we need a restricted
class of paths. The continuous function γ : [a, b] → C is said to be piecewise smooth, if
there exists a finite partition a = t0 < t1 < · · · < tn = b such that the restriction of γ to
[tj−1, tj] is continuously differentiable for j = 1, . . . , n. Note that the derivatives γ ′(tj−)
can be different from γ′(tj+). The function |γ′(t)| is not defined at the points tj, but it is
bounded and continuous on (tj−1, tj), and has limits at the end points. Since the values
at a finite number of points are irrelevant in the definition of the Riemann integral, we
conclude that |γ′(t)| is Riemann integrable over [a, b].

Definition 3.3. A path γ : [a, b] → C is called a circuit, if the function γ is piecewise
smooth.

Definition 3.4. Let γ : [a, b] → C and τ : [c, d] → C be two circuits with γ∗ = τ ∗. They
are said to be equivalent, if there exists a continuously differentiable and strictly increasing
function ϕ from [a, b] onto [c, d] such that τ ◦ ϕ = γ.

When two circuits γ and τ are equivalent, we say that τ is a reparametrization of γ.

Definition 3.5. Let γ be a circuit in the complex plane. Then the length of this circuit
is given by L(γ) =

∫ b

a
|γ′(t)|dt.

The length is independent of parametrization, see Remark 3.12.
Let us note that our circuits are oriented. The parametrization determines the orien-

tation. A simple closed path can be either positively or negatively oriented, i.e. oriented
in the counterclockwise or the clockwise direction.

Example 3.6. The unit circle S1 = {z ∈ C | |z| = 1} is the image of many different paths
and circuits. Consider the following five circuits:

γ1(t) = eit, t ∈ [0, 2π],

γ2(t) = e−it, t ∈ [0, 2π],

γ3(t) = e2it, t ∈ [0, π],

γ4(t) = e3it, t ∈ [0, 2π],

γ5(t) = ei|t|, t ∈ [−2π, 2π].

Only the circuits γ1 and γ3 are equivalent, with ϕ(t) = t/2.
The circuits γj, j = 1, 2, 3, are all simple closed paths. The circuit γ4 is closed, but

not simple, since γ4(0) = γ4(2π/3) = γ4(4π/3) = γ4(2π). The circuit γ5 is closed, but not
simple, since γ5(−2π) = γ5(0) = γ5(2π).
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As t varies from 0 to 2π, the point γ1(t) traverses the unit circle once in the positive
direction, and γ2(t) once in the negative direction, whereas γ4(t) traverses the unit circle
three times in the positive direction.

A circle in the complex plane is often described as the boundary of a ball, with the
notation ∂B(a, r). Viewing this boundary as a circuit, our convention is to assume that
this circuit is given by

γ(t) = a + reit, t ∈ [0, 2π].

The line segment from z to w in the complex plane is denoted by L(z, w). Viewed as a
circuit our convention is that this circuit is given by

γ(t) = z + t(w − z), t ∈ [0, 1].

Example 3.7. Let ∆ be a triangle with vertices a, b, c ∈ C. The boundary ∂∆ is viewed
as a circuit. One possible circuit is given as follows:

γ(t) =











a + t(b − a), t ∈ [0, 1],

b + (t − 1)(c − b), t ∈ [1, 2],

c + (t − 2)(a − c), t ∈ [2, 3].

The orientation depends on the relative location of the three vertices. Note that we are
not excluding the degenerate cases, where vertices coincide or lie on a straight line.

Example 3.8. A polygonal circuit is a circuit composed of a finite number of line segments
L(z1, z2), L(z2, z3), . . . , L(zn−1, zn). A parametrization can be given as follows:

γ(t) =























z1 + t(z2 − z1), t ∈ [0, 1],

z2 + (t − 1)(z3 − z2), t ∈ [1, 2],
...

...

zn−1 + (t − n + 2)(zn − zn−1), t ∈ [n − 2, n − 1].

Given two polygonal circuits γ1 and γ2, such that the end point of γ1 equals the starting
point of γ2, then we denote by γ1 ∪ γ2 the concatenation of the two circuits. It is again a
polygonal circuit. Finally we define the contour integrals.

Definition 3.9. Let γ : [a, b] → C be a circuit. Let f : γ∗ → C be a continuous function.
The contour integral of f along γ is defined by

∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.

Often we simplify the notation and write
∫

γ
f instead of

∫

γ
f(z)dz.

We recall from [2] that we have defined the Riemann integrability of a complex function
as the joint Riemann integrability of the real and imaginary parts. We recall some results
from [2]. The space of Riemann integrable complex functions defined on [a, b] is denoted
by R([a, b],C).
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Proposition 3.10. R([a, b],C) is a complex vector space. For f1, f2 ∈ R([a, b],C) and

c1, c2 ∈ C the following results hold:

∫ b

a

(c1f1(t) + c2f2(t))dt = c1

∫ b

a

f1(t)dt + c2

∫ b

a

f2(t)dt, (3.1)

∣

∣

∣

∣

∫ b

a

f1(t)dt

∣

∣

∣

∣

≤
∫ b

a

|f1(t)| dt. (3.2)

We need to show that the definition of the contour integral is independent of the choice
of parametrization.

Theorem 3.11. The value of a contour integral is unchanged under reparametrization of

the circuit.

Proof. Let γ∗ = τ ∗ be a parametrization and a reparametrization of the circuit. By
Definition 3.4 we have τ ◦ϕ = γ. To simplify the proof we assume that all three functions
are continuously differentiable on their definition intervals. Using change of variables for
Riemann integrals (see [3, Theorem 5.34]) and the chain rule we find

∫ d

c

f(τ(s))τ ′(s)ds =

∫ b

a

f(τ(ϕ(t)))τ ′(ϕ(t))ϕ′(t)dt

=

∫ b

a

f(γ(t))γ′(t)dt.

This computation finishes the proof in the simplified case. In the general case, where γ and
τ are piecewise smooth, the integral is split into a sum over the intervals of smoothness,
and the above computation is performed on each interval.

Remark 3.12. A similar computation shows that the length of a circuit is unchanged under
reparametrization.

The following estimate is used several times in the sequel.

Proposition 3.13. Let γ : [a, b] → C be a circuit. Let f : γ∗ → C be a continuous function.

Then we have
∣

∣

∣

∣

∫

γ

f(z)dz

∣

∣

∣

∣

≤ max
γ∗

|f | · L(γ).

As a consequence, if fn → f uniformly on γ∗, then
∫

γ
fn →

∫

γ
f .

Proof. This estimate follows from the computation
∣

∣

∣

∣

∫

γ

f(z)dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

f(γ(t))γ′(t)dt

∣

∣

∣

∣

≤
∫ b

a

|f(γ(t))| · |γ′(t)|dt ≤ max
γ∗

|f | · L(γ),

where we used (3.2) and Definition 3.5.
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We now look at primitives of complex functions, and their use in evaluation of contour
integrals.

Definition 3.14. An open and connected subset G ⊆ C is called a domain.

Definition 3.15. Let f : G → C be defined on a domain G. A function F : G → C is
called a primitive of f , if F ∈ H(G) and F ′ = f .

If F is a primitive of f , then F + c is also a primitive of f for all c ∈ C. Conversely,
assume that F1 and F2 both are primitives of f . Then (F1 − F2)

′ = f − f = 0 on G, and
since G is assumed to be connected, it follows from Theorem 2.5 that F1 − F2 is constant
on G. Thus the primitive is determined uniquely up to an additive constant.

