
CHAPTER 

1 
MATRICES, VECTORS, 
AND SYSTEMS OF LINEAR 
EQUATIONS 

The most common use of linear algebra is to solve systems of linear equations, 
which arise in applications to such diverse disciplines as physics, biology, 
econontics, engineering, and sociology. In this chapter, we describe the most 

efficient algorithm for solving systems of linear equations, Gaussian elimination. This 
algorithm, or some variation of it, is used by most mathematics software (such as 
M,ATLAB). 

We can write systems of linear equations compactly, using arrays called matrices 
and vectors. More importantly, the arithmetic properties of these arrays enable us to 
compute solutions of such systems or to deterntine if no solutions exist. This chapter 
begins by developing the basic properties of matrices and vectors. In Sections 1.3 
and 1.4, we begin our study of systems of linear equations. In Sections 1.6 and 1.7, 
we introduce two other important concepts of vectors, namely, generating sets and 
linear independence, which provide infonnation about the existence and uniqueness 
of solutions of a system of linear equations. 

~ MATRICES AND VECTORS 
Many types of numerical data are best displayed in two-dimensional arrays, such as 
tables. 

For example, suppose that a company owns two bookstores, each of which sells 
newspapers, magazines, and books. Assume that the sales (in hundreds of dollars) of 
the two bookstores for the months of July and August are represented by the following 
tables: 

July August 
Store I 2 Store I 2 

Newspapers 6 8 and Newspapers 7 9 
Magazines 15 20 Magazines 18 31 

Books 45 64 Books 52 68 

The tirst column of the July table shows that store 1 sold $1500 worth of magazines 
and $4500 worth of books during July. We can represent the information on July sales 
more simply as 

[l~ 2~]. 
45 64 

3 
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Such a rectangular array of real numbers is called a matrix. 1 It is customary to refer to 
real numbers as scalars (originally from the word scale) when working with a matrix. 
We denote the set of real numbers by R. 

Definitions A matrix (plural, matrices) is a rectangular array of scalars. If the matrix 
has m rows and n columns, we say that the size of the matrix is m by n, written 
m x n. The matrix is square if m = n. The scalar in the ith row and jth column is 
called the (i, i)-entry of the matrix. 

If A is a matrix, we denote its (i ,il-entry by aij. We say that two matrices A and 
B are equal if they have the same size and have equal corresponding entries; that is, 
aij = bij for all i and). Symbolically, we write A = B. 

In our bookstore example, the July and August sales are contained in the matrices 

B = [I~ 2~] 
45 64 

and c = [I~ 3;]. 
52 68 

Note that bl2 = 8 and Cl2 = 9, so Bole. Both Band Care 3 x 2 matrices. Because 
of the context in which these matrices arise, they are called inventory matrices. 

Other examples of matrices are 

[1 -4 OJ 
I 6 ' 

and [-2 ° I] . 

The first matrix has size 2 x 3, the second has size 3 x I, and the third has size I x 4. 

Practice Problem 1 ~ Let A = [~ ;J 
(a) What is the (1,2l-entry of A? 

(b) What is a22? 

Sometimes we are interested in only a part of the information contained in a 
matrix . For example, suppose that we are interested in only magazine and book sales 
in July. Then the relevant information is contained in the last two rows of B; that is, 
in the matrix E defined by 

E = [15 20J 
45 64 . 

E is called a submatrix of B. In general, a submatrix of a matrix M is obtained 
by deleting from M entire rows, entire columns, or both. It is pennissible, when 
fonning a submatrix of M , to delete none of the rows or none of the columns of M. 
As another example, if we delete the first row and the second column of B, we obtain 
the submatrix 

1 James Joseph Sylvester (1814-1897) coined the term matrix in the 1850s. 
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MATRIX SUMS AND SCALAR MULTIPLICATION 

Matrices are more than convenient devices for storing information. Their usefulness 
lies in their arithmetic. As an example, suppose that we want to know the total numbers 
of newspapers, magazines, and books sold by both stores during July and August. It 
is natural to fonn one matrix whose entries are the sum of the corresponding entries 
of the matrices Band C , namely, 

Store 
Newspapers 
Magazines 

Books 

1 

[ 

13 
33 
97 

2 

17 ] 51 . 

132 

If A and 8 are m x n matrices, the sum of A and B , denoted by A + B, is the 
m x n matrix obtained by adding the corresponding entries of A and B; that is, A + B 
is the m x n matrix .whose (i ,j)-entry is aij + bij. Notice that the matrices A and 8 
must have the same size for their sum to be defined. 

Suppose that in our bookstore example, July sales were to double in all categories. 
Then the new matrix of July sales would be 

[
12 16] 
30 40. 90 128 

We denote this matrix by 2B. 
Let A be an m x n matrix and c be a scalar. The scalar multiple cA is the 

m x n matrix whose entries are c times the corresponding entries of A; that is, cA is 
the m x n matrix whose (i ,j)-entry is caij' Note that IA = A. We denote the matrix 
(- I)A by -A and the matrix OA by O . We call the m x n matrix 0 in which each 
entry is 0 the m x n zero matrix. 

Compute the matrices A + B, 3A, - A, and 3A + 48, where 

A = [~ 
Solution We have 

and 

5 
-9 

3A +48 = [~ 

4 2J 
-3 0 

and 

12 
-9 

3A = [~ 

6J [-16 o + 20 

12 
-9 

[
-4 I 

8 = 5 -6 

[
-3 

-A = -2 

16 
- 33 

-4 
3 

-2J o ' 

Just as we have defined addition of matrices, we can also define subtraction. For 
any matrices A and B of the same size, we define A - B to be the matrix obtained by 
subtracting each entry of 8 from the corresponding entry of A. Thus the (i ,j)-entry 
of A - 8 is aij - bij. Notice that A - A = 0 for all matrices A. 
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Practice Problem 2 ~ 

THEOREM 1.1 

If, as in Example I, we have 

A _ [3 4 ~l [-4 1 n and o = [~ 0 ~] , - 2 -3 B = 5 -6 0 

then 

- B = [ 4 -I -n A-B=[ 7 
3 -7]. and A - 0 = [; 4 2] 

-5 6 -3 3 -3 0 . 

Let A = [; 
-1 
o -i ~l Compute the following matrices: 

(a) A - B 
(b) 2A 

(c) A + 3B 

We have now defined the operations of matrix addition and scalar mUltiplication. 
The power of linear algebra lies in the natural relations between these operations, 
which are described in our first theorem. 

(Properties of Matrix Addition and Scalar Multiplication) Let A, B, and C be 
m x n matrices, and let s and t be any scalars. Then 

(a)A+B=B+A. 

(b) (A + B) + C = A + (B + C). 

(c) A + 0 =A. 

(d) A+(-A) = O . 

(e) (st)A = setA). 

(I) seA + B) = sA + sB . 

(g) (s + t)A = sA + tAo 

(commutative law of matrix addition) 

(associative law of matrix addition) 

PROOF We prove parts (b) and (I). The rest are left as exercises. 
(b) The matrices on each side of the equation are m x n matrices. We must 

show that each entry of (A + B) + C is the same as the corresponding entry 
of A + (B + C). Consider the (i ,n-entries. Because of the definition of matrix 
addition, the (i ,n-entry of (A + B) + C is the sum of the (i ,n-entry of A + B, 
which is aij + bij, and the (i ,n-entry of C, which is cij. Th,refore this sum equals 
(aij + bij) + cij. Similarly, the (i,j)-entry of A + (B + C) is aij + (bij + cij). 
Because the associative law holds for addition of scalars, (aij + bij) + cij = aij + 
(bij + C;j) . Therefore the (i,n-entry of (A + B) + C equals the (i ,n-entry of 
A + (B + C), proving (b). 

