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Figure 1.6 Vectorsin R®

endpoint. (See Figure 1.6(a).) As is the case in R?, we can view two nonzero veclors
in R* as adjacent sides of a parallelogram, and we can represent their addition by
using the parallelogram law. (See Figure 1.6(b).) In real life, motion takes place in
3-dimensional space, and we can depict quantities such as velocities and forces as
vectors in R*.

EXERCISES
In Exercises 112, compute the indicated matrices, where 29, Determine ¢;. 30. Determine ca.
> _1 5 | 0 -2 31. Determine the first row of C.
A= 3 4 1 and B = 2 3 4| 32. Determine the second row of C.
1. 44 2. A 3. 44-2B o
4. 34428 5. (2B 6. AT +2B7
7. A+B 8 (Aa+28)" 9 Al
10. A—R 11. —(BN) 12. (-B)"
30
In Exercises 13-24, compute the indicated matrices, if possible,
where x
East
-4 0
A= [‘? _: i ;] and B = f i Figure 1.7 A view of the airplane from above
0 2 33. An airplane is flying with a ground speed of 300 mph
307 eas il (S i il
13 —A 14, 38 15. (=24 at an a'u?glc of . eust _uf due purlh (See Figure 1.7.)
a = In addition, the airplane is climbing at a rate of 10 mph,
16. (2B) I7. A-B 18. A—B Determine the vector in R* that represents the velocity
19. AT —B 20, 344287 21 (A+B)Y (in mph) of the airplane.
22. (dA)Y 23 B—AT 24, (BT — Ay 34. A swimmer is swimming northeast at 2 mph in still water.
3 1 (a) Give the velocity of the swimmer. Include a sketch.
In Exercises 25-28, assume that A= | 0 1.6 . (b) A current in a northerly direction at 1 mph affects the
2 5 velocity of the swimmer. Give the new velocity and
_ _ speed of the swimmer. Include a sketch.
i;’;i gz::;i:z: :t ;g‘l g::::i‘;i:: 21 35. A pilot keeps her airplane pointed in a northeastward

direction while maintaining an airspeed (speed relative
2 -3 (}_4] to the surrounding air) of 300 mph. A wind from the west

In Exercises 29-32, assume that C = [2‘. 12 ol blows eastward at 50 mph.
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(a) Find the velocity (in mph) of the airplane relative to
the ground.

(b) What is the speed (in mph) of the airplane relative to
the ground?

Suppose that in a medical study of 20 people, for each i,

I =i < 20, the 3 x 1 vector w; is defined so that its com-

ponents respectively represent the blood pressure. pulse

rate, and cholesterol reading of the ith person, Provide an

interpretation of the vector :,l-,(u, +uy 44U

In Exercises 37-56, determine whether the state-
ments are true or false.

Matrices must be of the same size for their sum to be
defined.

The transpose of a sum of two matrices is the sum of the
transposed matrices.

Every vector is a matrix,

A scalar multiple of the zero matrix is the zero scalar.
The wanspose of a matrix is a matrix of the same size.
A submatrix of a matrix may be a vector.

If B is a 3 x 4 matrix, then its rows are 4 x | vectors.
The (3,4)-entry of a matrix lies in column 3 and row 4.
In a zero matrix. every entry is 0.

An m x n matrix has m + n entries,

If v and w are vectors such that v = —3w, then v and w
are parallel.

If A and B are any m x n matrices, then

A-B =A+(=1)B.
The (i.j)-entry of AT equals the (f,)-entry of A.
1A= [; ﬂ and B = [; i g] then A = B.
In any matrix A, the sum of the entries of 3A equals three
times the sum of the entries of A.
Matrix addition is commutative.
Matrix addition is associative.
For any m x n matrices A and B and any scalars ¢ and
d, (cA + dB) =eAT +dB7.
If A is a matrix, then cA is the same size as A for every
scalar c.
If A is a matrix for which the sum A + A is defined, then
A Is a square matrix.

37,

58,

59.

Let A and B be matrices of the same size.

(a) Prove that the jth column of A + B is a, +b;.

(b) Prove that for any scalar ¢, the jth column of cA is
cay.

For any m x n matrix A, prove that (A = O, the m xn

zero matrix.

For any m x n matrix A, prove that 1A = A.

60,
62.
64.

66

A squ

Prove Theorem 1.1{a).
Prove Theorem 1.1(d).
Prove Theorem 1.1(g).
Prove Theorem 1.2(c).
are mairix A is called a diagonal matrix if a; = 0 when-

61. Prove Theorem 1.1(c).
63. Prove Theorem 1.1(e).
65. Prove Theorem 1.2(b).

everi # j. Exercises 67-70 are concerned with diagonal mairi-

ces.