Theorem 3.16. Assume that G is a domain and that f : G → C is a continuous function.

Assume that F is a primitive of f in G. Then

∫

γ

f(z)dz = F (z2) − F (z1)

for any circuit in G from z1 to z2.

Proof. The result follows from the computation

∫

γ

f(z)dz =

∫ b

a

Re[f(γ(t))γ′(t)]dt + i

∫ b

a

Im[f(γ(t))γ′(t)]dt

=

∫ b

a

Re[
d

dt
F (γ(t))]dt + i

∫ b

a

Im[
d

dt
F (γ(t))]dt

=

∫ b

a

d

dt
Re[F (γ(t))]dt + i

∫ b

a

d

dt
Im[F (γ(t))]dt

= Re[F (γ(b))] − Re[F (γ(a))] + i Im[F (γ(b))] − i Im[F (γ(a))]

= F (γ(b)) − F (γ(a)),

where we used results from the notes on the Riemann integral [2].

Theorem 3.17. Let f : G → C be a continuous function on a domain G ⊆ C. Assume

that
∫

γ
f = 0 for any closed polygonal circuit in G. Then f has a primitive in G.

Proof. Choose a point z0 ∈ G and define F (z) =
∫

γz
f(ζ)dζ, where γz is a polygonal

circuit from z0 to z in G. Note that such a circuit exists due to [3, Exercise 9.3.10]. Our
assumption implies that the value F (z) is independent of the choice of such a circuit.

Given a z ∈ G there exists r > 0 such that the ball B(z, r) ⊆ G. Let h ∈ C satisfy
0 < |h| < r, and let ` be the line segment from z to z + h. Then

F (z + h) − F (z) =

∫

γz∪`

f −
∫

γz

f =

∫

`

f =

∫ 1

0

f(z + th)hdt

12



and thus
1

h
(F (z + h) − F (z)) − f(z) =

∫ 1

0

(f(z + th) − f(z))dt.

Since f is continuous, we can to a given ε > 0 determine a δ > 0 such that |f(w)− f(z)| < ε
for all w ∈ B(z, δ), and therefore

∣

∣

∣

∣

1

h
(F (z + h) − F (z)) − f(z)

∣

∣

∣

∣

≤
∫ 1

0

εdt = ε, 0 < |h| < δ.

Thus F is differentiable at z with F ′(z) = f(z). Since z ∈ G was arbitrary, the result is
proved.

Let us show in an example how to compute a contour integral.

Example 3.18. Let Cr denote the circle |z| = r traversed once in the positive direction
(counterclockwise).

Cr(t) = reit, t ∈ [0, 2π].

Then for each integer n ∈ Z we have

∫

Cr

dz

zn
=

∫ 2π

0

rieit

rneint
dt = ir1−n

∫ 2π

0

eit(1−n)dt =

{

0, n 6= 1,

2πi, n = 1.

The result can also be obtained in the case n 6= 1 by observing that the function z−n has as
its primitive the function (1−n)−1z1−n, in C for any n ≤ 0, and in C\{0} for n ≥ 2. Since
the integral is nonzero for n = 1, we can conclude that the function z−1 has no primitive
in C \{0}.

3.1 Exercises

1. Carry out all the details in the three examples 3.6, 3.7, and 3.8.

2. Compute the following contour integrals:

∫ i

0

dz

(1 − z)2
,

∫ 2i

i

cos(z)dz, and

∫ iπ

0

ezdz,

where in each case the circuit is the line segment from the lower limit to the upper
limit. Repeat the computations using a primitive for the integrand in each of the
three integrals.

3. Show that
∫

γ

z

(z2 + 1)2
dz = 0,

for any closed circuit γ in C \{±i}.

13



4. Show that
∫

γ

P (z)dz = 0,

for any polynomial P (z), and any closed circuit γ in C.

4 Cauchy’s theorems

In this section we first study the question of existence of a primitive to a given holomorphic
function. Example 3.18 shows that a primitive need not exist. The existence of a primitive
depends on both the function and the domain we consider. One can obtain existence of a
primitive for any f ∈ H(G) by imposing a simple geometric condition on the domain G.

Definition 4.1. A domain G ⊆ C is said to be starshaped around a ∈ G, if for all z ∈ G
the line segment L(a, z) = {a + t(z − a) | t ∈ [0, 1]} ⊆ G. The domain is called starshaped,
if there exists at least one such a ∈ G.

We will now prove that if a domain G is starshaped, then any holomorphic function on
G has a primitive in G. The starting point is the following Lemma.

Lemma 4.2 (Goursat’s lemma (1899)). Let G ⊆ C be an open subset, and assume

that f ∈ H(G). Then
∫

∂∆

f(z)dz = 0

for any solid triangle ∆ ⊆ G.

Proof. We connect the midpoints of the sides in the triangle ∆ by line segments, thus
dividing the large triangle into four triangles, denoted by ∆(i), see Figure 1.

It is easy to see that we have

I =

∫

∂∆

f =

4
∑

i=1

∫

∂∆(i)

f.

At least one of the four contour integrals
∫

∂∆(i) f must have an absolute value which is
greater than or equal to |I|/4. We select one such triangle and denote it by ∆1. Thus
we have |I| ≤ 4|

∫

∂∆1
f |. We now divide the triangle ∆1 into four triangles by connection

midpoints on the sides, as above. One of these four triangles, which we will denote by
∆2, will satisfy |

∫

∂∆1
f | ≤ 4|

∫

∂∆2
f |. We repeat this construction, obtaining a nested

decreasing sequence of triangles ∆ ⊃ ∆1 ⊃ ∆2 ⊃ · · · , which satisfy

|I| ≤ 4n

∣

∣

∣

∣

∫

∂∆n

f

∣

∣

∣

∣

, n = 1, 2, 3, · · · .

There exists a unique z0 such that ∩∞
n=1∆n = {z0}. This result is obtained by first using

Cantor’s theorem, [3, Exercise 10.4.8], which proves that the intersection is nonempty. But

14
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Figure 1: Partition of ∆.

since the diameter of the triangles is strictly decreasing, the intersection can only contain
one point.

We now use the differentiability of f at z0 to prove that I = 0. We have (recall
Lemma 2.3)

f(z) = f(z0) + f ′(z0)(z − z0) + |z − z0|E(z − z0),

where E(z − z0) → 0 for z → z0. Given ε > 0 we can determine δ > 0 such that

|f(z) − f(z0) − f ′(z0)(z − z0)| ≤ ε|z − z0|, for all z ∈ B(z0, δ) ⊆ G.

Let now L0 denote the length of the original triangle circuit ∂∆. The length of ∂∆n is
then 2−nL0. Thus there exists N ∈ N such that ∆n ⊆ B(z0, δ) for n ≥ N . For z ∈ ∂∆N

the distance |z − z0| is at most equal to half the circumference of ∆N , which implies
|z − z0| ≤ 2−(N+1)L0. We also note that

∫

∂∆N

(f(z0) + f ′(z0)(z − z0)) dz = 0,

since a polynomial of degree at most one has a primitive, and the integral around a closed
circuit then is zero, see Theorem 3.16. We now have the following sequence of estimates.

|I| ≤ 4N

∣

∣

∣

∣

∫

∂∆N

f(z)dz

∣

∣

∣

∣

= 4N

∣

∣

∣

∣

∫

∂∆N

(f(z) − f(z0) − f ′(z0)(z − z0)) dz

∣

∣

∣

∣

≤ 4N max
z∈∂∆N

|(f(z) − f(z0) − f ′(z0)(z − z0))| L(∂∆N )

≤ 4Nε max
z∈∂∆N

|z − z0| 2−NL0 ≤
1

2
εL2

0.

