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Figure 1.6 Vectors in R 3 

endpoint. (See Figure 1.6(a).) As is the case in R 2, we can view two nonzero vectors 
in n 3 as adjacent sides of a parallelogram, and we can represent their addition by 
using the parallelogram law. (See Figure 1.6(b).) In real life, motion takes place in 
3-dimensional space, and we can depict quantjtics such as velocities and forces as 
vectors in n 3 . 

EXERCISES 

In Erercises 1- 12. compwe rile indicared mar rices, where 

A=[; 
-I n and 8 = [~ 0 -2] 

4 3 4 . 

1. 4A 2. -A 3. 4A -28 

4. 3A +28 5. (2B )r 6. AT +28T 

7. A+B 8. (A + 2Bj1' 9. AT 

10. A-8 11. - (BT) 12. (-B )T 

In Exercises 13- 24, compure rile indicared matrices, if possible, 
where 

A =[~ -I 2 -~J and 
5 -6 ·{l -ll 

13. - A 14. 38 15. (- 2)A 

16. (28l 17. A - 8 18. A - 8 T 

2 1. (A + Bl 

24. (BT - Al 
19. AT - 8 20. 3A +2BT 

22. (4Al 23. B -Ar 

In Exercises 25- 28, as.wme rlwr A = [ 2~ ~~l 
25. Determine a12. 

27. Determine a 1• 

26. Determine a 21. 

28. Detennine a2• 

In Erercises 29- 32, assume rhm C = [ 
2
; 

-3 
12 

0.4] o· 

29. Determine c1• 

31. Determine the first row of C. 

32. Determine the second row of C. 

North 
)' 

30. Determine C3. 

X 
-f--------East 

Figure 1.7 A view of the airplane from above 

33. An airplane is Aying with a ground speed of 300 mph 
<it an angle of 30° east of due north. (See Figure 1.7 .) 
In addition, the airplane is climbing at a rate of 10 mph. 
Determine the vector in 'R.3 that represents the velocity 
(in mph) of the airplane. 

34. A swimmer is swimming not1heast at 2 mph in still water. 

(a) Give the velocity of the swimmer. Include a sketch. 

(b) A current in a northerly direction at 1 mph affects the 
velocity of the swimmer. Give the new velocity and 
speed of the swimmer. Include a sketch. 

35. A pilot keeps her airplane pointed in a northeastward 
direction while maintaining an airspeed (speed relative 
to the surrounding air) of 300 mph. A wind from the west 
blows eastward at 50 mph. 
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12 CHAPTER 1 Matrices, Vectors, and Systems of linear Equations 

(a) Find the velocity (in mph) of the atrplane relative to 
the ground. 

(b) What is the speed (in mph) of the airpl.tne rehuive to 
the ground? 

36. Suppose that in a medical study of 20 people. for each i. 
I !: i !: 20, the 3 x I vector u, is defined so that its com­
ponents respectively represent the blood pressure. pulse 
rate, and cholesterol reading of the i th person. Provide an 
interpretation of the vector m<u, + ll2 + ... + li2Q). 

~ /11 Exercises 37- 56, detemtille 11 llnllu tile state-
~ me/1/s are tme or falsi'. 

37. Matrices must be of the same size for their sum to be 
dehned. 

38. The transpose of a sum of two matrices ;, the sum of the 
trdnsposcd matrices. 

39. Every vector is a matrix. 

40. A scalar multiple of the zero matrix is the 7.ero scalar. 

4 1. The transpose of a matrix is a matrix of the same size. 

42. A submatrix of a matrix may be a vector. 

43. If B is a 3 x 4 matrix, then its rows are 4 x I vectors. 

44. l11e (3, 4)-entry of a matrix lies in column 3 and row 4. 

45. In a zero matrix. every entry is 0. 

46. An m x 11 matrix has m + 11 entnes. 

47. If ' ' and ware vectors such that ' ' = -3w, then , . and w 
are parallel. 

48. If A and B are any m x 11 matrices. then 

A-B =A+(- 1)8. 