67.
68.

69.

70.

Prove that a square zero matrix is a diagonal matrix.
Prove that if B is a diagonal matrix, then ¢B is a diagonal
matrix for any scalar c.

Prove that if B is a diagonal matrix, then B7 is a diagonal
matrix.

Prove that if B and C are diagonal matrices of the same
size, then B + C is a diagonal matrix.

A (sguare) matrix A is said to be symmetric if A = AT, Exercises
71-78 are concerned with symmetric matrices,

71
T2

T3
74.

13,

76.

7.

78.

Give examples of 2 x 2 and 3 x 3 symmetric matrices.
Prove that the (i.j)-entry of a symmetric matrix equals
the (j, i -entry.

Prove that a square zero matrix is symmetric,

Prove that if B is a symmetric matrix, then so is ¢8 for
any scalar ¢.

Prove that if B is a square matrix, then B + B is sym-
melric.

Prove that if B and C are n x n symmetric matrices, then
sois B+ C.

Is a square submatrix of a symmetric matrix necessarily
a symmetric matrix? Justify your answer.

Prove that a diagonal matrix is symmetric.

A (square) matrix A is called skew-symmetric if AT = —A,
Exercises 79-81 are concerned with skew-symmetric matrices.

79.

80,

81.

What must be true about the (i,i)-entries of a skew-
symmetric matrix? Justify your answer.

Give an example of a nonzero 2 x 2 skew-symmetric
matrix B. Now show that every 2 x 2 skew-symmetric
matrix is a scalar multiple of B.

Show that every 3 x 3 matrix can be written as the sum
of a symmetric matrix and a skew-symmetric matrix.

82% The trace of an n x n matrix A, written trace(A), is

83.

defined to be the sum
trace(A) = ayy + aza =+ + Gyy.

Prove that, for any n x n matrices A and B and scalar ¢,
the following stalements are true:

(a) trace(A -+ B) = trace(A) + trace(B).

(b) trace(cA) = ¢ - trace(A).

(c) trace(A”) = trace(A).

Probability vectors are vectors whose components are
nonnegative and have a sum of 1. Show that if p and q are
probability vectors and a and b are nonnegative scalars
with @ + b = 1. then ap + bq is a probability vector.

* This exercise is used in Sections 2.2, 7.1, and 7.5 (on pages 115, 495, and 533, respectively).
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In the following exercise, use either a calculator with matrix and
capabilities or computer softiware such as MATLAB ro solve the 26 -13 0.7 —44
problem: 22 =26 1.3 =32
3 oy B=| 7.1 1.5 -83 46
84. Consider the matrices 09 —12 24 5.9
1.3 21 =33 6.0 33 -09 14 6.2
5.2 23 =1.1 34
A=| 32 -26 1.1 —40 (a) Compute A + 2B.
0.8 =13 =121 5.7 (b) Compute A — B.
-1.4 32 0.7 44 (c) Compute A" + B7.
SOLUTIONS TO THE PRACTICE PROBLEMS
I. (a) The (1.2)-entry of A is 2. _ [z -1 1] 4 [3 9 n]
(b) The (2,2)-entry of A is 3. 3 0 -2 6 -3 12

1] 2 -1 4

5 3 & __[5 8 l]
_ [ = 130 o -3 10
s pa-psl 1 LR 8

B
=1t 1 -6
T 3 6
;3 9 o
(b) f331f=[' :[ " {9 —3]
_ a2 =1 1 4 =2 2 6 -3 12
“”M""[s 0 -2}“‘[& 0 —4] R
3 2 17 |3 3
_[2 =1 1 1 30 (c;-(A+B>?=[' H ] =2 -1
“”‘+3H'[.1 0 —2]+"[2 -1 4] kA 12

[1.2] LINEAR COMBINATIONS, MATRIX-VECTOR
PRODUCTS, AND SPECIAL MATRICES

In this section. we explore some applications involving matrix operations and introduce
the product of a matrix and a vector.
Suppose that 20 students are enrolled in a linear algebra course, in which two
by
s
tests, a quiz, and a final exam are given. Let u = | _ [, where i; denotes the score

H20

of the ith student on the first test. Likewise, define vectors v, w, and z similarly for the
second test, quiz, and final exam, respectively. Assume that the instructor computes
a student’s course average by counting each test score twice as much as a quiz score,
and the final exam score three times as much as a test score. Thus the weights for the
tests, quiz, and final exam score are, respectively, 2/11, 2/11, 1/11, 6/11 (the weights
must sum to one). Now consider the vector