Since ε > 0 is arbitrary, it follows that I = 0.
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Goursat’s Lemma is used to prove the following important result.

Theorem 4.3 (Cauchy’s integral theorem). Let G be a starshaped domain, and let

f ∈ H(G). Then
∫

γ
f(z)dz = 0 for any closed polygonal circuit γ in G.

Proof. Assume that G is starshaped around a ∈ G. Let γ be a closed polygonal circuit
with vertices a0, a1, . . . , an−1, an = a0. Let x be an arbitrary point on one of the line
segments from ai−1 to ai, i = 1, . . . , n. Since G is starshaped around a, the line segment
L(a, x) will be contained in G. Thus the solid triangle with vertices {a, ai−1, ai}, denoted by
∆{a, ai−1, ai}, will be contained in G. The integral of f around the circuit determined by
the triangle, traversed in the order from a to ai−1, then from ai−1 to ai, and finally from ai

to a, will be zero. If the triangle is nondegenerate, this result is an immediate consequence
of Lemma 4.2. If the triangle is degenerate, which means that the three points lie on a
straight line, the result is obvious. See Figure 2. It follows that in all cases

n
∑

i=1

∫

∂∆{a,ai−1 ,ai}

f(z)dz = 0.

Each of the line segments connecting a with ai is traversed twice, in opposite directions.
If we split the integrals into integrals over line segments, then these terms cancel, and we
are left with

∫

γ
f , which then equals zero, as claimed in the theorem.

Combining Theorem 4.3 with Theorem 3.17, we get the following result.

Theorem 4.4. Let G ⊆ C be a starshaped domain. Then any function f ∈ H(G) has a

primitive in G.

An immediate consequence is that Cauchy’s integral theorem for a starshaped domain
holds not just for polygonal circuits, but for any closed circuit in G.

Corollary 4.5. Let G ⊆ C be a starshaped domain. Let f ∈ H(G) and let γ be a closed

circuit in G. Then
∫

γ
f(z)dz = 0.
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Cauchy’s integral theorem allows us to express the values of a holomorphic function in
terms of certain contour integrals.

We start with some preliminary considerations. Let G be a domain, z0 ∈ G, and let
f ∈ H(G\{z0}). We want to compute the contour integral of f along a closed simple circuit
C in G \{z0} which encloses z0. Let us assume that C is oriented counterclockwise. A
common application of the Cauchy integral theorem is to replace the circuit C by another
circuit K, positively oriented, in a contour integral. This new circuit is also assumed to
enclose z0 and to lie in G. The idea is to select certain points on C and K and connect
them to obtain a number of small circuits γj. See Figure 3. Assume that we can construct
a finite number of γj, such that each γj lies in a starshaped subdomain of G \{z0}. Then
we get from the above generalization of Cauchy’s integral theorem that we have

0 =
∑

i

∫

γi

f =

∫

C

f +

∫

−K

f,

or
∫

C

f =

∫

K

f.

We have used the notation
∫

−K
f to denote the integral along K in the direction opposite

to the one given in the definition of K.
An important case where this construction can be performed, is described in the fol-

lowing example.

Example 4.6. Let G be a domain, z0 ∈ G, and assume that f ∈ H(G \{z0}). Assume
that for some 0 < s < r we have B(z0, s) ⊆ B(a, r), B(a, r) ⊆ G. Then we have

∫

∂B(a,r)

f(z)dz =

∫

∂B(z0,s)

f(z)dz.
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This result is obtained by the technique described, by adding four line segments parallel
to the axes from ∂B(z0, s) to ∂B(a, r).

We can now state one of the main results.

Theorem 4.7 (Cauchy’s integral formula). Let G ⊆ C be an open subset, f ∈ H(G)
and B(a, r) ⊆ G. For all z0 ∈ B(a, r) we then have the formula

f(z0) =
1

2πi

∫

∂B(a,r)

f(z)

z − z0
dz,

where the circle is traversed once in the positive direction.

Proof. Let z0 ∈ B(a, r). Using Example 4.6 on the function g(z) = (z − z0)
−1f(z), which

is holomorphic in G \{z0}, we find that
∫

∂B(a,r)

f(z)

z − z0
dz =

∫

∂B(z0 ,s)

f(z)

z − z0
dz

for 0 < s < r − |a − z0|. We introduce the parametrization γ(t) = z0 + seit, t ∈ [0, 2π], for
∂B(z0, s). Then we find that

∫

∂B(z0 ,s)

dz

z − z0
=

∫ 2π

0

sieit

seit
dt = 2πi,

which implies

I =

∫

∂B(a,r)

f(z)

z − z0
dz − 2πif(z0) =

∫

∂B(z0,s)

f(z) − f(z0)

z − z0
dz.

Our goal is to show that I = 0. Proposition 3.13 implies the estimate

|I| ≤ max
z∈∂B(z0 ,s)

{|(f(z) − f(z0))/(z − z0)|}L(∂B(z0, s))

= 2π max
z∈∂B(z0,s)

{|f(z) − f(z0)|}.

Since f is continuous at z0, the right hand side will tend to zero for s → 0, which implies
the result.

Cauchy’s integral formula implies that knowing the values of the holomorphic function
f on the circle |z − a| = r allows us to find the value at any point in the interior of this
circle. Note that if we take z0 = a and use the parametrization γ(t) = a + reit, t ∈ [0, 2π],

for ∂B(a, r), then we get f(a) = 1
2π

∫ 2π

0
f(a + reit)dt. In other words, the value at the

center of the circle equals the mean over the values on the circumference.
Cauchy’s integral formula can be used to evaluate some contour integrals.

Example 4.8. Let us show how to evaluate
∫

∂B(0,2)
sin(z)
1+z2 dz. We have

∫

∂B(0,2)

sin(z)

1 + z2
dz =

1

2i

∫

∂B(0,2)

sin(z)

z − i
dz − 1

2i

∫

∂B(0,2)

sin(z)

z + i
dz

= π sin(i) − π sin(−i) = 2π sin(i) = πi(e − 1

e
).
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4.1 Exercises

1. Evaluate
∫

∂B(0,1)

dz

(z − a)(z − b)

in the following cases

(a) |a| < 1 and |b| < 1.

(b) |a| < 1 and |b| > 1.

(c) |a| > 1 and |b| > 1.

2. Evaluate
∫

∂B(0,2)

ez

z − 1
dz and

∫

∂B(0,2)

ez

πi − 2z
dz.

3. Give a detailed proof of the result stated in Example 4.6.

5 Applications of Cauchy’s integral formula

Let G ⊆ C be an open subset, and fix a ∈ G. In the case G = C we let ρ = ∞ and
B(a, ρ) = C. In the case G 6= C we let ρ = min{|z − a| | z ∈ C \G}. Then in all cases the
ball B(a, ρ) is the largest ball centered at a and contained in G.

We will now use Cauchy’s integral formula to prove that a function f ∈ H(G) is analytic.
More precisely, we will prove that for any a ∈ G the Taylor expansion

∞
∑

n=0

f (n)(a)

n!
(z − a)n (5.1)

is convergent in the largest ball B(a, ρ) contained in G, and the sum equals f(z) for each
z ∈ B(a, ρ)

Theorem 5.1. Let G ⊆ C be an open subset, and let f ∈ H(G). Then f is infinitely often

differentiable in the complex sense, and the Taylor expansion (5.1) is convergent with sum

f in the largest open ball B(a, ρ) contained in G.

