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Match probability
The likelihood ratio is often formulated as

LR =
P (E|Hp)

P (E|Hd)
, (1)

where

Hp: The suspect is the donor of the genetic data (prosecutor’s hypothesis)

Hd: The suspect unconnected to the crime (defense attorney’s hypothesis)

P (E|Hp) = 1 is often assumed

P (E|Hd), the ’match probability’: The probability that the suspect
matches the haplotype found at the crime scene given that the
suspect is unconnected to the crime (how probable is it that some
random man’s haplotype matches the haplotype found at the crime
scene). If we knew the haplotypes of the entire population, the
population frequency of the haplotype in question would be the
match probability.

Estimator: A formalised way to obtain a match probability is called a
match probability estimator.

Normalised allele process
Assume a Fisher-Wright model of evolution (constant number of N indi-
viduals and generations are discrete and non-overlapping) with a selec-
tively neutral single-step mutation process: For individual i = 1, 2, . . . , N ,
choose the i’th individual’s parent (father) at random from the previous
generation (each with probability 1/N ) and inherit this parent’s haplotype.
For every locus at every individual in the new generation, determine if a
mutation (and its direction) will happen.

Consider the normalised allele process,

Vg(i) := Xg(i)−Xg(N), (2)

where Xg(i) denote the allele of the i’th individual (out of N in total) in the
g’th generation.

Let Zg(i) be the mutational event preceding inheritance and q(d) :=
P (Zg(1) − Zg(2) = d). The distribution of the normalised allele process,
quantified through the probability mass function

ηg(d) := P (Vg(i) = d), (3)

was presented in [1] as a recurrence relation, namely

ηg =
1

N
q ∗

(
g−2∑
i=0

[
N − 1

N

]i
qi

)
+

(
N − 1

N

)g−1
qg (4)

for g ∈ {2, 3, . . .} and η1 = q, where ∗ means the convolution and qi =
qi−1 ∗ q means the i’th convolution of q.

Discrete Laplace distribution
We suggest a discrete Laplace distribution,

f(d) ∝ p|d| ⇒ f(d) =

(
1− p
1 + p

)
p|d|, (5)

as an approximation of ηg(d):

ForN = 100 individuals and a mutation rate µ = 0.01
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Exponential family
A reparameterisation with θ = log p gives

f(d; θ) = exp

(
log

(
1− eθ

1 + eθ

)
+ θ|d|

)
= exp (θ|d| −A(θ)) (6)

with A(θ) = log
(

1+eθ

1−eθ

)
.

This natural exponential family is implemented in the R package disclap
that also supplies it as a new generalised linear model (for example use-
ful with the glm function and its cousins like the prediction function
predict).

Statistical model for single center
Let DL(p,m) be a discrete Laplace model with dispersion parameter 0 <
p < 1 and center parameter m ∈ Z with probability mass function

f(d; p,m) =

(
1− p
1 + p

)
p|d−m|, (7)

which is a non-central version of Equation (5). Hence, m can also be seen
as a non-centrality parameter.

Inference of a sample {di}ni=1 can be made by the MLE’s (maximum likeli-
hood estimates)

m̂ = median{di}ni=1, (8)

µ̂ =
1

n

n∑
i=1

|di − m̂|, (9)

p̂ = µ̂−1(
√
µ̂2 + 1− 1). (10)

The normalised allele process has a fixed individual as reference (local be-
haviour). The discrete Laplace distribution is an approximation to the dis-
tribution of the normalised allele process. We choose the reference individ-
ual non-randomly as the median of all the alleles for one-locus haplotypes.
Thus, using the discrete Laplace distribution is merely a qualified guess of
the global allele distribution.