2 2 1 6

¥y= “'Ll+ “\'+ “w+ _l_l’z‘

The first component y; represents the first student’s course average, the second com-
ponent y; represents the second student’s course average, and so on. Notice that y is
a sum of scalar multiples of u, v, w, and z. This form of vector sum is so important
that it merits its own definition.
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EXERCISES
In Exercises 1-8, o vectors w and v are given. Compute the s, | |
norms of the vectors and the distance d between them. 3 -
& 16, u= and v =
35 2 -2 3
l. u= |3 and v = 4 L 4 2
il 3 In Exercises 17-24, two orthogonal vectors u and v are given.
Z.u= 2} and v = [{I Compute the quantities laf?, ||\«'||2. and |lu+ v||%. Use vour
> results ta tlustrare the Pythagorean theorem.
1 2 " -
= o - -2
2 S —Jd"d‘_[l] 17. u= ;]mdv=[2
1 = 3 1]
4 u=|3|andv=| 4 I8, u= }]andv=[3
| 1 2] . 0 =
© 17 ] 19. u= ‘.;] and v = [0]
Su=|-1l|andy=|1 :, o
3 0 Lu= || =
L A 0. 20. u _6] and v [_3-
! 2 [17] [—1
2 3
6. u= 1 and v = 3 2l.u=(3|andv=| 1
2 —1
-1 0 i T
2 s 1 —2
i i 2. u=|—1|andv=]| 0
7. u= :2 and v = 1 [ 2] L, A
1 | it} =11
7R i 23 u=|2|and v= 4
1 -] 3 1
8 u= _2 and v = % 7 2] [-=3+]
7 2. u=|=1|and v= 2
L 3] | 3 4 2

In Exercises 9-16, two vectors are given. Compute the dot prod-

; In Exercises 25-32, two vectors u and v are given. Compute the
uct of the vectors, and determine whether the vectors are orthog-

quantities ||all, |v]l. and ||u + v|l. Use vour results to illustrate

onal. ) the rriangle inequaliry.
3 4

‘Jku=-_2}ﬂnd\=[ﬁ] 25 u— ']and\' [ i
M 3

10-“=-2}ﬂn‘1“=[?] 26, u= {Iand\rz[ ;
i i 2 3]

ll.u=__szdv=|:l 27. u= ;]andv=[ !
M1 —17] 28 u=| 2| and v

12 u=|3|andv=| 4 oo I | l_
R 2_ W 37
[ 4] 2] 20, u=|[—4|andv=|1

13 u=|-2|andv=]|1 | 2] L1
L 3] 0] 2] [7E]
[ 1] 2] 3. u=|—3|andv=|1

14, z d 4 - L2

L u= -3 and v = 2 2— M4

L1 | 0] Jlu=|—l|landv=|0
[ 1] 27 2 LL |
~1 3 2 [—4

15. = H =

A W || WS 32 0= |-3|mdv=| 6
| 1] ! 1] | -2
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In Exercises 33—40, two vectors u and v are given. Compute the
quantities |ull, [|v]l, and wev. Use your results to illustrate the
Cauchy-Schwarz inequality.

3 u=

M4 u=

35. u=

36. u=

37. u=

38 u=

39. u=

40, u =

Jour-[

-]

ﬂ and v = [ﬂg
g %
e [2
[ 6 1
—1|and v= 4
2 -1
) —2
1| and v = |
R 3
[4 2
2land v= | —1
LI -1
[ 3 1
—1 | and v= 3
2 =1

- . . v s amd v
In Exercises 4148, a vector u and a line £ in R are given.
Compute the orthogonal projection w of w on L. and use it 1o

compute th

41, u=

43 u=

45 u=

47 u=

¢ distance d from the endpoint of w jo L.

5] [2

0] and y =0 42 u= L3] and y = 2x
[3] 3

4] and vy = —x 44, u=_4] and y = —2x
;‘ and y = 3x 46, u = ..,;:I and y = x
[2] _ (6

5| and y = —3x 48. u = -5] and y = —4x

For Exercises 49-54, suppose that w, v, and w are vectors in R"

such that |

jul =2, vl =3, ||wll=5 uev=—1, uew=1,

and vew = —4,

49. Compute (u + ¥)«w.
51. Compute |ju + |2,
53. Compute [lv — 4w]||*.

50. Compute |[4w].
52. Compute (u + w)sv.
54. Compute || 2u+ 3v|%.

For Exercises 55-60. suppose that u, ¥. and W are vectors
in R such that wen =14, uev =7, uew = =20, vov =21,

Vew= -5

55. Compute ||v]]*.
57. Compute vsu.
59. Compute [[2u — v||°.

LF

Cand waew = 30,

56. Compute ||3u]|.

58, Compute ws(u+v).
60. Compute v+ 3w|.