Proof. The function (z − a)−(n+1)f(z) is holomorphic in G \{a}. Example 4.6 implies that
the numbers

an =
1

2πi

∫

∂B(a,r)

f(z)

(z − a)n+1
dz, n = 0, 1, 2, · · ·

are independent of r for 0 < r < ρ. For a given fixed z0 ∈ B(a, ρ) we choose r satisfying
|z0 − a| < r < ρ. Cauchy’s integral formula implies

f(z0) =
1

2πi

∫

∂B(a,r)

f(z)

z − z0
dz.
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The idea in the proof is to rewrite the integrand as a convergent series and integrate term
by term. Let z ∈ ∂B(a, r). Note that

|z0 − a

z − a
| =

|z0 − a|
r

< 1. (5.2)

We have

1

z − z0
=

1

z − a + a − z0
=

1

z − a

1

1 − z0−a
z−a

=
1

z − a

∞
∑

n=0

(

z0 − a

z − a

)n

,

which implies (with the obvious definition of gn(z))

f(z)

z − z0
=

∞
∑

n=0

f(z)(z0 − a)n

(z − a)n+1
=

∞
∑

n=0

gn(z).

Since |f(z)| is a continuous function on the compact set ∂B(a, r), it has a maximal value
M < ∞ on this set. Thus we have for all z ∈ ∂B(a, r)

|gn(z)| ≤ M

r

( |z0 − a|
r

)n

,

∞
∑

n=0

( |z0 − a|
r

)n

< ∞,

see (5.2). The Weierstrass M-test [3, Theorem 7.15] implies that the series
∑∞

n=0 gn(z)
converges uniformly on ∂B(a, r). Thus we can integrate term by term.

f(z0) =
1

2πi

∫

∂B(a,r)

f(z)

z − z0

dz =
∞

∑

n=0

1

2πi

∫

∂B(a,r)

gn(z)dz =
∞

∑

n=0

an(z0 − a)n.

We have shown that the power series
∑∞

n=0 an(z0−a)n is convergent with sum f(z0) for all
z0 ∈ B(a, ρ). It follows from Theorem 2.9 that f is infinitely differentiable in the complex
sense, and furthermore that the coefficients an above are given by (n!)−1f (n)(a).

One consequence of this theorem is important enough to state separately.

Corollary 5.2. Assume f ∈ H(G). Then f ′ ∈ H(G).

Using this result we can state the following important theorem.

Theorem 5.3 (Morera). Let G ⊆ C be an open set. Assume that f : G → C is continu-

ous, and that
∫

∂∆

f = 0

for every solid triangle ∆ entirely contained in G. Then f ∈ H(G).
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Proof. Let f satisfy the assumptions in the theorem. The property of being holomorphic
is a local property, so it suffices to prove that f is holomorphic in any ball B(a, r) ⊆ G.
Take such a ball. Then the assumption implies

∫

∂∆
f = 0 for any ∆ ⊆ B(a, r). Thus we

can repeat the argument in the proof of Theorem 3.17 to conclude that f has a primitive
in B(a, r). But then by Corollary 5.2 f is holomorphic in this ball.

Cauchy’s integral formula can be generalized as follows:

Theorem 5.4. Let G ⊆ C be an open subset, and let f ∈ H(G). For B(a, r) ⊆ G and

z0 ∈ B(a, r) we have Cauchy’s integral formula for the n’th derivative

f (n)(z0) =
n!

2πi

∫

∂B(a,r)

f(z)

(z − z0)n+1
dz, n = 0, 1, 2, . . . . (5.3)

Proof. Let B(a, r) ⊆ G and z0 ∈ B(a, r). Theorem 5.1 implies that we have a Taylor
expansion

f(z) =

∞
∑

k=0

f (k)(z0)

k!
(z − z0)

k (5.4)

valid in some ball B(z0, ρ). Choose r′, 0 < r′ < ρ, such that B(z0, r
′) ⊂ B(a, r). The

series (5.4) is uniformly convergent on ∂B(z0, r
′). Thus we can interchange summation

and integration in the following computation.

∫

∂B(z0 ,r′)

f(z)

(z − z0)n+1
dz =

∞
∑

k=0

f (k)(z0)

k!

∫

∂B(z0,r′)

(z − z0)
k−n−1dz =

f (n)(z0)

n!
2πi.

In the last step we used a computation similar to the one in Example 3.18. Using Exam-
ple 4.6 we can change the integration contour from ∂B(z0, r

′) to ∂B(a, r). Thus

f (n)(z0) =
n!

2πi

∫

∂B(z0,r′)

f(z)

(z − z0)n+1
dz =

n!

2πi

∫

∂B(a,r)

f(z)

(z − z0)n+1
dz,

which proves the result.

It follows from the above results that a function f ∈ H(C) can be expanded in a
convergent power series around any z ∈ C and that the radius of convergence is infinite.
This class of functions is important enough to have a name.

Definition 5.5. A function f ∈ H(C) is called an entire function.

There are many important results on entire functions. We state one of them without
proof.

Theorem 5.6 (Picard). Let f be a nonconstant entire function. Then either f(C) = C
or f(C) = C \{a} for some a ∈ C. If f is not a polynomial, then f−1({w}) is an infinite

set for all w ∈ C, except for at most one w.
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Picard’s theorem has as a consequence that a bounded entire function is a constant
function. This result can be proved directly, using Theorem 5.4.

Theorem 5.7 (Liouville). A bounded entire function is a constant.

Proof. Let f ∈ H(C) and assume that |f(z)| ≤ M for all z ∈ C. For any r > 0 we can use
(5.3) with z0 = 0 to get

|f (n)(0)| =

∣

∣

∣

∣

n!

2πi

∫

∂B(0,r)

f(z)

zn+1
dz

∣

∣

∣

∣

≤ n!

2π

M

rn+1
2πr =

M · n!

rn
.

Letting r → ∞ we find that f (n)(0) = 0 for all n ≥ 1. The result now follows from the
Taylor expansion around zero.

Liouville’s theorem is a deep result. For instance it leads to the following proof of the
fundamental theorem of algebra.

Theorem 5.8 (Fundamental theorem of algebra). Any polynomial

p(z) =
n

∑

k=0

akz
k

of degree n ≥ 1 has at least one root in C.

Proof. Let p(z) be a polynomial of degree n ≥ 1. Assume that p(z) 6= 0 for all z ∈ C.
Then

p(z)

anzn
= 1 +

n−1
∑

k=0

ak

an

zk−n → 1 for |z| → ∞,

hence we can find r > 0 such that
∣

∣

∣

∣

p(z)

anzn

∣

∣

∣

∣

≥ 1

2
for |z| ≥ r.

This estimate implies
1

|p(z)| ≤
2

|an|rn
for |z| ≥ r.

Since |p(z)|−1 is a continuous function, it is also bounded on the compact set B(0, r), and
we have shown that p−1 is a bounded entire function. By Liouville’s theorem p(z) is a
constant which contradicts the assumption that the degree is at least one.
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5.1 Exercises

1. Evaluate
∫

∂B(i,2)

ez

(z − 1)n
dz for all n ≥ 1.

2. Assume that f is an entire function and also satisfies f ′ = af for some a ∈ C. Prove
that there exists c ∈ C such that

f(z) = c exp(az), z ∈ C.

3. Let f ∈ H(G), and assume f ′(a) 6= 0. Prove that there exists r > 0 such that f is
injective on B(a, r).

4. Let G ( C be an open subset, and let a ∈ G. Prove that inf{|z − a| | z ∈ C \G} is
attained at some point, i.e. that the infimum is actually a minimum. Hint: Use the
triangle inequality.