(I) The matrices on each side of the equation are In x n matrices. As in 
the proof of (b), we consider the (i ,n-entries of each matrix. The (i ,n-entry of 
seA + B) is defined to be the product of s and the (i,j)-entry of A + B, which is 
aij + bij. This product equals s(aij + bij). The (i ,j)-entry of sA + sB is the sum 
of the (i,j)-entry of sA, which is saij, and the (i ,n-entry of sB, which is sbij. 
This sum is saij + sbij. Since s(aij + bij) = saij + sbij, (I) is proved. • 

Because of the associative law of matrix addition, sums of three or more matrices 
can be written unambiguously without parentheses. Thus we may write A + B + C 
instead of either (A + B) + C or A + (B + C). 



Practice Problem 3 ~ 

THEOREM 1.2 

1.1 Matrices and Vectors 7 

MATRIX TRANSPOSES 

In the bookstore example, we could have recorded the information about July sales 
in the following form: 

Store 
1 
2 

Newspapers 
6 
8 

Magazines 
15 
20 

This representalion produces the matrix 

Compare this with 

[
6 15 45J 
8 20 64 . 

B = [I~ 2~]. 
45 64 

Books 
45 
64 

The rows of the first matrix are the columns of B, and the columns of the first matrix 
are the rows of B. This new matrix is called the transpose of B. In general, the 
transpose of an m x n matrix A is the n x m matrix denoted by A T whose (i ,j)-entry 
is the (i, i)-entry of A. 

The matrix C in our bookstore example and its transpose are 

Let A = [; 

Ca) AT 

Cb) C3B)T 

Cc) CA + B)T 

-1 
o 

C = [l~ 3i] 
52 68 

and CT = [7 18 52J 
9 31 68 . 

_ ~ ~l Compute the following matrices: 

The following theorem shows that the transpose preserves the operations of 
matrix addition and scalar multiplication: 

(Properties ofthe Transpose) Let A and B be m x n matrices, and let s be any 
scalar. Then 

Ca) (A+Bl =AT +BT 
(h) (SA)T = sAT 

(c) (AT)' = A. 

PROOF We prove part (a). The rest are left as exercises. 
(a) The matrices on each side of the equation are n x m matrices. So we 

show that the (i,j)-entry of CA + BJ' equals the (i,j)-entry of AT + BT By the 
definition of transpose, the (i ,j)-entry of CA + B)T equals the (i, i )-entry of A + B, 
which is Qji + hji. On the other hand, the (i ,j)-entry of AT + B T equals the sum 
of the (i ,j)-entry of AT and the (i ,j)-entry of B T, that is, Qji + hji. Because the 
(i,n-entries of CA + BJ' and AT + BT are equal, Ca) is proved. • 
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y 

Ca, b) 

x 

Figure 1.1 A vector in 'R.,2 

VECTORS 
A matrix that has exactly one row is called a row vector, and a matrix that has exactly 
one column is called a column vector. The term vector is used to refer to either a 
row vector or a column vector. The entries of a vector are called components. In this 
book, we nonnally work we:' n vectors, and we denote the set of all column 
vectors with n components n . 

We write vectors as bo ower case letters such as u and v, and denote the 

ith component of the vector u by Uj. For example, if u = [ -~J then u, = -4. 

Occasionally, we identify a vector u in 'Rn with an n-tuple, (UI, U2, ... , un) . 
Because vectors are special types of matrices, we can add them and multiply them 

by scalars. In this context, we call the two arithmetic operations on vectors vector 
addition and scalar multipllcation. These operations satisfy the properties listed in 
Theorem 1.1. In particular, the vector in R" with all zero components is denoted by 
o and is called the zero vector. It satisfies u + 0 = u and Ou = 0 for every u in R". 

Let u = [-~] and v = [H Then 

u+v=[-JJ. u - v=[=n' and 

For a given matrix, it is often advantageous to consider its rows and columns 

as vectors. For example, for the matrix [~ 1 _;} the rows are [2 4 3] and 

[0 I -2] , and the columns are [n [1} and [ -;J 
Because the columns of a matrix play a more important role than the rows, 

we introduce a special notation. When a capital letter denotes a matrix, we use the 
corresponding lower case letter in boldface with a subscript j to represent the jth 
column of that matrix. So if A is an m x n matrix, its jth column is 

[
ali] a2j 

aj = : . 

amj 

GEOMETRY OF VECTORS 

For many applications,' it is useful to represent vectors geometrically as directed line 

segments, or arrows. For example, if v = [~] is a vector in R', we can represent v 

as an arrow from the origin to the point Ca, b) in the xy-plane, as shown in Figure 1.1. 

2 The importance of vectors in physics was recognized late in the nineteenth century. The algebra of 
vectors, developed by Oliver Heaviside (1 850- 1 925) and Josiah Willard Gibbs (1839-1903), won out over 
the algebra of quaternions to become the language of physicists. 
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Velocity Vectors A boat cruises in still water toward the northeast at 20 miles per 
hour. The velocity u of the boat is a vector that points in the direction of the boat's 
motion, and whose length is 20, the boat's speed. If the positive y-axis represents 
north and the positive x-axis represents east, the boat's direction makes an angle of 

45° with the x-axis. (See Figure 1.2.) We can compute the components of u = [~~] 
by using trigonometry: 

u, = 20 cos 45° = !Oh and u, = 20 sin 45° = !Oh. 

[
!OJ2l 

Therefore, u = !Oh j' where the units are in miles per hour. 

VECTOR ADDITION AND THE PARALLELOGRAM LAW 

We can represent vector addition graphically, using arrows, by a result called the 
parallelogram law.' To add nonzero vectors u and v, first form a parallelogram with 
adjacent sides u and v. Then the sum u + v is the arrow along the diagonal of the 
parallelogram as shown in Figure 1.3. 

(a + c, b + d) ,. 

Figure 1.3 The parallelogram law of vector addition 

Velocities can be combined by adding vectors that represent them. 

Imagine that the boat from the previous example is now cruising on a river, which 
flows to the east at 7 miles per hour. As before, the bow of the boat points toward 
the northeast, and its speed relative to the water is 20 miles per hour. In this case, 

the vector u = [:~~l which we calculated in the previous example, represents the 

boat's velocity (in miles per hour) relative to the river. To find the velocity of the 
boat relative to the shore, we must add a vector v, representing the velocity of the 
river, to the vector u. Since the river flows toward the east at 7 miles per hour, its 

velocity vector is v = [~l We can represent the sum of the vectors u and v by using 

the parallelogram law; as shown in Figure 1.4. The velocity of the boat relative to the 
shore (in miles per hour) is the vector 

3 Ajustification of the parallelogram law by Heron of Alexandria (firstcenturyc.E.) appears in his Mechanics. 
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North 

boat 
velocity 

u 

u + v 

_---jL..---,::'-..._"----------- East 
v 

water 
velocity 

Figure 1.4 

To find the speed of the boat, we use the Pythagorean theorem, which tells us 
that the length of a vector with endpoint (p,q) is Jp 2 + q2 Using the fact that the 
components of u + v are p = 1O.J2 + 7 and q = 1O.J2, respectively, it follows that 
the speed of the boat is 

Jp 2 + q2 '" 25.44 mph. 