49. The (i.j)-entry of AT equals the (j, i)-entry of A. 

50. If A= [~ ~] and B = [~ ~ ~l then A= B. 

51. In m1y matrix A. the sum of the entries of 3A tXIuals three 
times the sum of the entries of A. 

52. Matrix addition is commutative. 

53. Matrix addition is associative. 

54. For any m x 11 matrices A and 8 :md any •calaT>. c and 
d. (cA +dB)T =cAT+ dBT. 

55. If A i' a matrix. then cA i• the same '"e a~ A for e\'ery 
>calar c. 

56. If A is a matrix for which the sum A +A r is defined. then 
A i' a 'quare matrix. 

57. Let A and 8 be matrices of the same size. 

(a) Prove that the j th column of II + B is 111 + bi. 

(b) Prove that for any scalar c. the jth colunm of cA is 
car 

58. For any m x 11 matrix A, prove that OA = 0. the m x 11 
zero matrix. 

59. For any 111 x 11 matrix A. prove thai lA =A. 

60. Prove Theorem 1.1 (a). 

62. Prove Theorem l.l (d ). 
6-1. Prove Theorem l.l(g). 
66. Prove Theorem 1.2(c). 

61. Prove Theorem 1.1 {c). 
63. Prove Theorem 1.1 (e). 

65. Prove Theorem 1.2(b). 

A square mmri.r A is called a diagonal matrix if a,1 = 0 ll'hen­
e•·er i :F j. Exercises 67-70 are co11cemed with dillf(OIIttl 11/lllri· 
ces. 

67. Prove that u square zero matrix is a diagonal matrix . 
68. Prove that if 8 is a diagonal matrix, then cB is a diagonal 

matrix for any scalar c. 
69. Prove that if 8 i' a diagonal matrix, then or i> a diagonal 

matrix. 

70. Pro1·e that if 8 and C arc diagonal matrices of the same 
si1.c, then 8 -1- C i~ a diagonal matrix. 

A (squa,...)matril A is said to be symmetric if A= AT. Eurc:is~s 
71-78 a,... t'tmtemt'd ll'itlt symmerric matrices. 

7 I. Give cx:unple\ of 2 x 2 and 3 x 3 symmetric matricc,. 

72. Prove thut the (i .})-entry of a symmetric matnx equals 
the (j. i)-entry. 

73. Prove that a square zero matrix is symmetric. 

74. Prove that if B is a symmetric matrix, then so is cB for 
any scalar c. 

75. Prove that if B is a square matrix, then 8 + 8 r i• 'Ym­
metric. 

76. Prove that if 8 and C are 11 x 11 symmetric matrice,, then 
so is 8 +C. 

77. Is a square submatrix of a symmetric matrix necessarily 
a •ymmetric matrix? Justify your answer. 

78. Prove that a diagonal matrix is symmetric. 

A (squa,...) mmri.1 A is calletl skew-symmetric if AT= -A. 
E.xerci,,e,, 79 -t~ / are <:oncerned with skew·.\'J'mmetric nuurice.f. 

79. What must he tnte about the (i, i)-entries of a ,kcw­
symmctric matrix? Justify your answer. 

80. Give an example of a nonzero 2 x 2 skew-symmetric 
m:ttrix 8 . Now show that every 2 x 2 ;kew-symmelric 
matrix is a scalar multiple of B. 

81. Show thai e1ery 3 x 3 matrix can be writlen a' the •um 
of a symmetric matrix and a skew-symmetric matrix. 

82~ The t race of an 11 x 11 matrix A. written trace(A ). is 
defined to be the sum 

trace(A) = a 11 +au+···+ a,... 

Prove that. for any 11 x 11 matrices A and 8 and sc:1lar c, 
the following Matements are true: 

(a) tracc(A + 8) = trace(A) +trace( B). 

(b) trace(cA) = c · tr:tce{A). 

(c) trace(A 7) = tmce(A). 

83. Probability IW'tors are \'CCtors whose comi>Oncnt' are 
nonnegative and have a sum of I. Show that if p and q arc 
probability vectors and a and b are nonnegatile scalars 
with ll + b = I. then a p + bq is a probabtlity vector. 