5. Use Theorem 5.3 to prove the following important result. Assume that fn ∈ H(G)
and fn → f as n → ∞, uniformly on all compact subsets of G. Then f ∈ H(G).

6 Meromorphic functions

We now study zeroes and singularities of holomorphic functions. We start by defining the
order of a zero.

Theorem 6.1. Let f be holomorphic in a domain G. Assume that a ∈ G is a zero of f ,

i.e. f(a) = 0. Then either f (n)(a) = 0 for all n = 1, 2, . . ., and in this case f(z) = 0 for

all z ∈ G, or there exists a smallest n, n ≥ 1, such that f (n)(a) 6= 0. In the latter case a
is called a zero of the n’th order, and the function defined by

g(z) =















f(z)

(z − a)n
, z ∈ G \{a},

f (n)(a)

n!
, z = a,

is holomorphic in G, and satisfies the equation f(z) = (z − a)ng(z), z ∈ G. Furthermore,

g(a) 6= 0.

Proof. We start by proving that f (n)(a) = 0, n = 0, 1, 2, . . ., for some a ∈ G implies that
the function f is identically zero in G. Let

A =

∞
⋂

n=0

{z ∈ G|f (n)(z) = 0}.

23



Since f (n) is continuous for all n, the set A is the intersection of closed subsets of G, hence
A is a closed subset of G. If z0 ∈ A, then the Taylor series around this point is the zero
series, and it follows that f is identically zero in the largest ball B(z0, ρ) ⊆ G. But then
B(z0, ρ) ⊆ A, and A is an open subset of G. Since G is assumed to be a domain, it is a
connected set, and therefore either A = ∅ or A = G. Thus if A is nonempty, it equals G,
and we have proved the first statement in the theorem.

We now assume that f is not identically zero in G. By the definition of n we have
f (k)(a) = 0, k = 0, . . . , n−1. Let ρ be the radius of the largest open ball B(a, ρ) contained
in G. The Taylor expansion then has the form

f(z) =
∞

∑

k=n

f (k)(a)

k!
(z − a)k = (z − a)n

∞
∑

k=0

f (k+n)(a)

(k + n)!
(z − a)k.

The function

g(z) =























f(z)

(z − a)n
, z ∈ G \{a},

∞
∑

k=0

f (k+n)(a)

(k + n)!
(z − a)k, z ∈ B(a, ρ),

is a welldefined function, holomorphic in G. By definition it satisfies f(z) = (z − a)ng(z),
z ∈ G, and g(a) = (n!)−1f (n)(a) 6= 0.

The theorem shows that one can find the order of the zero a of f 6≡ 0 as the largest
n, for which one has a factorization f(z) = (z − a)ng(z) for some g ∈ H(G). We have the
following result concerning the set of zeroes of a holomorphic function. Let A ⊆ G be a
subset of domain in C. Recall that a point a ∈ A is said to be an isolated point of A in G,
if there exists a δ > 0 such that B(a, δ) ⊆ G and B(a, δ) ∩ A = {a}.

Theorem 6.2. Assume that f is holomorphic in a domain G. Let Z(f) denote the set of

zeroes of f in G. Then precisely one of the following three cases occurs.

1. Z(f) = ∅, which means that f has no zeroes in G.

2. Z(f) = G, which means that f is identically zero in G.

3. Z(f) consists of at most a countable number of isolated points in G.

Proof. If f(a) = 0 and f 6≡ 0, then we can find g ∈ H(G) and an integer n, such that
f(z) = (z − a)ng(z) and g(a) 6= 0. Since g is continuous, we can find a δa > 0 such
that g(z) 6= 0 for all z ∈ B(a, δa) ⊆ G. Thus Z(f) ∩ B(a, δa) = {a} and a has been
shown to be an isolated point in G. To show that Z(f) is at most countable, we use the
Lindelöf covering theorem [3, Theorem 9.23]. The open covering {B(a, δa)}a∈Z(f) of Z(f)
can then be replaced by an at most countable covering. It follows that Z(f) is at most
countable.
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The following theorem is often used to show that two holomorphic functions are identical
in a certain domain.

Theorem 6.3 (Identity theorem). Let G be a domain, and let f, g ∈ H(G). Assume

that A ⊆ G has an accumulation point in G. If f(z) = g(z) for all z ∈ A, then f(z) = g(z)
for all z ∈ G.

Proof. The set of zeroes Z(f − g) is a closed set. By assumption A ⊆ Z(f − g), and
therefore the accumulation point a of A belongs to Z(f −g). But then a is a zero, which is
not isolated. By Theorem 6.2 we must have Z(f − g) = G, which proves the theorem.

This theorem is often applied to the case where A is a subset of the real axis. We have
the following example.

Example 6.4. All usual trigonometric identities hold also in the complex domain, if the
expressions entering into the identities are holomorphic functions. As an example, we have
sin2(z) + cos2(z) = 1 for all z ∈ C. Both the left hand side and the right hand side are
holomorphic in C, and the formula is known to be valid for all real z.

We now study the singularities of holomorphic functions.

Definition 6.5. Let G ⊆ C be an open subset and let a ∈ G. If f ∈ H(G \{a}) then a is
said to be an isolated singularity of f . If a value can be assigned to f in this point such
that f becomes holomorphic in G, then a is said to be a removable singularity.

If f ∈ H(G) and f 6≡ 0, then the function 1/f is holomorphic in the open set G \Z(f),
and all a ∈ Z(f) are isolated singularities of 1/f .

Given a holomorphic function with certain isolated singularities, the removable sin-
gularities are removed by assigning values at these points. As an example take the
function f(z) = z−1 sin(z). It can be extended from C \ {0} to all of C by defining
f(0) = limz→0 z−1 sin(z) = 1. We have the following result, which can be used to decide
whether a given singularity is removable.

Theorem 6.6. Let G ⊆ C be an open subset, and let a ∈ G. If f ∈ H(G \{a}) is bounded

in B(a, r) \{a} ⊆ G \{a} for some r > 0, then the singularity of f at a is removable.

Proof. Define a function h : G → C by h(a) = 0 and h(z) = (z − a)2f(z) for z ∈ G \{a}.
Then h is holomorphic in G \{a}, and for z 6= a we have

h(z) − h(a)

z − a
= (z − a)f(z),

which has the limit 0 for z → a, since f is assumed to be bounded in B(a, r) \{a} for
some r > 0. Thus we have shown that h is differentiable in the complex sense at a with
h′(a) = 0.

We now apply Theorem 6.1 to the function h ∈ H(G). If f ≡ 0 on G \{a}, the
singularity is removed by setting f(a) = 0. If f 6≡ 0 on G \{a} then h has a zero of order
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at least 2 at a, and we can find a function g ∈ H(G), such that h(z) = (z − a)2g(z) for
all z ∈ G. Thus g is a holomorphic extension of f to G, and we have proved that the
singularity at a is removable.

If a is a singularity which is not removable, then Theorem 6.6 shows that f(B(a, r)\{a})
is an unbounded set for any sufficiently small r > 0. As a consequence, the limit limz→a f(z)
does not exist. One could then try to investigate whether the function (z − a)mf(z) has a
removable singularity at a, if m is a sufficiently large integer. In such a case a is said to
be a pole of f .

Definition 6.7. An isolated singularity a of a holomorphic function f ∈ H(G\{a}) is said
to be a pole of order m ∈ N, if (z − a)mf(z) has a limit different from zero as z → a. A
pole of order 1 is called a simple pole.