SCALAR MULTIPLICATION 

We can also represent scalar multiplication graphically, using arrows. If v = [~] is 

a vector and c is a positive scalar, the scalar multiple cv is a vector that POlOts in 
the sarne direction as v, and whose length is e times the length of v. This is shown 
in Figure \.5(a). If e is negative, ev points in the opposite direction from v, and has 
length lei times the length of v. This is shown in Figure \.5(b). We call two vectors 
parallel if one of them is a scalar multiple of the other. 

y (a, b) 
(ca , cb) v y cv 

v 
(a, b) 

x 

cv 

(ca, cb) 

(a) c > 0 (b) c < 0 

Figure 1.5 Scalar multiplication of vectors 

VECTORS IN R) 

If we identify n3 as the set of all ordered triples, then the sarn~reometric ideas that 

hold in n2 are also true in n'- We may depict a vector v = [~ in n3 as an arrow 

emanating from the origin of the xyz -coordinate system, with the point (a , b, e) as its 
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UJ + .. ~~ .... ---·.- .... -.-.-.-.. ---.----- -.---- -- ~~.>;1 . 

f----1--- ---;;.{ ....... .. (a , b, c) 

!,."'::~""" ............. --------.......... -.-, .~' + v j 

I :,,'. 
1,1 I~+~ 

a 

, y 

jVl! .::_:~:!_:::::::._:l_':: ______ ._J,/ // u, + VI ' ________________ ____ • ___ ____ ••••••••• •••••• j./ 

b 
x 

(a) (b) 

Figure 1.6 Vectors in 'R.3 

endpoint. (See Figure 1.6(a).) As is the case in n2, we can view two nonzero vectors 
in n3 as adjacent sides of a parallelogram, and we can represent their addition by 
using the parallelogram law. (See Figure 1.6(b).) In real life, motion takes place in 
3-dimen~ional space, and we can depict quantities such as velocities and forces as 
vectors in 'R 3 _ 

EXERCISES 

In Exercises 1-12, compute the indicated matrices, where 

A _ [2 -1 n and B _ [1 0 -2J - 3 4 - 2 3 4 . 

I. 4A 2. - A 3. 4A - 2B 

4. 3A + 2B 5. (2B)" 6. AT +2BT 

7. A + B 8. (A + 2B)T 9. AT 

10. A - B 11. _ (BT) 12. (- B)" 

In Exercises 13-24, compute the indicated matrices, if possible, 
where 

[-4 
A _ [3 

-1 2 -~J and B = 2 
- 1 5 - 6 -1 

0 

13. - A 14. 3B 15. ( - 2)A 

16. (2B)T 17. A-B 18. A - BT 

19. AT -B 20. 3A + 2BT 21. (A + BJ' 

22. (4AJ' 23. B _ AT 24. (B T _ A)T 

In Exercises 25-28, assume that A = [ ~ 
21! 

-2] 
L~ . 

25. Determine a1 2. 

27. Determine 3 I . 

26. Detennine a 21. 

28. Determine 32. 

In Exercises 29- 32, assume that C = [2; 
- 3 
12 

OAJ o . 

-~l 

29. Determine C I. 30. Determine C3. 

31. Determine the first row of C . 

32. Determine the second row of C . 

33. 

34. 

North 
y 

30" 

_JL-_ ___ _ --"x East 

Figure 1.7 A view of the airplane from above 

An airplane is flying with a ground speed of 300 mph 
at an angle of 30° east of due north. (See Figure 1.7.) 
In addition, the airplane is climbing at a rate of 10 mph. 
Determine the vector in n3 that represents the velocity 
(in mph) of the airplane. 

A swimmer is swimming northeast at 2 mph in still water. 

(a) Give the velocity of the swimmer. Include a sketch. 

(b) A current in a northerly direction at 1 mph affects the 
velocity of the swimmer. Give the new velocity and 
speed of the swimmer. Include a sketch. 

35. A pilot keeps her airplane pointed in a northeastward 
direction while maintaining an airspeed (speed relative 
to the surrounding air) of 300 mph. A wind from the west 
blows eastward at 50 mph. 
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(a) Find the velocity (in mph) of the airplane relative to 
the ground. 

(b) What is the speed (in mph) of the airplane relative to 
the ground? 

36. Suppose that in a medical study of 20 people, for each i , 
1 ~ j ::5 20, the 3 x 1 vector Uj is defined so that its com~ 

ponents respectively represent the blood pressure, pulse 
rate, and cholesterol reading of the ith person. Provide an 
interpretation of the vector io(UI + U2 + ... + U20)· 

~ 111 Exercises 37- 56, detemline whether the stale
~ meflts are true or false. 

37. Matrices must be of the same size for their sum to be 
defined. 

38. The transpose of a sum of two matrices is the sum of the 
transposed matrices. 

39. Every vector is a matrix. 

40. A scalar multiple of the zero matrix is the zero scalar. 

4 I. The transpose of a matrix is a matrix of the same size. 

42. A submatrix of a matrix may be a vector. 

43. If B is a 3 x 4 matrix , then its rows are 4 x 1 vectors. 

44. The (3,4)-entry of a matrix lies in column 3 and row 4. 

45. In a zero matrix , every entry is O. 

46. An m x n matrix has m + n entries. 

47. If v and ware vectors such that v = -3w, then v and w 
are parallel. 

48. If A and B are any m x n matrices, then 

A-B=A+(-I)B . 

49. The (i ,j)-entry of AT equals the (j, i)-entry of A. 

50. If A = [~ ;] and B = U ; n then A = B 

51. In any matrix A, the sum of the entries of 3A equals three 
times the sum of the entries of A. 

52. Matrix addition is commutative. 

53. Matrix addition is associative. 

54. For any m x n matrices A and B and any scalars c and 
d, (cA + dB)T = cAT + dB T 

55. If A is a matrix , then cA is the same size as A for every 
scalar c. 

56. If A is a matrix for which the sum A + A T is defined, then 
A is a square matrix. 

57. Let A and B be matrices of the same size. 

(a) Prove that the jth column of A + B is 8j + bj. 

(b) Prove that for any scalar c, the j th column of cA is 
caj. 

58. For any m x n matrix A, prove that OA = 0 , the m x It 

zero matrix. 

59. For any m x n matrix A, prove that lA = A. 

60. Prove Theorem 1.1 (a). 61. Prove Theorem l.ICc). 
62. Prove Theorem 1.1 (d). 63. Prove Theorem l.1(e). 
64. Prove Theorem 1.1 (g). 65. Prove Theorem 1.2(b). 
66. Prove Theorem 1.2(c). 

A square matrix A is called a diagonal matrix if aU = 0 when
ever i t= j. Exercises 67- 70 are cOllcemed with diagonal matri
ces. 

67. Prove that a square zero matrix is a diagonal matrix. 
68. Prove that if B is a diagonal matrix, then cB is a diagonal 

matrix for any scalar c. 
69. Prove that if B is a diagonal matrix, then BT is a diagonal 

matrix. 
70. Prove that if Band C are diagonal matrices of the same 

size. then B + C is a diagonal matrix. 

A (square) matrix A is said 10 be symmetriC if A = AT. Exercises 
71-78 are concerned with symmetric matrices. 

71. Give examples of 2 x 2 and 3 x 3 symmetric matrices. 

72. Prove that the (i ,j)-entry of a symmetric matrix equals 
the (j, i)-entry. 

73. Prove that a square zero matrix is symmetric. 

74. Prove that if B is a symmetric matrix, then so is cB for 
any scalar c. 

75. Prove that if B is a square matrix, then B + BT is sym
metric. 

76. Prove that if Band Care n x 11 symmetric matrices, then 
soisB+C. 

77. Is a square submatrix of a symmetric matrix necessarily 
a symmetric matrix? Justify your answer. 

78. Prove that a diagonal matrix is symmetric. 

A (square) matrix A is cailed skew-symmetric if AT = -A. 
Exercises 79-81 are concerned with skew-symmetric matrices. 

79. What must be true about the (i, i)-entries of a skew
symmetric matrix? Justify your answ.er. 

80. Give an example of a nonzero 2 x 2 skew-symmetric 
matrix B. Now show that every 2 x 2 skew-symmetric 
matrix is a scalar multiple of B. 