In Exercises 61-80, determine whether the state-
ments are true or false.

61.

62.
63.

65.

66.

67.

68.

69.
70.
71.
72
73.
74.

75

76.

i
78.

79.

80.

Vectors must be of the same size for their dot product to
be defined.

The dot product of two vectors in R" is a vector in R".

The norm of a vector equals the dot product of the vector
with itself.

. The norm of a multiple of a vector is the same multiple

of the norm of the vector.

The norm of a sum of vectors is the sum of the norms of
the vectors.

The squared norm of a sum of orthogonal vectors is the
sum of the squared norms of the vectors.

The orthogonal projection of a vector on a line is a vector
that lies along the line.

The norm of a vector is always a nonnegative real num-
ber.

If the norm of v equals 0, then v = 0.
fu-v=0, thenu=0orv=\.
For all vectors w and v in R", |u«w| = [luf| « |v]|.
For all vectors u and v in R", usv =vau.
The distance between vectors w and v in R" is |Ju — v[.
For all vectors w and v in " and every scalar ¢,
(cu)ev=u=(cv).
For all vectors u, v, and w in R",
Ue(v4+wl=usv+usw,
If A is an n x n matrix and u and v are vectors in R",
then Au « v=u « Av.
For every vector v in R", ||lv]| = || — v||.
If u and v are orthogonal vectors in R", then
a4 vl = {lull + lIvll.
If w is the orthogonal projection of u on a line through
the origin of R, thenu — w is orthogonal to every vector
on the line.

If w is the orthogonal projection of u on a line through
the origin of R2, then w is the vector on the line closest
o

8L
§2.
83.
84.
85.
B6.

87.

88,

Prove (a) of Theorem 6.1.
Prove (b) of Theorem 6.1.
Prove (c) of Theorem 6.1.
Prove (e) of Theorem 6.1.
Prove () of Theorem 6.1.

Prove that if u is orthogonal to both v and w, then u is
orthogonal to every linear combination of v and w.

Let {v.w} be a basis for a subspace W of R", and define

VoW

Z=W— V.

V¥
Prove that {v,z} is a basis for W consisting of orthogonal
vectors.
Prove that the Cauchy-Schwarz inequality is an equality
if and only if u is a multiple of v or ¥ is a multiple of u.



89.

Prove that the triangle inequality is an equality if and only
if u is a nonnegative multiple of v or v is a nonnegative
multiple of w.

. Use the triangle inequality to prove that | [[v|| — [[w]l| =

[lv — w]|| for all vectors v and w in R".

91, Prove (u -+ v)+w = u+w + v.w for all vectors u, v, and
win R".
92, Let z be a vector in R". Let W = {ue R": u-z=10}.
Prove that W is a subspace of R".
93. Let S be a subset of R" and
W=[ueR": u.z=0 forall z in S}.
Prove that W is a subspace of R".
94, Let W denote the set of all vectors that lie along the line
with equation y = 2v. Find a vector z in R? such that
W = (ue R?: u-z = 0). Justify your answer.
93. Prove the parallelogram law for vectors in R":
o+ VI + flu = v[i* = 2fjul* + 2}v]%.
96. Prove that if u and v are orthogonal nonzero vectors in

R", then they are linearly independent.

972 Let A be any # x n matrix.

(a) Prove that A”A and A have the same null space. Hint:
Let v be a vector in R" such that AT Av = 0, Observe
that ATAvev = Avedy = 0.
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99, u=
100, u—d and v = =1
L u= = 3

[—2] i
101, u= 4 and v = -,

102, u=|" ,|andv= f
(1 1
103. u= 2landv= |1
1 2z
2 1
104, u= lland v=| -3
-3 2
= -
1 -1
105. u= | =2 | and v= 1
1
1 1
106, u= |2 |andv= |1
1 0

Let u and v be vectors in R, Define w x v o be the vector
HaVy — N3V
w3y = vy |, which is called the cross product of u and v.
WiV — HaVy

For Exercises 107120, use the preceding definition of the cross

praduct.

(b) Use (a) to prove that rank A’ A = rank A.

¥

" v =

Figure 6.6

983 Let u and v be nonzero vectors in 2 or R, and let 6 be
the angle between u and v. Then u, v, and v — u determine
a triangle. (See Figure 6.6.) The relationship between the
lengths of the sides of this triangle and # is called the law
of cosines. It states that

v —ul® = full* + [Iv)I* = 2fjufl iv] coso.