We should note that the order of a pole is determined uniquely. If limz→a(z−a)mf(z) =
c 6= 0, then limz→a(z − a)kf(z) = 0 for k > m, and for k < m the limit cannot exist.

Assume that f ∈ H(G \{a}) has a pole of order m in a. The function defined by

g(z) =

{

(z − a)mf(z), z ∈ G \{a},
lim
z→a

(z − a)mf(z), z = a,

will then be a function holomorphic in G. Such a function has a power series expansion
around a, which we write as

∑∞
n=0 an(z − a)n. The series is convergent in the largest open

ball B(a, ρ) contained in G. As a consequence we have

f(z) =
a0

(z − a)m
+

a1

(z − a)m−1
+ · · ·+ am−1

z − a
+

∞
∑

k=0

am+k(z − a)k

for all z ∈ B(a, ρ) \{a}. We define p(z) =
∑m

k=1 am−kz
k and call p((z − a)−1) the principal

part of f at a. Then f minus its principal part has a removable singularity at a. Thus the
singularity is localized in the principal part of f at a.

A singularity, which is neither removable nor a pole, is called an essential singularity.
In the neighborhood of an essential singularity the behavior of f is very complicated. Two
examples are sin(1/z) and exp(1/z), which both are holomorphic in C\{0}, and both have
an essential singularity at 0.

We will study holomorphic functions with singularities, but we want to avoid the com-
plicated essential singularities.

Definition 6.8. Let G ⊆ C be a domain, and let f : G \P → C be a holomorphic
function with isolated singularities in P . If all points in P are poles, then f is said to be
meromorphic in G.

Meromorphic functions are often given as the quotient of two holomorphic functions.
Assume f, g ∈ H(G) and g 6≡ 0. If f ≡ 0 then by convention the quotient is the zero
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function. We will therefore assume f 6≡ 0. Since Z(g) is an isolated set in G, the function
h = f/g is holomorphic in G\Z(g) with isolated singularities in Z(g). Let a ∈ Z(g). Then
from Theorem 6.1 we find that we can write

f(z) = (z − a)pf1(z), g(z) = (z − a)qg1(z)

with f1, g1 ∈ H(G), f1(a) 6= 0, g1(a) 6= 0, and q ≥ 1 is the order of the zero of g at a.
Furthermore, p ≥ 0 is zero, if f(a) 6= 0, and otherwise equal to the order of the zero of f
at a. Choose r > 0 sufficiently small, such that g1(z) 6= 0 for all z ∈ B(a, r) ⊆ G. Then

h(z) = (z − a)p−q f1(z)

g1(z)

for all z ∈ B(a, r) \{a}. Thus we have shown that h is meromorphic in G. The poles are
those a in Z(g), where either f(a) 6= 0, or the order of the zero of f at a is strictly smaller
than the order of the zero of g.

One can prove that any function meromorphic in G can be expressed as the quotient of
two holomorphic functions in G. A special class of meromorphic functions are the rational
functions, which are the functions that can be expressed as the quotient of two polynomials.

The sum and the product of two meromorphic functions is again meromorphic, since
the union of the two pole sets is again a set of isolated points in G. Obviously, some of the
poles in the sum or product may actually be removable singularities.

In the terminology used in algebra the meromorphic functions in a fixed domain G
constitute a commutative field.

6.1 Exercises

1. Let G be a domain in C. Assume that f ∈ H(G) only has a finite number of zeroes
in G. Prove that there exist a polynomial p(z), and a function ϕ ∈ H(G) without
zeroes, such that f(z) = p(z)ϕ(z) for z ∈ G.

2. Determine a ∈ C such that the function sin(z)− z(1+az2) cos(z) has a zero of order
5 at z = 0.

7 The residue theorem

We start by defining the residue at a pole of a meromorphic function.

Definition 7.1. Let f : G \P → C be a function meromorphic in G with poles in P . Let
a ∈ P be a pole of order m. The coefficient to the term (z − a)−1 in the principal part of
f at a is called the residue and is denoted by Res(f, a).

We have at a pole a a representation

f(z) =
cm

(z − a)m
+ · · ·+ c1

z − a
+ ϕ(z),

27



where ϕ is a function holomorphic in a small ball around a, and furthermore ϕ is mero-
morphic in G with poles in P \ {a}.

The definition of a pole of order m implies cm = limz→a(z − a)mf(z) 6= 0. As a
consequence, if a is a simple pole, then Res(f, a) 6= 0.

Theorem 7.2. Let f : G \P → C be meromorphic in a domain G with poles in P . Let

a0 ∈ P . Then we have

Res(f, a0) =
1

2πi

∫

∂B(a0 ,r)

f(z)dz,

where r > 0 is chosen such that B(a0, r) ⊆ G \(P \{a0}).

Proof. Assume that a0 is a pole of order m. Let B(a0, ρ) denote the largest open ball
contained in G \(P \{a0}), We use

f(z) =
cm

(z − a0)m
+ · · ·+ c1

z − a0

+ ϕ(z),

as above. Since ϕ is holomorphic in the starshaped domain B(a0, ρ), it has a primitive in
B(a0, ρ). Let r > 0 be chosen as in the theorem. Then

∫

∂B(a0 ,r)
ϕ(z)dz = 0. Analogously

we have
∫

∂B(a0 ,r)
(z − a0)

−kdz = 0 for k ≥ 2, since (z − a0)
−k for k ≥ 2 has a primitive in

C \{a0}. We now have

∫

∂B(a0 ,r)

f(z)dz = c1

∫

∂B(a0 ,r)

1

z − a0
dz = 2πic1.

Since c1 = Res(f, a0), the result is proved.

In Section 4 we have seen that the circuit ∂B(a, r) in some cases can be replaced by
another circuit enclosing the singularity. We have the following result.

Proposition 7.3. Let γ : [a, b] → C be a simple, closed, positively oriented circuit. For

z0 6∈ γ∗ = γ([a, b]) we have

∫

γ

1

z − z0
dz =

{

2πi, if γ surrounds z0,

0, otherwise.

Proof. The proof is only given in a special case. We assume that we can define piecewise
continuous functions r : [a, b] → (0,∞) and ϕ : [a, b] → R such that the given circuit can
be represented as

γ(t) = z0 + r(t)eiϕ(t), t ∈ [a, b].

In the case where r(t) and ϕ(t) are differentiable in [a, b] we have

∫

γ

1

z − z0
dz =

∫ b

a

γ′(t)

γ(t) − z0
dt
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=

∫ b

a

r′(t)eiϕ(t) + r(t)iϕ′(t)eiϕ(t)

r(t)eiϕ(t)
dt

=

∫ b

a

d

dt
[log(r(t))]dt + i

∫ b

a

ϕ′(t)dt

= i[ϕ(b) − ϕ(a)].

In the general case we have to split the integral into a sum of integrals over the subintervals
of [a, b], where r(t) and ϕ(t) both are differentiable. The result now follows from the fact
that ϕ(b) − ϕ(a) = 2π, if the circuit circumscribes z0, and zero otherwise. This property
is easily verified for explicit circuits, such as circles and polygonal paths. The general case
is proved by using a deep result called the Jordan curve theorem.

We can now explain the term ‘residue’. It is the remainder (up to a factor 2πi) left in the
contour integral, when integrating a meromorphic function along a circuit circumscribing
the singularity once. In French remainder is ‘residu’.

We need the following result in the proof of the main theorem in this section.