• This exercise is used in Se<tions 2.2. 7.1. and 7.5 (on pages 115, 495, and 533, respectively). 
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1.2 linear Combinations, Matrix-Vector Products, and Specia l Matrices 13 

In the following etudsr. uu tdthrr a calculator with matrix 
capabilities or computu sajfll'art' .wch a.r MATI.AB to soh·t' tht' 
11roblem: 

and 

2.2 -2.6 

r 

2.6 -1.3 0.7 
1.3 

-8.3 
2.4 
1.4 

-3.2 -4.4] 
84. Constder the matrices 

r , 
2.1 -3.3 

5.2 2.3 -I. I 
A- 3.2 -2.6 1.1 

08 -1.3 - 12.1 
-1.4 3.2 0.7 

6.0 

l 3.4 
-4.0 

5.7 
4.4 

B = 7.1 1.5 
-0.9 - 1.2 

3.3 -0.9 

(a) Compute A + 28. 

(b) Compute A - B. 
(c) Compute AT + B T. 

4.6 . 
5.9 
6.2 

SOLUTIONS TO THE PRACTICE PROBLEMS 

I. (a) The (I. 2)-entry of A IS 2. 

(b) The (2. 2)-entry of A is 3. 
- [2 - 3 

-I 
0 

8 

•] [3 -2 + 6 
9 ~~] -3 

= [~ I(')] -3 

3. {a) AT= [- : j] 
2. (a) A - 8 = [; - I -~J- [~ 3 ~] 0 - I 

= [ : 
4 -!] I 

9 (b) {3Bf = [~ or [3 -~] -3 = 9 
12 0 12 (b) 2A = 2 (; - I -~J = [: 

-2 _;J 0 0 

(c) A+ 38 = [i - I 

0 
(c) (A+ B)T = [~ 2 ~r = [~ - I 

(!}] LINEAR COMBINATIONS, MATRIX- VECTOR 
PRODUCTS, AND SPECIAL MATRICES 

-n 

In this ~ction. we explore some applications involving matrix oper..tions and introduce 
the product of a matrix and a vector. 

Suppose that 20 students are enrolled in a linear algebra course. in which two 

r
lltl II> 

tests. a quiz. and a final exam are given. Let u = ;- . where 11, denotes the score 

1120 

of the ith student on the first test. Likewise, define vectors v, w. and z >imilarly for the 
second test. quiz. and final exam. respectively. Assume that the instructor computes 
a student's course average by counting each test score twice as much as a quiz score, 
and the final exam score three times as much as a test score. Thus the weights for the 
tests, quiz, and final exam score are. respectively, 2/11 ,2/1 1, 1/ 11, 6/ 11 (the weights 
must sum to one). Now consider the vector 

The first component Yt represents the first si'Udent 's course average, the second com­
ponent .\'2 represents the second student's course average. and so on. Notice that y is 
a sum of scalar multiples of u, v, w, and z. This form of vector sum is so imponanl 
that it merits its own definition. 
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EXERCISES 

In Exercises 1- 8, rwo vecror., u and v are given. Compure rile 
norms of rile vecrors and rire disrance d berween rhem. 

In Exercises 9- 16, rwo vecrors al'l! given. Compwe lire dol prod­
ucr of rile vecrors. and detennine wilerher lire vecrors are orrlwg­
mral. 

6.1 The Geometry of Vectors 371 

In Etercises 17- 24, rwo orrhofimrai vecrors u and v are given. 
Compure rile quamiries llull2• llvll2, and Jlu + v11 2. Use your 
resulrs ro illusrrare rhe Pyrlragorean rileorem. 

17. u = [ -;J and v = m 
18. u = m and v = [-~] 

19. u = [;]and v = [~] 

20. u = m and v = [ _;J 
21. u = nJ and v = [ ~ : ] 
22. u = [-i] and v = [ -~] 

23. u = [i] andv= [-In 

24. u = [-!] and v = [ -~] 
In Etercises 25- 32. rwo vecrors u and v are given. Compure rire 
quamiries JluJI, llvll. and Jlu +vii. Use your resulrs ro illusrrare 
rile rriangie inequaiiry. 