Statistical model for mixtures of populations
• r loci instead of just one (mutations across loci are assumed to happen

independently)

• c subpopulations centered at yj = (yj1, yj2, . . . , yjr) for j = 1, 2, . . . , c

• n observed haplotypes, xi = (xi1, xi2, . . . , xir) for i = 1, 2, . . . , n

• dijk := |xik − yjk| is the distance at the k’th locus between the i’th hap-
lotype xi and the j’th center yj

• zi is the unobserved, latent variable identifying the subpopulation from
which the i’th haplotype originated (such that zi = j when the i’th hap-
lotype originated from the j’th subpopulation)

• vij := P (zi = j | xi), such that vi+ =
∑c
j=1 vij = 1

• τj := P (zi = j) is the a priori probability for originating from the j’th
subpopulation yielding the constraint

∑
j τj = 1

• τj can be estimated by τ̂j = v̂+j/n =
∑n
i=1 v̂ij/n, where v̂ij is an esti-

mate of vij .

We only observe {xi}ni=1. A haplotype stems from only one subpopula-
tion, but which one is unknown: Use EM algorithm to estimate this latent
variable of which subpopulations the haplotype belongs to.

• One parameter, αj , per subpopulation j corresponding to the age of the
center (how long time the center has been present in the population)

• One parameter, βk, per locus (related to mutation rate)

• Assume additive effects using the linear predictor log pjk = θjk = αj +
βk for j = 1, 2, . . . , c and k = 1, 2, . . . , r

R packages
disclap: Discrete Laplace exponential family for models such as a gen-

eralized linear model: http://cran.r-project.org/package=
disclap

disclapmix: Inference in a mixture of Discrete Laplace distributions us-
ing the EM algorithm: http://cran.r-project.org/package=
disclapmix

Example of estimation using R:
library(disclapmix)
data(simpop)
db <- simpop[rep(1:nrow(simpop), simpop$n), 1:7]
res <- disclapmix(db, centers = 1:5,

use.parallel = TRUE, verbose = 0)
summary(res$best.fit)
disclap.estimates <- predict(res$best.fit,

newdata = simpop[, 1:7])

Simulation study
We simulated 12 different population types by taking all possible combina-
tions of

• Loci: r = 7

• Mutation rate: µ = 0.01; 0.003 or 0.001

• Generations: g = 500 or 1,000

• Initial population size: k = 10,000 or 50,000.

We assumed a population growth, α, such that the expected populaition
size, αgk, after g generations was 20,000,000. The populations were simu-
lated using the R package fwsim. For each combination of the parameters,
5 realisations of the population were simulated. For each of these popula-
tions, 50 datasets of size 500; 1,000; and 5,000 were drawn. In total 12·5·3·50
= 9,000 datasets were sampled and used as a basis for comparison.

For all singletons (haplotypes observed only once) in the dataset, the dis-
crete Laplace distribution approach was compared to the naive 1/n esti-
mator and to Brenner’s (1 − κ)/n estimator [2], where α is the number of
singletons in the dataset and κ = α/n as inspired by [3].

As performance measures, the observed bias and the Kullback-Leibler di-
vergence (the distance between two probability distributions that can in-
terpreted as a prediction error) were calculated. If a haplotype has popu-
lation frequency p and is estimated to p̂, then the Kullback-Leibler diver-
gence is DKL(p̂; p) = p̂ log

(
p̂
p

)
+ (1− p̂) log

(
1−p̂
1−p

)
. For a haplotype dataset

H = {hi}ni=1 with singletons {hi}i∈S and population frequencies {pi}i∈S
estimated as {PE(H)(hi)}i∈S by an estimator E, the bias is

BH,S(E) =
1

|S|
∑
i∈S

(PE(H)(hi)− pi). (11)

and the distribution of Kullback-Leibler divergences for singletons {hi}i∈S
is

DH,S(E) = {DKL(PE(H)(hi); pi)}i∈S . (12)
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Results of simulation study
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Mean of estimates of Kullback−Leibler divergences

g is the number of generations, k is the number of individuals in the initial population, and µ is the mutation rate per locus per generation.