81. Show that every 3 x 3 matrix can be written as the sum 
of a symmetric matrix and a Skew-symmetric matrix. 

82~ The trace of an n x n matrix A, written trace(A), is 
defined to be the sum 

trace(A) = all + a22 + ... + a/l/l' 

Prove that, for any n x n matrices A and B and scalar c, 
the following statements are true: 

(a) trace(A + B) = trace(A) + trace(B). 

(b) trace(cA) = c . lrace(A). 

(c) lrace(A T) = trace(A). 

83. Probability vectors are vectors whose components are 
nonnegative and have a sum of 1. Show that if p and q are 
probability vectors and a and b are nonnegative scalars 
with a + b = 1, then ap + bq is a probability vector. 

4 This exercise is u.sed in Sections 2.2, 7.1, and 7.5 (on pages 1 15,495, and 533, respectively). 
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In the following exercise. use either a calculator with matrix 
capabilities or computer software such as MATLAB to solve the 

problem: 

and 

[ " 2.2 
B = 7.1 

-1.3 
-2.6 

I.5 

0.7 

"] 1.3 -3.2 
-8.3 4.6 . 

84. Consider the matrices - 0.9 - 1.2 2.4 5.9 
3.3 -0.9 1.4 6.2 

(a) Compute A + 2B. 

(b) Compute A - B. 

(e) Compute AT + B T 

[ " 2.1 -3.3 6.0 

1 
5.2 2.3 -l.l 3.4 

A = 3.2 - 2.6 I.l -4.0 
0.8 -1.3 - 12.1 5.7 

-1 .4 3.2 0.7 4.4 

SOLUTIONS TO THE PRACTICE PROBLEMS 

1. (a) The (1 , 2)-entry of A is 2. 

(b) The (2,2)-entry of A is 3. 

3. 

_ [2 -I 
- 3 0 

_ [5 8 
- 9 -3 

(a) AT = H 
-;J + [~ 9 I~] -3 

I~] 

-~] 
9 

(b) (3B1' = [~ Of [ 3 6] -3 12 = ~ ~~ (b) 2A = 2 [2 - 1 1] = [4 - 2 2] 
3. 0 - 2 6 0 -4 

(e) (A + B)T = [; 2 ~f = n -!] -I 

~ LINEAR COMBINATIONS, MATRIX-VECTOR 
PRODUCTS, AND SPECIAL MATRICES 

In this section, we explore some applications involving matrix operations and introduce 
the product of a matrix and a vector. 

Suppose that 20 students are enrolled in a linear algebra course, in which two 

tests, a quiz, and a final exam are given. Let u = [~~], where Ui denotes the score 

U20 

of the ith student on the first test. Likewise, define vectors v, w, and z similarly for the 
second test, quiz, and final exam, respectively. Assume that the instructor computes 
a student's course average by counting each test score twice as much as a quiz score, 
and the final exam score three times as much as a test score. Thus the weights for the 
tests, quiz, and final exam score are, respectively, 2/11, 2/ 11 , 1111 , 6/11 (the weights 
must sum to Doe). Now consider the vector 

2 2 I 6 
y = - u + - v+ - W+ -z. 

11 11 II 11 

The first component YI represents the first student's course average, the second com
ponent Y2 represents the second student' s course average, and so on. Notice that y is 
a sum of scalar multiples of ll , V, W, and z. This fonn of vector sum is so important 
that it merits its own definition. 
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Definitions A linear combination of vectors Ul, ll2 •. . . , Uk is a vector of the form 

where C" C2, . .. , c, are scalars. These scalars are called the coefficients of the linear 
combination. 

Note that a linear combination of one vector is simply a sca1ar multiple of that 
vector. 

In the previous example, the vector y of the students' course averages is a linear 
combination of the vectors ll, v, W, and z. The coefficients are the weights. Indeed, 
any weighted average produces a linear combination of the scores. 

Notice that 

Thus [~J is a linear combination of [:l Ul and [-:l with coefficients -3, 4, 

and 1. We can also write 

This equation also expresses [~J as a linear combination of [:l [~l and [-:l 
but now the coefficients are I, 2, and - I. So the set of coefficients that express one 

vector as a linear combination of the others need not be unique. 

Ca) Determine whether [-~J isa linear combination of [;J and [~J 

Cb) Determine whether [=~J is a linear combination of [~J and UJ 
(c) Determine whether [!J is a linear combination of [;J and [~J 

Solution (a) We seek scalars XI and X2 such that 

[ 4J [2J [3J [2XI J [
3X

2J [2x1 + 3X2J - I = XI 3 + X2 I = 3xI + IX2 = 3xI + X2 . 

That is, we seek a solution of the system of equations 

2x1 + 3X2 = 4 
3xI + X2 =-1. 

Because these equations represent nonparallel lines in the plane, there is exactly 

one solution, namely, XI = -I and X2 = 2. Therefore [_ ~J is a (unique) linear 
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combination of the vectors [;] and [~l namely, 

(See Figure LB.) 

.... 

[_~] = (-1)[;] +z[i]. 

y 

...... 
.... 

.... .... 

Figure 1.8 The vector [ _ ~J is a linear combination of [~J and [~J 

(b) To determine whether [::::~J is a linear combination of [~J and [~l we 

perform a similar computation and produce the set of equations 

fu, + 2x2 =-4 
3x, + X2 = - z. 

Since the first equation is twice the second, we need only solve 3Xl + X2 = -2. This 
equation represents a line in the plane, and the coordinates of any point on the line 
give a solution. For example, we can let x, = - Z and X2 = 4. In this case, we have 

[::::~J=(-Z)m+4m · 
There are infinitely many solutions. (See Figure L9.) 

[~l 

Figure 1.9 The vector [ =~J is a linear combination of [~J and [~J 
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Example 2 

(c) To determine if [!] is a linear combination of [~] and [~l we must solve 

the system of equations 

3x, + &2 = 3 
lx, + 4X2 = 4. 

If we add - j times the first equation to the second, we obtain 0 = 2, an equation 
with no solutions. Indeed, the two original equations represent parallel lines in the 

plane, so the original system has no solutions. We conclude that [!] is not a linear 

combination of [~] and [~l (See Figure 1.10.) 

y 

x 

Figure 1.10 The vector [!J is not a linear combination of [~J and [~J 

Given vectors u" "2, and " 3, show that the sum of any two linear combinations of 
these vectors is also a linear combination of these vectors. 

Solution Suppose that w and z are linear combinations of "I, U2, and U3. Then we 
may write 

w = au, + bU2 + CU3 and 

where a,b,c,a',b',e' are scalars. So 

w + z = (a + a')u, + (b + b')U2 + (c + C')U3, 

which is also a linear combination of "I, "2, and "3 . 

STANDARD VECTORS 

We can write any vector [~] in R? as a linear combination of the two vectors [~] 

and m as follows: 



y 
au ... . 

w 

..... .. 

x 

Figure 1.12 The vector w is a lin

ear combination of the nonparal

lel vectors u and v. 
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The vectors [~J and [~J are called the standard vectors of n2 Similarly, we can 

write any vector G] in n 3 as a linear combination of the vectors [~} [!} and 

m as follows: 

The vectors [H [!} and m are called the standard vectors of n3 

In general, we define the standard vectors of nn by 

(See Figure 1.11.) 

)' z 

" 'J 

" x " 

" 
x 

The standard vectors of "R.2 The standard vectors of n.3 

Figure 1.11 

y 

From the preceding equations. it is easy to see that every vector in n" is a linear 
combination of the standard vectors of n". In fact, for any vector v in n", 

(See Figure 1.13.) 
Now let u and v be nonparallel vectors, and let w be any vector in n2. Begin 

with the endpoint of wand create a parallelogram with sides au and by, so that w 
is its diagonal. It follows that w = au + by; that is, w is a linear combination of the 
vectors u and v. (See Figure 1.12.) More generally, the following statement is true: 

If u and v are any nonparallel vectors in 'R2, then every vector in n2 is a linear 
combination of u and v. 
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y 

The vector v is a 
linear combination of 

standard vectors in n2. 

x 

x 

Figure 1.13 

z 

V3e3 

•..•...•.••. .•....• v -= vie! + V2e2 + v3e3 
.. ... 