Lemma 7.4. Let γ : [a, b] → G be a simple closed circuit in a starshaped domain G ⊆ C.

Then there exists a bounded starshaped domain G1 such that γ∗ ⊆ G1 and G1 ⊆ G.

Proof. To each z ∈ γ∗ there exists rz > 0 such that B(z, rz) ⊆ G. We introduce the
covering {B(z, rz/2)}z∈γ∗ of γ∗. Since γ∗ is a compact set, this covering can be replaced
by a finite covering γ∗ ⊆ ∪n

k=1B(zk, rk/2) = A ⊆ G. Assume that G is starshaped around
a ∈ G. We can find r > 0 such that B(a, r) ⊆ G. We now define

G1 =
⋃

z∈A

L(a, z)
⋃

B(a,
r

2
).

It follows from this definition that G1 is starshaped around a and that γ∗ ⊆ A ⊆ G1. Fur-
thermore, G1 is contained in the ball with center a and radius equal to R = maxk=1...n{|zk−
a| + rk/2} + r/2, implying that G1 is bounded. Finally we note that

G1 ⊆
⋃

z∈∪n

k=1B(zk ,rk)

L(a, z)
⋃

B(a, r) ⊆ G.

We can now prove the main theorem in this section.

Theorem 7.5 (Cauchy’s residue theorem). Let f be meromorphic in a starshaped

domain G. Let P denote the poles of f . Let γ be a simple, closed, positively oriented

circuit in G \P . Let a1, . . . , an, denote the poles surrounded by γ. Then

∫

γ

f(z)dz = 2πi
n

∑

k=1

Res(f, ak).
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Proof. We use Lemma 7.4 to determine a bounded and starshaped domain G1, such that
γ∗ ⊆ G1 and G1 ⊆ G. The set of poles P is a closed subset of G with no accumulation
points in G. Thus P ∩ G1 has no accumulation points in G. It now follows from the
Bolzano-Weierstrass theorem [3, Theorem 8.15] that the set P1 = P ∩ G1 is a finite set.
We write

P1 = {a1, . . . , an, an+1, . . . , an+m},
where an+1, . . . , an+m are those poles in G1 not surrounded by γ.

Let pk denote the principal part of f at ak, k = 1, . . . , n + m. Let ϕ = f − ∑m+n
k=1 pk.

This function has a removable singularity at each of the points a1, . . . , an+m. By assigning
the right values in these points we get a function ϕ ∈ H(G1). Since G1 is starshaped,
Corollary 4.5 shows that ϕ has a primitive in G1. Thus

∫

γ
ϕ(z)dz = 0. Using the definitions

we have shown
∫

γ

f(z)dz =
n+m
∑

k=1

∫

γ

pk(z)dz.

The principal part pk is holomorphic in C \{ak}, and has a representation

pk(z) =
ck
m̃

(z − ak)m̃
+ · · ·+ ck

2

(z − ak)2
+

Res(h, ak)

z − ak
.

For each k we have
∫

γ
(z − ak)

−jdz = 0 for j ≥ 2, since (z − ak)
−j for j ≥ 2 has a primitive

in C\{ak}, by Proposition 7.3. We also have that
∫

γ
(z−ak)

−1dz equals 2πi, if γ surrounds
ak, and 0 otherwise.

We will now give some prescriptions for finding the residue of a meromorphic function,
which is represented as h = f/g. We assume that h has a pole in a and want to calculate
Res(h, a):

1. Assume that h has a simple pole at a. Then Res(h, a) = limz→a(z − a)h(z).

2. Assume f(a) 6= 0, g(a) = 0, g′(a) 6= 0. Then Res(h, a) = f(a)/g′(a). This result
follows from the first result, since h has a simple pole in a, and

Res(h, a) = lim
z→a

f(z)
z − a

g(z)
= lim

z→a
f(z)

(

g(z) − g(a)

z − a

)−1

=
f(a)

g′(a)
.

3. Assume that h has a pole of order m at a. Then

Res(h, a) =
H(m−1)(a)

(m − 1)!
,

where H(z) = (z − a)mh(z), such that H has a removable singularity at a. This
result is proved by using the representation

h(z) =
cm

(z − a)m
+ · · · + c1

z − a
+ ϕ(z)

of h in a ball around a.
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Example 7.6. The function

h(z) =
z sin(z)

1 − cos(z)

is meromorphic in C. The denominator has zeroes at 2jπ, j ∈ Z. All zeroes are of order 2.
The numerator has a zero of order 2 at z = 0 and zeroes of order 1 at z = jπ, j ∈ Z \{0}.
It follows that z = 0 is a removable singularity and that z = 2jπ, j ∈ Z \{0}, are simple
poles.

The value to be assigned at the removable singularity is found using the power series
expansions for sin and cos:

lim
z→0

h(z) = lim
z→0

z(z − z3

3!
+ · · · )

z2

2!
− z4

4!
+ · · ·

= 2.

The residue at a pole 2jπ, j 6= 0, is found using w = z − 2jπ and the periodicity of
trigonometric functions:

Res(h, 2jπ) = lim
z→2jπ

(z − 2jπ)h(z) = lim
w→0

w(w + 2jπ) sin(w)

1 − cos(w)
= 4jπ.

7.1 Exercises

1. Carry out the details in the proofs of the three prescriptions for determining residues
given above.

2. Find the poles and their orders, and calculate the residues, for each of the following
functions:

(a) f(z) =
1

sin(z)
,

(b) g(z) =
z2

(z2 + 1)2
,

(c) h(z) =
1

ez2 − 1
.

3. Let f, g ∈ H(G). Assume that f has a zero of order n > 0 at a ∈ G, and that g has
a zero of order n + 1 at a. Prove that f/g has a simple pole at a, and show that

Res(f/g, a) = (n + 1)
f (n)(a)

g(n+1)(a)
.

4. Prove that the function sin(z−1) has an essential singularity at z = 0.
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8 Applications of the residue theorem

We have the following result for meromorphic functions.

Theorem 8.1. Let h be a meromorphic function defined on a starshaped domain G. Let γ
be a simple, closed, positively oriented circuit in G, which does not intersect any of the poles

or zeroes of h in G. Let Nγ(P ) denote the sum of the orders of the poles of h surrounded

by γ. Let Nγ(Z) denote the sum of the orders of the zeroes of h surrounded by γ. Then

1

2πi

∫

γ

h′(z)

h(z)
dz = Nγ(Z) − Nγ(P ).

Proof. Let D denote all zeroes and poles of h in G. The function h′/h is holomorphic in
G \D. We now prove that h′/h is meromorphic in G with poles contained in D. Let P
denote the poles of h in G. Assume that a is a zero of order n of h. Then we have the
expansion

h(z) = an(z − a)n + an+1(z − a)n+1 + · · · , an 6= 0,

valid in the largest ball B(a, ρ) contained in G \P . Thus

h′(z) = nan(z − a)n−1 + (n + 1)an+1(z − a)n + · · · .

It follows that in this case the function h′/h has a simple pole at a with residue equal to
n. Assume now that a is a pole of order m of h. Then we have the expansion

h(z) = a−m(z − a)−m + a−m+1(z − a)−m+1 + · · · , a−m 6= 0

valid in B(a, ρ)\ {a}, where B(a, ρ) is the largest open ball contained in G \(P \{a}). We
now have

h′(z) = −ma−m(z − a)−m−1 − (m − 1)a−m+1(z − a)−m − · · · .

We conclude that the function h′/h in this case has a simple pole at a, with residue equal
to −m. The result in the theorem now follows from the residue theorem.