25. u = m and v = [ =~J 
26. u = m and v = [ _;J 
27. u = [~Jandv=[-n 
28. u = [ -~] and v = m 
29. u = [ -n and v = [ :] 

30. u = [ -n and v = [l] 
31. u = [-n andv = [~] 

32. U = [ -~] and v = [ ~~] 
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372 CHAPTER 6 Orthogonality 

In Exercises 33-40. two vectors u and v are given. Compllte the 
qualllities nu ll . Uvll. and u • v. Use your results w illustrate the 
Cauchy-Sclnrar~ inequality. 

33. u = [ -;J and v = m 
34. u = m and v = [!] 
35. u = [~] and v = [ -~J 
36. u = [ - ! ]and v = [~] 

37. u = [-!] andv= [_~] 

38. u = [ :] and ' ' = [ -!] 
39. u = [n andv= [=:] 
40. u = [ -n and v = [ j] 

In Exercises 41- 48. a ••ector u and a line Lin n 2 are given 
Compllle the orthogonal projection w of u on l. and use it to 
compute the distance d fmm tlw endpni111 of u ltJ C. 

4 1. u = [~] andy = 0 42. u = [~] anti y = 2.x 

43. u = [!] and y = - x 44. u = [!] and y = -2.x 

45. u = [~] andy = 3x 46. u = [ -;J and y= x 

47. u = m and )' = -3x 48. u = mand y=-4x 

For Erercises 49- 54, suppose thlll u, v, and w are vectors inn" 
such that !l u ll = 2. nvll = 3. llwll = 5, U•V = - I. U•W =I. 
andv ·w = -4. 

49. Compute (u + v) . w. 

51. Compute llu + vU2• 

53. Compute II' ' - 4wll 2. 

50. Compute 114wll . 

52. Compute (u + w) • v. 

54. Compute 112u + 3vU2. 

For Exercises 55- 60. suppose that u. v, and w are vectors 
inn" .mch 1/101 U oil = 14, U • V = 7, U o\1' = - 20, V • V = 21, 
v • w = -5, and w . w = 30. 

55. Compute 11' '11 1 

57. Compute v • u. 

59. Compute 112u - vU2. 

56. Compute n3u ll . 

58. Compute w • (u + v). 

60. Compute [[ v + 3wll . 

In Exercises 61 - 80, determine whether the srate­
mellls are true or false. 

61. Vectors must be of the same size for their dot product to 
be defined. 

62. The dot product o f two vectors in n" is a vector in n". 
63. The norm of a vector equals the dot product of the vector 

with itself. 

64. The norm of a multiple of a vector is the same multiple 
of the norm of the vector. 

65. The norm of a sum of vectors is the sum of the norms of 
the vectors. 

66. The squared norm of a sum of 011hogonal vectors is the 
sum of the squared no•ms of the vectors. 

67. The orthogonal projection of a vector on a line is a vector 
that lies along the line. 

68. The norm of a vector is always a nonnegative real num-
ber. 

69. If the norm of ,. equals 0. then v = 0. 

70. If u • v = 0. then u = 0 or v = 0. 

7 1. For all vectors u and v in n", [u • vi = nu ll • nvll . 

72. For all vectors u and v in 'R.". u • v = v • u. 

73. The distance between vectors u and ,. in n• is Uu - vii . 

74. For all vectors u and v inn" and every scalar c. 

(cu) • v = u • (cv). 

75. For all vectors u. v. and w in n". 
U• (\' + w) = li•V + U•W. 

76. If A is an 11 x 11 matrix and u and v are vectors in n". 
thenAu • v = u. Av. 

77. For every vector v in n", Uvll = II -vii . 

78. If u and v are onhogonal vectors in n". then 

Uu +vii= Uu ll + Uvll · 

79. If w is the orthogonal projection of u on a line through 
the origin o f n2 , then u - w is orthogonal to every vector 
on the line. 

80. If w is the orthogonal projection of u on a line through 
the origin of n2• then w is the vector on the line c losest 
to u. 

81. Prove (a) of Theorem 6. 1. 

82. Prove (b) of Theorem 6. 1. 

83. Prove (c) of Theorem 6. 1. 

84. Prove (e) of Theorem 6. 1. 

85. Prove (f) of Theorem 6.1. 

86. Prove that if u is onhogonal to both v and w. then u is 
orthogonal to every linear combination of v and w . 

87. Let {v, w } be a basi s for a subspace W of n", and define 

\ ' • \V 
z = w - --v. 