The vector v is a 
linear combination of 

standard vectors in n3. 

Practice Problem 1 ~ Let w = [~bJ and S = mH -m· 
(a) Without doing any calculations, explain why w can be written as a linear combi

nation of the vectors in S. 

(b) Express w as a linear combination of the vectors in S . 

Suppose that a garden supply store sells three ntixtures of grass seed. The deluxe 
mixture is 80% bluegrass and 20% rye, the standard mixture is 60% bluegrass and 
40% rye, and the economy ntixture is 40% bluegrass and 60% rye. One way to record 
this information is with the following 2 x 3 matrix: 

delux~ 

B= [ 
.80 
.20 

~tand (j nJ 

.60 

.40 
hluegnt'" 

r)l' 

A customer wants to purchase a blend of grass seed containing 5 Ib of bluegrass 
and 3 Ib of rye. There are two natural questions that arise: 

I. Is it possible to combine the three ntixtures of seed into a blend that has exactly 
the desired amounts of bluegrass and rye, with no surplus of either? 

2. If so, how much of each ntixture should the store clerk add 10 the blend? 

Let XI, X2, and X3 denote the number of pounds of deluxe, standard, and economy 
mixtures, respectively, to be used in the blend. Then we have 

.80x! + .60X2 + .40x3 = 5 

.20x! + .40x2 + .60X3 = 3. 

This is a system of two linear equations in three unknowns. Finding a solution of this 
system is equivalent to answering our second question. The teChnique for solving 
general systems is explored in great detail in Sections 1.3 and 1.4. 

Using matrix notation, we may rewrite these equations in the form 

[ 
.80x! + .60X2 + .40x3 J - [5J 
.20x! + .40x2 + .60X3 - 3 . 
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Now we use matrix operations to rewrite this matrix equation, using the columns of 
Bas 

[ .80] [.60] [AD] [5] Xl .20 +X2 AD +X3 .60 = 3 . 

Thus we can rephrase the first question as follows: Is [;] a linear combination of the 

columns U~J. [:~~J. and [::~] of B? The result in the box on page 17 provides an 

affirmative answer. Because no two of the three vectors are parallel, 

combination of any pair of these vectors. 

MATRIX-VECTOR PRODUCTS 

m is a linear 

A convenient way to represent systems of linear equations is by matrix- vector P[:~O~ld]

ucts. For the preceding example. we represent the variables by the vector x = 

and define the matrix- vector product Bx to be the linear combination 

B [
.80 

x= .20 
.60 
AD AD] [Xl] [ .80] [.60] [AD] 

.60 ~~ =Xl .20 +X2 AD +X3 .60 . 

This definition provides another way to state the first question in the preceding 

example: Does the vector [;] equal Ex for some vector x? Notice that for the 

matrix-vector product to make sense. the number of columns of B must equal the 
number of components in x. The general definition of a matrix- vector product is given 
next. 

Definition Let A be an m x n matrix and v be an n x I vector. We define the 
matrix-vector product of A and v. denoted by Av. to be the linear combination of 
the columns of A whose coefficients are the corresponding components of v. That is. 

As we have noted. for Av to exist. the number of columns of A must equal the 
number of components of v. For example. suppose that 

and 

Notice that A has two columns and v has two components. Then 

Av = [~ :J m = 7 m + 8 m = [;r] + [HJ = mJ . 
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ORTHOGONALITY 

U ntil now, we have focused our attention on two operations with vectors, 
namely, addition and scalar multiplication. In this chapter, we consider such 
geometric concepts as length and perpendicularity of vectors. By combining 

the geometry of vectors with matrices and linear transformations, we obtain powerful 
techniques for solving a wide variety of problems. For example, we apply these new 
tools to such areas as least-squares approx.imation. the graphing of conic sections, 
computer graphics, and statistical analyses. The key to most of these solutions is 
the construction of a basis of perpendicular eigenvectors for a given matrix or linear 
transformation. 

To do this, we show how to convert any basis for a subspace of n n into one 
in which all of the vectors are perpendicular to each other. Once this is done, we 
determine conditions that guarantee that there is a basis for nn consisting of perpen
dicular eigenvectors of a matrix or a linear transfonnation. Surprisingly. for a matrix, 
a necessary and sufficient condition that such a basis exists is that the matrix be 
symmetric. 

[!.fl THE GEOMETRY OF VECTORS 

In this section, we introduce the concepts of length and perpendicularity of vectors 
in nn. Many familiar geometric properties seen in earlier courses extend to this 
more general space. In particular, the Pythagorean theorem, which relates the squared 
lengths of sides of a right triangle, also holds in nn. To show that many of these 
results hold in nn, we define and develop the notion of dot product. The dot product 
is fundamental in the sense that, from it, we can define length and perpendicularity. 

Perhaps the most basic concept of geometry is length. In Figure 6.I(a), an appli
cation of the Pythagorean theorem suggests that we define the length of the vector u 

to be Ju? + u'J.. 
This definition easily extends to any vector v in nn by defining its norm (length), 

denoted by II vll, by 

II vll = Jv~ + vi + ... + v,;. 
A vector whose norm is 1 is called a unit vector. Using the definition of vector norm, 
we can now define the distance between two vectors u and v in nn as lIu - vII . (See 
Figure 6.I(b).) 

361 
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Example 1 

y u 

(a) The length of a vector u in 'R,2 

u ..... 

u - ~ ... .. , 

(b) The distance between vectors 
u and v in nn 

Figure 6.1 

Find lIu ll , IIvll, and the distance between u and v if 

and 

Solution By definition, 

and the distance between u and v is 

lIu - vII = )0 - 2)2 + (2 - (- 3»)2 + (3 - 0)2 = 55. 

Ilu - vii 

v 

Practice Problem 1 ~ Let 

and 

(a) Compute lIu li and IIvll · 
(b) Determine the distance between u and v. 

I I . 
(c) Show that both - u and - v are umt vectors. 

lIu li II vll 

Just as we used the Pythagorean theorem in n' to motivate the definition of the norm 
of a vector, we use this theorem again to examine what it means for two vectors u and 
v in n' to be perpendicular. According to the Pythagorean theorem (see Figure 6.2), 
we see that u and v are perpendicular if and only if 

Il v - ull ' = IIUII ' + II vll ' 

(VI - U1)' + (v, - u,)' = u~ + u~ + v~ + vi 

vf - 2UtVl + uf + vi - 2U2V2 + ui = u~ + ui + v? + vi 
-2U1V1 - 2U2V, = 0 

UIVI + U2V2 = o. 
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v 
.. .. 

. .... II v - ull 

u 

Figure 6.2 The Pythagorean theorem 

The expression u\ v, + U2V2 in the last equation is called the dot product of u and v. 
and is denoted by u. v. So u and v are perpendicular if and only if their dot product 
equals zero. 

Using this observation, we define the dot product of vectors u and v in nn by 

We say that u and v are orthogonal (perpendicular) if u. v = o. 
Notice that, in nn , the dot product of two vectors is a scalar, and the dot product 

of 0 with every vector is zero. Hence 0 is orthogonal to every vector in nn. Also, 
as noted, the property of being orthogonal in n2 and n 3 is equivalent to the usual 
geometric definition of perpendicularity. 

Let 

and 

Detertnine which pairs of these vectors are orthogonal. 