We now show how to use the residue theorem to evaluate certain types of definite
integrals. We start by defining improper Riemann integrals, which are Riemann integrals
over finite or infinite open intervals.

For a, b ∈ R∪ {±∞}, a < b, assume that f is Riemann integrable over all finite closed
subintervals of (a, b). Then we define

∫

(a,b)

f(x)dx = lim
c→a+,d→b−

∫

[c,d]

f(x)dx

if the limit exists.
One of the ideas used in computing an improper Riemann integral

∫ ∞

−∞
f(x)dx can be

described briefly as follows: Let γ be a closed circuit in C, which contains the interval
[−R, R], for example this line segment concatenated with the semi-circle in the upper half

32



plane connecting R with −R. Suppose we can find a meromorphic function F which agrees
with f on the real axis. The integral from −R to R plus the integral along the semi-circle
then equals 2πi times the residues at some of the poles of F in the upper half plane. One
then tries to evaluate the limit R → ∞. In many cases the integral along the semi-circle
will tend to zero. In the limit one then gets the value of the integral over the real axis. Let
us illustrate this procedure in the next proposition.

Proposition 8.2. Let f be a rational function

f(z) =
p(z)

q(z)
=

a0 + a1z + · · ·+ amzm

b0 + b1z + · · · + bnzn
, am 6= 0, bn 6= 0.

Assume that n ≥ m + 2 and that f has no poles on the real axis. Then the following

improper integral exists and is evaluated as shown.

∫ ∞

−∞

f(x)dx = 2πi

k
∑

j=1

Res(f, zj) = −2πi

l
∑

j=1

Res(f, wj),

where z1, . . . , zk are the poles of f located in the upper half plane and w1, . . . , wl the poles

in the lower half plane.

Proof. We start by noting that

lim
|z|→∞

zn−mf(z) = am/bn.

We can then determine R0 > 0 such that

|z|n−m|f(z)| ≤ M = |am/bn| + 1 for |z| ≥ R0.

In particular, we have

|f(z)| ≤ M

|z|2 for |z| ≥ max{1, R0}.

Choose R > 0 sufficiently large such that it is larger than max{1, R0} and such that all
the poles of f are contained in B(0, R), then the residue theorem gives (with γ1 the line
segment and the semi-circle in the upper half plane traversed in the positive direction)

∫

γ1

f(z)dz =

∫ R

−R

f(x)dx +

∫ π

0

f(Reiθ)iReiθdθ = 2πi

k
∑

j=1

Res(f, zj).

Analogously, with γ2 denoting the line segment traversed from R to −R, and the semi-circle
in the lower half plane, traversed in the positive direction, we have

∫

γ2

f(z)dz =

∫ −R

R

f(x)dx +

∫ 2π

π

f(Reiθ)iReiθdθ = 2πi
l

∑

j=1

Res(f, wj).
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Since
∣

∣

∣

∣

∫ π

0

f(Reiθ)iReiθdθ

∣

∣

∣

∣

≤ π
RM

R2
,

the contribution from the semi-circle tends to zero for R → ∞. A similar result holds for
the integral over the semi-circle in the lower half plane.

Example 8.3. We consider the rational function f(z) = z2(z2 + 1)−2. It has no poles on
the real axis, and in the upper half plane it has a pole at z = i with residue equal to −i/4.
Proposition 8.2 then yields

∫ ∞

−∞

x2

(x2 + 1)2
dx = 2πi Res(f, i) =

π

2
.

The method in Proposition 8.2 can be applied to many other classes of functions. We
can state the following result.

Proposition 8.4. Let f be meromorphic in C with no poles on the real axis, and with at

most a finite number of poles in the upper half plane, denoted by z1, . . . , zk. If

max
0≤t≤π

|f(Reit)| → 0 for R → ∞,

then the improper Riemann integral
∫ ∞

−∞
f(x)eiλxdx exists for any λ > 0, and is given by

∫ ∞

−∞

f(x)eiλxdx = 2πi

k
∑

j=1

Res(f(z)eiλz , zj).

Proof. Let γ denote the closed circuit consisting of the line segment from −R to R and the
semi-circle |z| = R, Im(z) ≥ 0, in the upper half plane. Assume that R is sufficiently large,
such that this circuit surrounds all the poles in the upper half plane. Using the residue
theorem we find

∫

γ

f(z)eiλzdz =

∫ R

−R

f(x)eiλxdx +

∫ π

0

f(Reit)eiλReit

iReitdt

= 2πi

k
∑

j=1

Res(f(z)eiλz, zj).

We have

IR =

∣

∣

∣

∣

∫ π

0

f(Reit)eiλReit

iReitdt

∣

∣

∣

∣

≤ max
0≤t≤π

|f(Reit)|
∫ π

0

Re−λR sin(t)dt.

Since sin(t) ≥ 2t/π for t ∈ [0, π/2], we get with a = 2λR/π

∫ π

0

e−λR sin(t)dt = 2

∫ π/2

0

e−λR sin(t)dt
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≤ 2

∫ π/2

0

e−atdt =
2

a
(1 − e−a π

2 )

≤ 2

a
=

π

λR
,

which implies the estimate

IR ≤ π

λ
max
0≤t≤π

|f(Reit)|.

By assumption the right hand side tends to zero for R → ∞.

Example 8.5. The rational function f(z) = z(z2 + 1)−1 has no poles on the real axis. In
the upper half plane it has a simple pole at z = i. We have the estimate

max
0≤t≤π

|f(Reit)| ≤ R

R2 − 1
for R > 1.

Thus all assumptions in Proposition 8.4 are satisfied, and we get
∫ ∞

−∞

f(x)eiλxdx = 2πi Res(f(z)eiλz , i) = πie−λ for λ > 0.

Taking the imaginary part on both sides we get
∫ ∞

−∞

x sin(λx)

x2 + 1
dx = πe−λ for λ > 0.

Finally we note that an integral of the form
∫ 2π

0

f(cos(t), sin(t))dt

can be rewritten as a contour integral over the unit circle
∫

∂B(0,1)

f(
1

2
(z +

1

z
),

1

2i
(z − 1

z
))

1

iz
dz,

since z = eit, t ∈ [0, 2π], is a parametrization of the unit circle ∂B(0, 1). In some cases one
can then use the residue theorem to find the contour integral.

Example 8.6. For a > 1 we consider the integral
∫ 2π

0

dt

a + cos(t)
=

∫

∂B(0,1)

dz

iz(a + 1
2
(z + 1

z
))

= −2i

∫

∂B(0,1)

dz

z2 + 2az + 1
.

The denominator in the last integrand can be factored as (z − q)(z − p), where q < −1 <
p < 0 are the numbers −a±

√
a2 − 1. Thus the integrand has a simple pole at z = p inside

the unit circle, and the residue is given by (p − q)−1, which implies
∫ 2π

0

dt

a + cos(t)
= (−2i)(2πi)

1

p − q
=

2π√
a2 − 1

.
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8.1 Exercises

1. Show that

∫ ∞

−∞

dx

1 + x4
=

π√
2
.

2. Show that

∫ ∞

0

xdx

1 + x4
=

π

4
.

3. Show that

∫ ∞

−∞

x2

(x2 + 1)(x2 + 4)
dx =

π

3
.

4. Show that

∫ ∞

−∞

eiπx

x2 − 2x + 2
dx = −πe−π.

5. Show that for any a > 1 we have

∫ 2π

0

cos(x)

a + cos(x)
dx = 2π(1 − a√

a2 − 1
).
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