V•V 

Prove that {v. z} is a basis for II' consisting of orthogonal 
vectors. 

88. Prove that the Cauchy- Schw<trz inequality is an equality 
if and only if u is a multiple of v or v is a multiple of u. 
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89. Prove that the triangle inequality is an equality if and only 
if u is a nonnegative multiple of v or v is a nonnegative 
multiple of u . 

90. Use the lriangle inequalily 10 prove lhal I ll vii- ll wlll:::; 
ll v - w ll for all vectors ' ' and w in R!'. 

91. Prove (u + v) . w = u • w + v • w for all veclors u , v. and 
w in R". 

92. Let z be a vector in R". Let W = (u e R": U• Z = 0}. 
Prove that W is a subspace of 7?.". 

93. Let S be a subset of 7?." and 

W = (u e 7?.": u •Z = 0 for all z inS}. 

Prove that W is a subspace of R". 

94. Let W denote the set of all vectm·s 1hat lie along 1he line 
with equalion y = 2x. Find a vee lor z in R 2 such lhat 
W = (u e 7?.2 : u • z = 0}. Juslify your answer. 

95. Prove the parallelogram law for veclors in R": 

96. Prove that if u and v are orthogonal nonzero vectors in 
R". then they are linearly independent. 

97 2 Let A be any m x 11 matrix. 

(a) Prove 1ha1 ATA and A have the same null space. Hi11t: 
Let v be a vector in 7?." such that AT Av = 0. Observe 
lhal ATAV • V =Av· Av = 0. 

(b) Usc (a) to prove that r.mk AT A = rank A. 

!lull u 

Figure6.6 

98.3 Let u and v be nonzero vectors in n 2 or n 3, and lei () be 
the angle between u and v. Then u, v. and v - u delermine 
a triangle. (Sec Figure 6.6.) The relationship between the 
lengths of the s ides of this 1riangle and () is called the law 
of cosi11es. It states lhat 

Use I he law or cosines and Theorem 6. I 10 derive I he 
formula 

U•V = ll u llll vJJ cosO. 

/11 Exercises 99-/06, use the formula ill Exercise 98to detennine 
the a11gle betwee11 the vectors u a11d v. 

2 This exercise is used in Section 6. 7 (on page 439). 
3 This exercise is used in Section 6.9 (on page 471). 

6.1 The Geometry of Vectors 373 

99. u = [ -nand v = [i] 
100. u = [~]andv=[-~] 

101. u = [-~]andv =[-~] 
102. u = [ - :] and v = n] 
103. u = [-~] and v = [l] 
104. u = [-!] and v = [ -~] 
105. u = [-~] and v = [ -~] 
106. u = [ nand V= [l] 
Ler u a11d v be vectors in 7?.3. Deji11e u x v to be the vecTor 

[::~:~ = ::~:~]. which is called rite cross product of u and v. 
IIJ V2 - 111V J 

For Exercises 107- 120. use tile preceding definition of the cross 
producT. 

107. For every vector u in 7?.3. prove lhat u x u = 0. 

108. Prove that u x v = -(v x u) for all vectors u and ' ' in 
nJ. 

109. For every vector u in 7?.3. prove that u x 0 = 0 x u = 0. 

110. For al l vec1ors u and v in 7?.3, prove thai u and v are 
parallel if and only if u x v = 0 . 

I I I. For all vec1ors u and'' in 7?.3 and all scalars c, prove 1ha1 

c(u x v) = c u x v = u x cv. 

112. For all vcclors u . v. and w in 7?.3. prove that 

ll X (V + w) = II X V + II X \\'. 

113. For all vectors u , v, and win 7?.3, prove that 

(u + v) X \1' = U X W + V X \1'. 

114. For all veclors u and , . in 7?.3. prove thai u x v is orthog· 
onal to bolh 11 and v. 

115. For all vectors 11, v, and win 7?.3, pmve 1hat 

(u x v) . w = u. (v x w). 