Solution We need only check which pairs have dot products equal to zero. 

u·v = (2)(1) + (-1)(4)+ (3)(-2) = - 8 

u . w = (2)(- 8) + (-1)(3) + (3)(2) =-13 

v.w = (1)(-8) + (4)(3) + ( - 2)(2) = 0 

We see that v and w are the only orthogonal vectors. 

Practice Problem 2 ~ Detertnine which pairs of the vectors 

u=[=n, v=[-ll and 

are orthogonal. ... 
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THEOREM 6.1 

It is useful to observe that the dot product of u and v can also be represented as 
the matrix product or v. 

Notice that we have treated the I x I matrix uT v as a scalar by writing it as 
Ul VI + UZV2 + ... + Un Vn instead of [U} VI + U2V2 + ... + Un v n ] . 

One useful consequence of identifying a dot product as a matrix product is that 
it enables us to "move" a matrix from one side of a dot product to the other. More 
precisely. if A is an m x n matrix, u is in nn . and v is in nm . then 

Au.v =u.ATv. 

This follows because 

Au.v = (Aul v = (uT AT)v = uT(ATv) = u.ATv. 

Just as there are arithmetic properties of vector addition and scalar mUltiplication, 
there are arithmetic properties for the dot product and norm. 

For all vectors u , v, and w in nn and every scalar e, 

(a) u.u = lIull2 

(b) u·n = 0 if and only if n = O. 

(c) n.v = v·n. 
(d) n.(v + w) = n·v + n·w. 

(e) (v+w).n=v.u+w.n. 
(f) (en).v = e(n.v) = n.(ev). 

(g) lIenll = lelllnll· 

PROOF We prove parts (d) and (g) and leave the rest as exercises. 
(d) Using matrix properties, we have 

n. (v + w) = uT (v + w) 

=u.v + u . w. 

(g) By (a) and (f), we have 

lIen ll2 = (cuHcn) 

-

By taking the square root of both sides and using # = lei, we obtain 

lIeu ll = lellln ll· • 
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Because of Theorem 6.1(1), there is no ambiguity in writing cu. v for any of the 
three expressions in (I). 

Note that, by Theorem 6.1 (g), any nonzero vector v can be normalized, that is, 

transformed into a unit vector by multiplying it by the scalar _1_. For if u = _I_ v, 
IIvll II v II 

then 

lIuli = 111I~lIvll = 1~I"vl = "~""v" = L 

This theorem allows us to treat expressions with dot products and norms just as 
we would algebraic expressions. For example, compare the similarity of the algebraic 
result 

with 

The proof of the preceding equality relies heavily on Theorem 6.1: 

112u + 3vll2 = (2u + 3v). (2u + 3v) by (a) 

= (2u). (2u + 3v) + (3v). (2u + 3v) by (e) 

= (2u). (2u) + (2u). (3v) + (3v). (2u) + (3v). (3v) by (d) 

= 4(u. u) + 6(u. v) + 6(v. u) + 9(v. v) 

= 411ull 2 + 6(u .v) + 6(u.v) + 911v ll 2 

= 411ull 2 + 12(u.v) + 911v ll 2 

by (I) 

by (a) and (c) 

As noted earlier, we can write the last expression as 4 11 ull 2 + 12u. v + 9 11 v1l 2. From 
now on, we will omit these steps when computing with dot products and norms. 

o CA UTION Expressions such as u2 and uv are not defined. 

THEOREM 6.2 

It is easy to extend (d) and (e) of Theorem 6.1 to linear combinations, namely, 

and 

As an application of these arithmetic properties, we show that the Pythagorean 
theorem holds in nn. 

(Pythagorean Theorem in 'R") Let u and v be vectors in nn. Then u and v 
are orthogonal if and only if 
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Example 3 

PROOF Applying the arithmetic of dot products and nonns to the vectors u and 
v, we have 

Because u and v are orthogonal if and only if u • v = 0, the result follows imme
diately. • 

ORTHOGONAL PROJECTION OF A VECTOR ON A LINE 
Suppose we want to lind the distance from a point P to the line C given in Figure 6.3. 
It is clear that if we can determine the vector w, then the desired distance is given 
by II u - wll . The vector w is called the orthogonal projection of u on C. To lind w 
in tenns of u and C, let v be any nonzero vector along C, and let z = n - w. Then 
w = cv for some scalar c. Notice that z and v are orthogonal; that is, 

0 = z· v = (u - w) . v = (u - cv). v = u. v - cv· v = u. v - c llv ll 2 

u·v n·v 
So c = --2' and thus w = --2 v. Therefore the distance from P to C is given by 

IIvll IIvll 

lIu - wll = Ilu - :;I~ vii · 

p 

z = u - w ······ ·· ·· c. 

Figure 6.3 The vector w is the orthogonal projection of u on C. 

Find the distance from the point (4, 1) to the line whose equation is y = tx. 
Solution Following our preceding derivation, we let 

and u·v 9[2] 
II v ll2 v = 5" I . 

Then the desired distance is II [ ~] - ~ [nil = ~ II [ _;] II = ~ vis. 
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In Exercises 1-8. two vectors U and v are given. Compute the 
nonns of the vectors and the distance d between them. 

In Exercises 9-/6, two vectors are given. Compute the dot prod
uct afthe vectors, and determine whether the vectors are orthog
onal. 

C 9} = [ _;] and v = [:] 

10. u = m and v = [~] 

~)= [_:] andv= m 
12. u= m andv= nJ 
13. U= HJ andv= m 
14. u = [j] and v = m 
15. u = [=~] and v = m 

6.' The Geometry of Vectors 371 

In Exercises 17-24, two orthogonal vectors u and v are given. 
Compute the quantities lIull', IIvll', and lIu + vll2 Use your 
results to illustrate the Pythagorean theorem 

In Exercises 25-32, two vectors u and v are given. Compute the 
quantities lIull, IIvll, and lIu + vII. Use your results 10 illustrate 
the triangle inequality. 

(9 = [;] and v = [=~] 
26. u= m andv= [_~] 

27. u= [~] andv= [-i] 
28. u = [ -;] and v = m 
29. u= HJ andv= m 
30. u = HJ and v = m 
31 u = HJ and v = m 
32 u = HJ and v = [ ~~J 
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In Exercises 33- 40, two vectors u and v are given. Compute the 
quantities 11u ll . II vll, and u· v. Use your results to illustrate the 
Cauchy-Schwarz inequality. Gu = [ -~] and v = m 

34. u = m and v = [~] 
35. u = [~] and v = [ _~] 
36. u = [ -~] and v = m 
37. u~ [-!] andv= U] 
38 u = m and v = n] 
39. u = m and v = H] 
40. U= H] andv= [j] 

In Exercises 41-48, a vector u and a line .c in 'R,2 are given. 
Compute the orthogonal projection w of u on .c, and use it to 
compute the distance d from the endpoint ofu to C, 

41. u = m and y = 0 42. u = m and y = 2x 

43. u = [~] and y = -x 44. u = [~] and y = -2x 

45. u= [~] andy =3x 46. u = [ -;] and y = x 

47. u= m andy=-3x 48. u = m and y = - 4x 

For Exercises 49-54, suppose that n, v, and ware vectors in RII 
such that lI u li = 2, II v ll = 3, II w ll = 5, U· v = - I , U· w = I , 

and v·w = - 4. 

(~ompute (u + v)· w. 

y. Compute lIu + v ll 2 

53. Compute IIv - 4wll 2 

50. Compute 114wl l· 

52. Compute (u + w) . v. 

54. Compute 112u + 3vll 2 

For Exercises 55- 60, suppose that u, v, and ware vectors 
in nil such that o.u = 14, U·V = 7, n · w = -20, V·V = 21, 
v.w = -5, Qnd w.w = 30. 