Use the law of cosines and Theorem 6.1 to derive the
formula
usv = |Juf [|v] cosf.

In Exercises 99-106, use the formula in Exercise 98 to determine
the angle between the vectors u and v.

? This exercise is used in Section 6.7 (on page 439).
* This exercise is used in Section 6.9 (on page 471).

107.
108.

109.
110.

115

113.

114,

115.

116.

For every vector u in R*, prove that u ¢ u = 0.

Prove that w x v = —(v x u) for all vectors u and v in
w3
For every vector w in R, prove thatu x 0 = 0 x u = 0.

For all vectors u and v in R*, prove that u and v are
parallel if and only if u x v = 0.

For all vectors u and v in R* and all scalars ¢. prove that

cuXy¥)=cuxv=uxcy.

. For all vectors u. v, and w in R*, prove that

ux(v+wl=uxv+uxw,
For all vectors u, v, and w in R?, prove that
M+vixw=uxw4vxw

For all vectors u and v in R?, prove that u x v is orthog-
onal to both u and v.

For all vectors u, v, and w in R*, prove that
(W V)ew =us(vx w)
For all vectors u, v, and w in R, prove that

U XAV X W)= (UewW)y— (mev)w.
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117, For all vectors u, v, and w in R*, prove that In Exercise 125, use cither a caleulator with matrix capabilities

or computer software such as MATLAB 1o solve the problem.

VLR L < T 125. In every triangle, the length of any side is less than the

118. For all vectors u and v in R*, prove that sum of the lengths of the other two sides. When this
observation is generalized o R", we obtain the rriangle

2 2 2 2
flu > vii* = lfI7ivll" — (w-v)", inequality (Theorem 6.4), which states

119. For all vectors u and v in R’ prove that [ux v]| =
llufl)Iv|l sin#, where @ is the angle between u and v. Hinr: lla+ vl < flull + |Ivil
Use Exercises 98 and 118.

f P reclors . A lf'
120. For all vectors u, v, and w in R?, prove the Jacobi identity: o ey vokey M Mol ¥ R T, Lot

Uxv)xwH(vexwixu+wxuxv=0 ! -8 2.01
2 -6 4.01
Exercisex 121-124 refer to the application regarding the two u= 3 v.- 41" b 6.01 1" and
methods of computing average class size given in this section. 4 5 801
In Exercises 121-123, data are given for students enrolled in
a three-section seminar course. Compute the average v deter- 3.01
mined by the supervisor and the average v* determined by the Vs = 6.01
investigator. . s
12,01

121, Section | contains 8 students, section 2 contains 12 stu-

dents, and section 3 contains 6 students. (a) Verify the triangle inequality for u and v.

122, Section 1 contains 15 students, and each of sections 2 and (b) Verify the triangle inequality for uw and v,

3 contains 30 students, (c) Verify the triangle inequality for u and v,

123. Each of the three sections contains 22 students. (d) From what you have observed in (b) and (c). make a
conjecture about when equality occurs in the triangle

124, Use Exercise 88 to prove that the two averaging methods .
inequality.

for determining class size are equal if and only if all of 3
the class sizes are equal, (e) Interpret your conjecture in (d) geometrically in R~

SOLUTIONS TO THE PRACTICE PROBLEMS

=]

1. (a) We have [ull =124 (=22 +22=3 and |v] = - Taking dot products, we obtain
[T+ 0+ 3 =
6 +27+3 =1 uev = (=20 +(=5K=1)+(3)2) =9

p— -3' uew = (=2)(=3) + (=S + B)2) =7
Ll | vew = (1)(=3) + (= 1X1) + 2)2) = 0.
: . . - So u and w are orthogonal, but u and v are not orthogonal,
= V(=5 + (=47 + (-1 = Va2 and v and w are not orthogonal.
(c) We have
- 1 3. Let w be the required orthogonal projection. Then
1 - g 1 4 4
—u”= =|=2{l=|]-2 =\/—+—+—=l
| 3|5 : 97979 wo BV D)+ (5= + (3)2)
- L 3 T T P+(-1pP+22
and
6 [§ 1
 J
1 1 3 6 4 9 3
—_— =l-]2 = & - = s — =1, = - | = .
nv||"‘| TS =V tente 2 ;
- L3

ORTHOGONAL VECTORS

It is easy to extend the property of orthogonality to any set of vectors. We say that
a subset of R"™ is an orthogonal set if every pair of distinct vectors in the set is
orthogonal. The subset is called an orthonormal set if it is an orthogonal set consisting
entirely of unit vectors.