116. For all veclors u . v, and w in 7?.3, prove thai 

u x (v x w) = (u • w)v- (u • v)w. 
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3 74 CHAPTER 6 Orthogonality 

11 7. For all vectON u. 1', and w in n3' prove that 

(u x v) x w = ( w. u)v - (w. v)u. 

118. For all vectON u and v in n J_ prove that 

Uu x " '
2 

= 1Ju ll
2

1vll
2

- (u • v)
2

. 

119. For all vectors u and v in 'R.3• prove that u X ' 'II= 
t u D' 'll smll. where ll 1s the angle between u and ' '· Him: 
u~c Excrci;cs 98 and 118. 

120. For all \'CCtors u. v. and w in R.3• prove the Jacobi idmtity: 

(U X v ) X W + (\' X w ) X U + ( W X U) X \ " = 0 

£.1erdw< 121 124 rt'fl'r wtht' IIJ>(IIit"atitm regartli11g the two 
meth{)(ls of comp11ti11g tl\'eragl' class si:e given i11 this sectio11. 
!11 Eurctses 121 123, tlalll a~ give11 for smdems enrolled i11 
a thru-uction semilltll" co11rse. Comp11te the average v deter­
milletl!Jy the .wpe111isor and the average ' ' • determi11eti/Jy the 
illl'e.nigator. 

12 1. Section I cont:lin> 8 student,, section 2 contains 12 stu ­
dents, and section 3 contains 6 students. 

122. Section I contains 15 students. and each of sections 2 and 
3 cont:lin' JO student•. 

123. Each of the three section> contains 22 students. 

124. Use Exerci>e 88 to prove that the two averaging methods 
for determining clas> >ize are equal if and only if all of 
the class ,izes are equal. 

SOLUTIONS TO THE PRACTICE PROBLEMS 

I. (a) We have Uu ll = J12 + ( 2)2 + 22 = 3 and Dvll = 
J62 + 22 + Jl = 7. 

(b) We have u - vt = I [ =n I 
= J(-5)2 + (-4)2 + (-1)2 = J4i. 

{c) We have 

and 

ln!,·H: [m ~ [!] =/~+~+~= !. 
49 49 49 

!11 Exercise 125, 11se either a calculator" ith matrix capabilities 
or com1'111er software .wch a.r MATL.AB to sol\•e the problem. 

125. In every triangle. the length of any side is less than the 
sum of the lengths of the other two sides. When this 
observation is gcncraliu:d ton·. we obtain the triallgl~ 
inequality (Theorem 6.4 ). "hich "•Jte' 

[ u + v ~ l ull+ II ,. 

for any vectors u nnd ,. in n•. Let 

4.01 " ~ [il · -[=~] [

2.01 ] 

v, = 6.01 . 

[ 

3.0 1] 6.0 1 
" 2 = 9.0 1 . 

12.0 1 

8.01 

(a) Verify the triangle inequality for u and ' '· 

(b) Verify the tri:mglc inc4uality for u and v1. 

(c) Verify the triangle inequality for u tmd v2. 

and 

(d) From what you have observed in (b) and (c). make a 
conjecture about when ec1uality occurs in the triangle 
inequality. 

(e) lmerpret your conjecture in {tl) geometrically in n 2• 

2. Taking dot products. we obtain 

u. \' = (-2)(1) + (-5){-1)+ (3)(2) = 9 

U•W = (-2)(-3)+(-5){ 1)+ (3)(2) = 7 

V • W = { 1)(-3) + (- 1){ 1) + (2){2) = 0. 

So u and w arc orthogonal. but u and v are not orthogonal. 
and v and w arc not orthogonal. 

3. Let w be the required orthogonal projection. Then 

2)(1)+( 5)( 1) + (3)(2) [ - :] 
(2 + (- I )2 + 22 2 

= ~ [ -n. 
16.2 1 ORTHOGONAL VECTORS 
It is easy to extend the property of orthogonality to any set of vectors. We say that 
a subset of nn is an orthogonal set if every pair of distinct vectors in the set is 
orthogonal. The subset is called an orthonormal set if il is an onhogonal set consisling 
entirely of unit vectors. 