55. Compute II vll 2 

57. Compute v • u. 

59. Compute 112u - vll2 

56. Compute 11 3u ll · 

58. Compute w· (u + v). 

60. Compute II v + 3wll· 

In Exercises 61-80, detennine whether the state· 
menfS are true or false. 

61. Vectors must be of the same size for their dot product to 

be defined. 

62. The dot product of two vectors in nil is a vector in nil. 
63. The norm of a vector equals the dot product of the vector 

with itself. 

64. The norm of a mUltiple of a vector is the same multiple 

of the norm of the vector. 

65. The norm of a sum of vectors is the sum of the norms of 

the vectors. 

66. The squared norm of a sum of orthogonal vectors is the 
sum of the squared norms of the vectors. 

67. The orthogonal projection of a vector on a line is a vector 
that lies along the line. 

68. The nonn of a vector is always a nonnegative real num-

ber. 

69. If the norm of v equals D, then v ;;:: O. 
70. If u • v = 0, then u = 0 or v = O. 
71. For all vectors u and v in R", lu,vl = lIull·lIvll· 

72. For all vectors u and v in R n , U • v = v· u. 
73. The distance between vectors u and v in nn is lIu - vII · 

74. For all vectors u and v in nn and every scalar c, 
(cu) • v = u • (cv). 

75. For all vectors u, v, and w in R", 

u. (v + w) = u. v + U· w. 

76. If A is an n x n matrix and u and v are vectors in nn. 
then Au • v=u· Av. 

77. For every vector v in R", II v ll = II - v II· 

78. If u and v are orthogonal vectors in nil, then 

lIu + v II = lI u li + II v ll· 

79. If w is the orthogonal projection of u on a line through 
the origin of n 2, then u - w is orthogonal to every vector 

on the line. 

80. If w is the orthogonal projection of u on a line through 
the origin of R2, then w is the vector on the line closest 

to u. 

81. Prove (a) of Theorem 6.1. 

82. Prove (b) of Theorem 6.1. 

83. Prove (c) of Theorem 6. 1. 

84. Prove (e) of Theorem 6.1. 

85. Prove (f) of Theorem 6.1. 

86. Prove that if u is orthogonal to both v and w, then u is 
orthogonal to every linear combination of v. and w. 

87. Let {v, w } be a basis for a subspace W of nil , and define 

v·w 
z = w- --v. 

v·v 

Prove that {v,z} is a basis for W consisting of orthogonal 

vectors. 

88. Prove that the Cauchy-Schwarz inequality is an equality 
if and only if u is a multiple of v or v is a muhiple of u. 
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89. Prove that the triangle inequality is an equality if and only 
if II is a nonnegative multiple of v or v is a nonnegative 
mUltiple of u . 

90. Use 'he triangle inequality '0 prove that IlIv ll - II wlll ~ 
IIv - wI! for all vectors v and w in n". 

9L Prove (u + v). w = uow + v·w for all vectors n, v, and 
win n.n. 

92. Let z be a vector in nn. Let W = {u E nn: u· z = OJ. 
Prove that W is a subspace of nn. 

93. Le' S be a subse' of n' and 

w ~ {u E nn: u. z = 0 for all z in S}. 

Prove that W is a subspace of n" . 
94. Let W denote the set of all vectors that lie along the line 

with equation y = 2x. Find a vector z in n2 such that 
W = {o E n2: u. z = OJ. Justify your answer. 

95. Prove the parallelogram law for vectors in n n: 

lI u + vII' + lI u - vII ' = 211ull' + 211v ll'. 

96. Prove that if u and v are orthogonal nonzero vectors in 
nn. then they are linearly independent. 

97.2 Let A be any m x n matrix. 

(a) Prove that AT A and A have the same null space. Hint: 
Let v be a vector in 1(,n such that AT Av = O. Observe 
that AT Av. v = Av . Av = O. 

(b) Use (a) 10 prove that rank AT A = rankA. 

II v - ull 

u 

Figure 6.6 

98? Let II and v be nonzero vectors in 1(,2 or n3, and let 0 be 
the angle between u and v. Then ll, v, and v - u determine 
a triangle. (See Figure 6.6.) The relationship between the 
lengths of the sides of this triangle and e is called the law 
of cosines. It states that 

II v - u ll' = lI u ll' + II vll' - 2 11 u llllvil cosO. 

Use the law of cosines and Theorem 6.1 to derive the 
formula 

u·v = lI u llll v ll cosO. 

In Exercises 99- 106, use the formula in Exercise 98 to determine 
the angle between the vectors 0 and v. 

2 Th is exercise is used in Section 6.7 (on page 439). 
3 This exercise is used in Section 6.9 (on page 471). 
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99 u = [ - i]andv=[i] 

100. u = [~] andv= [-~] 

lOl. u = [-~] andv= [_~] 

lO2. u = [ - :] andv= [i] 
lO3. U= [-n and V= m 
104. u = [j] and v = H] 
lO5. U= H] andv = [-1] 
106 U= UJ andv= m 
Le[:::: =~: ::]b~ ::::::5 i:a::d t::::~ :~:c::;:e a:~:r 

u,v2 - U2V' 

For Exercises 107-120, use the preceding definition of the cross 
product. 

107. For every vector u in n3, prove that u x u = O. 

108. Prove that u x v = -(v x u) for all vectors II and v in 
n'-

109. For every vector u in n3, prove that u x 0 = 0 x u = O. 

110. For all vectors u and v in R,3, prove that u and v are 
parallel if and only if u x v = O. 

Ill . For all vectors 0 and v in 1(,3 and all scalars c, prove that 

c(u x v) = co x v = II xcv. 

112. For all vectors u, v, and w in n3, prove that 

u x (v + w) = u x v + u x w. 

113. For all vectors U. v, and w in n3, prove that 

(u + v) x w = u x w + v x w. 

114. For all vectors u and v in n3. prove that u x v is orthog
onal to both u and v. 

115. For all vectors u, v, and w in n3, prove that 
\ 

(u x v) • w = u. (v x w). 

116. For all vectors u, v, and w in R,3, prove that 

u x (v x w) = (u • w)v - (u • v)w. 
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117. For all vectors u, v, and w in n3, prove that 

(u x v) x w = (w 0 u)v - (w 0 v)u. 

118. For all vectors u and v in n), prove that 

lIu x vII ' = lIull'IIvll2 - (u· d. 
119. For all vectors u and v in n3. prove that lI u x vII = 

lIullllvll sin 9, where 9 is the angle between u and v. Hint: 
Use Exercises 98 and 118. 

120. For all vectors U
J 
v, and w in n3, prove the Jacobi identity: 

(u x v) x w + (v x w) x u + (w x u) x v = 0 

Exercises 121-124 refer to the application regarding the two 
methods of computing average class size given in this section. 
In Exercises 121-123, data are given for students enrolled in 
a three-section seminar course. Compute the average v deter
mined by the supervisor and the average v'" determined by the 

investigator. 

121. Section 1 contains 8 students. section 2 contains 12 stu
dents, and section 3 contains 6 students. 

122. Section 1 contains 15 students, and each of sections 2 and 
3 contains 30 students. 

123. Each of the three sections contains 22 students. 

124. Use Exercise 88 to prove that the two averaging methods 
for determining class size are equal if and only if al1 of 

the class sizes are equal. 

SOLUTIONS TO THE PRACTICE PROBLEMS 

l. (a) We have lI uli = /1 2 + (_2)2 + 2' = 3 and IIv ll = 
~62 +22+32 =7. 

(b) We have lI u - v II = [=~] 
= /(-5)' + (_ 4)2 + (-I)' = .J42. 

(e) We have 

and 

In Exercise 125, use either a calculator with matrix capabilities 
or computer software such as MATlAB to solve the problem. 

125. In every triangle, the JengLh of any side is less than the 
sum of the lengths of the other two sides. When this 
observation is generalized to n", we obtain the triangle 
inequality (Theorem 6.4), which states 

lI u + vII :5 lI uli + II v ll 

for any vectors u and v in n" . Let 

u= [il v= [=~l [

2.01] 4.01 
VI = 6.01 ' 

8.01 

[ 

3.01] 6.01 v, = 9.01 . 

12.01 

(a) Verify the triangle inequality for u and v. 

(b) Verify the triangle inequality for u and VI · 

(c) Verify the triangle inequality for u and V2· 

and 

(d) From what you have observed in (b) and (e), make a 
conjecture about when equality occurs in the triangle 

inequality. 

(e) Interpret your conjecture in (d) geometrically in n2. 

2. Taking dot products, we obtain 

Uov = (- 2)(1)+ (- 5)(- 1)+(3)(2) = 9 

u 0 w = (-2)(- 3) + (- 5)(1) + (3)(2) = 7 

vow = (1)(-3)+ (-1)(1)+ (2)(2) = o. 

So u and ware orthogonal, but u and v are not orthogonal , 
and v and ware not orthogonal. 

3. Let w be the required orthogonal projection. Then 

w= ~v = (-2)(1) +(-5)(- 1)+(3)(2) [ - :] 
IIvll' 12 + (_ 1)2 + 22 2 

116.2 i ORTHOGONAL VECTORS 
It is easy to extend the property of orthogonality to any set of vectors. We say that 
a subset of nn is an orthogonal set if every pair of distinct vectors in the set is 
orthogonal. The subset is called an orthonormal set if it is an orthogonal set consisting 

entirely of unit vectors. 



ANSWERS TO SELECTED EXERCISES 

Chapter 1 

Section 1.1 

1. [I~ -4 2~] 16 3 [~ -4 24] 
10 - 4 

5 [ ~ iJ -4 
7 [; 

-I ;] 7 

9. [-r n [ - I - 2] 
II. ~ -3 

- 4 

[ - 3 I - 2 -~] 13. - I -5 6 
[-6 2 - 4 

15. -2 - 10 12 

17. not possible [ , -i] -3 
19. ! 

- 4 

21. not possible 
[ -, -j] 23 . _~ 

-4 

25. - 2 
27. [2~] 

29. [2;] 31. [2 - 3 0.4] 33. [I;;~] mph 

3S () [150vlz +SO] h . a ISOviz mp 

(b) SOJ37 + 6v1z '" 337.21 mph 

37. T 38. T 39. T 40.F 

42. T 43. F 44. F 4S. T 
47. T 48. T 49. T SO. F 

52. T 53. T 54. T 55. T 

71. [; ~] and n 5 

;] 7 
8 

77. No. Consider n 5 

;] and [; 7 
8 

79. They must equal O. 

n 

41. F 
46. F 

51. T 

56. T 

-!] 

Section l.2 

1. U;] 3. U] 5. [:] 7. [2;] 

9. U~] II. h~] 13. [-~] 15. [7;] 

17. ~ [viz 
2 viz 

-~ viz' 
~ [ -viz] 
2 viz 

I [ I 19. 2: ./3 -1 I ' 
I [3-~ 2: 3./3 + I 

21. ~ [ -./3 
2 - I 

I] 1[./3 - 3] 
-./3 ' 2: 3./3 + I 

23. m 1[3 -./3] 
25. 2: 3./3 + I 

27. ~ [ - }./3] 29. [:J = (I) m + (I) [~] 
31. not possible 33. not possible 

35. [~:]=3m -2[_~] 
37. m =7[;] - 2m + 0[=;] 

39. not possible 

45. T 46. F 47. T 48. T 49. T 

50. F 51. F 52. F 53. T 54. F 

55. F 56. T 57. F 58. T 59. F 

60. T 61. F 62. F 63 . T 64. T 

69. (a) 349,000 in the city and 351,000 in the suburbs 

(b) 307,180 in the city and 392,820 in the suburbs 

73. B = [~ _~] 

[ 

24.6] 
9 

45.0 
I. (a) 26.0 

-41.4 
[

134'1] 
(b) 44.4 

7.6 
104.8 

581 



5. Ca) A basis does not exist because the sum of the mul
tiplicities of the eigenvalues of the standard matrix 

0) '( nlTi1·lJI1· Vj1·['111 
.,",' ([m" 

[

1.5Xl - 3.5x2 + 1.0x3 + 0.5X4 1 
-3.0Xl + 3.6x2 - 0.2x3 + 1.0x4 

- 16.5xl + 22.3x2 - 3.6x3 + 5.5x4 . 
4.5xl - 8.3x2 + 1.6x3 + 1.5x4 

(c) T is not diagonalizable. 

, ")' ([~1)" 
[

I t.5xl - 13.7X2 + 3.4x3 - 4. 5X41 
5.5xl - 5.9x2 + 1.8x3 - 2.5x4 

-6.0Xl + 1O.8x2 - 1.6x3 
5.0Xl - 5.6x2 + 1.2x3 - 3.0X4 

(b) Answers are given correct to 4 places after the 

decimal point. 

I [;;:] . [_~;:] . [_~:~~~:] . r~~:~:] l 
l 1.0000 1.0000 1.0000 L.oooo I 

8. Answers are given correct to 4 places after the decimal 

point. 

(b) [::mJ. 
.2325 
.1665 

(c) [t~J'lHm~'l~:~m] 6.1 5.8114 5.8114 
3.3 4.1626 4.1625 

(d) A J()()p "" 25v 

9. r" = (0.2)3" - 2" - (0.2)(-2)" + 4 + 2( -1)" 

Chapter 6 
Section 6.1 

1. l1ul1 = ./34. I1vl1 = J26. and d = -J58 
3. l1ul1 = ..fi. I1vl1 = ..;s. and d = ..;s 

Answers to Selected Exercises 607 

5. l1ul1 = JIT. I1vl1 = ..;s. and d = JI4 
7. l1 u l1 = ./7. I1 v l1 = J15. and d = .J26 
9. O. yes 11. 1. no 13. O. yes 15. -2. no 

17. l1 u l1 2 = 20. I1 vl12 = 45. l1u + V\\2 = 65 

19. l1 u l1 2 = 13. I1vl12 = O. l1 u + vl12 = 13 

21. l1ul1 2 = 14. I1vU> = 3. l1u + vl12 = 17 

23. l1ul12 = 14. I1vl12 = 138. l1 u + vl12 = 152 

25. l1ul1 = ./13. I1vl1 = J44. l1 u + vII = ./13 

27. \l u \l = J26. \lv\l = JT6. \l u + v\l = ..;so 
29. \l u ll = ..fiL I1v\l = JIT. l1u + v\l = ./34 
31. l1u\l = JI4. \lv\l =.ffi. \l u + vII = J53 
33. \l u ll =./13. I1 vl\ =./34. u·v =-1 

35. l1 u \\ =.ffi. \lvl1 = 2. u·v =-2 
37. \lull = J4I. I1 v l1 = Jl8. u·v = 0 

39. l1ul1 = v'2t. \lvl1 = v'6. u·v = 5 

41. w = [~J and d = 0 

I [-IJ 7..fi 43. W = 2: 1 and d = -2-

45. W = [~:~J and d = uv'i6 
49. -3 51. 11 53.441 55.21 

57. 7 59. 49 

61. T 62. F 63. F 64. F 

66. T 67. T 68. T 69. T 

71. F 72.T 73. T 74. T 

78. F 79. T 

65. F 

70. F 

75. T 

80. T 
76. F nT 
99. 1350 101. 1800 103. 60

0 

lOS. 150
0 

26 244 
121. v = - "" 8.6667 and v' = - "" 9.3846 

3 26 
123. v = v' = 22 

Section 6.2 

1. no 3. no 5. no 7. yes 


