

Evidential strength of a Y-STR match

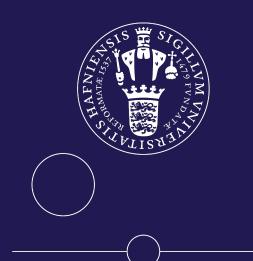
Mikkel Meyer Andersen^{1,*}, Poul Svante Eriksen¹ and Niels Morling²

AALBORG UNIVERSITY DENMARK

1 Dept. of Mathematical Sciences, Aalborg University, Denmark

2 Sect. of Forensic Genetics, Dept. of Forensic Medicine, University of Copenhagen, Denmark

* mikl@math.aau.dk



UNIVERSITY OF COPENHAGEN

Introduction

Two important issues

- 1. Estimate Y-STR haplotype frequencies of rare and unseen Y-STR haplotypes
- 2. Compensate for the possible lack of information concerning the relevant population referred to in the defence hypothesis, H_d

Elaborating H_d

 \blacktriangleright H_d : 'A random man left the Y-chromosome

θ (theta)

θ (theta) (0 < θ < 1):

- Population parameter (related to the variability of haplotype frequencies in different subpopulations)
- Not subpopulation specific (an average)
- Not haplotype specific (an average)
- Can be estimated using databases from two or more subpopulations (assumed known structure)

Balding-Nichols match probability, The $\theta + (\mathbf{1} - \theta)\mathbf{p}_{\mathbf{h}}$, is larger than both θ and p_{h} .

Examples

Example 1: Danish reference database. We assume no population substructure (haplotype) distribution same in cities and small islands).

- \blacktriangleright H_d : 'A random Dane left the Y-chromosome DNA in the crime stain'
- \blacktriangleright Use population frequency, p_h , based on a Danish reference database (and no θ correction)

Example 2: Danish reference database. We assume population substructure such that the haplotype distributions may differ, e.g. in cities and small islands.

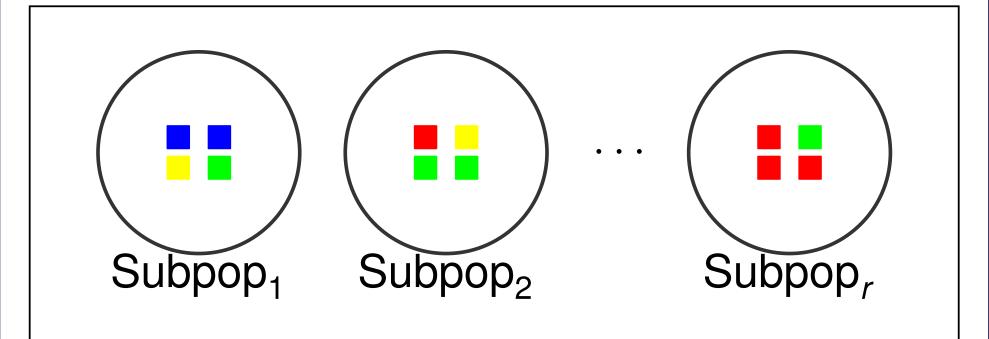
DNA in the crime stain'

 \blacktriangleright H_d : 'A random man (from the population of which the reference database is a random **sample)** left the Y-chromosome DNA in the crime stain'

Population? What is that? Does it matter? Yes

Population substructure

A population is a collection of subpopulations. Haplotypes are more common in some subpopulations than in others.



Population

If a random man and the suspect belong to the same subpopulation, they are expected to share the Y-STR haplotype more often than if they do not belong to the same subpopulation.

Estimating θ

- Use geographical information: Sample assumed subpopulations (populations without substructure), e.g. islands, cities (or even countries) separately (at the right level)
- \blacktriangleright θ between countries may be different from θ between cities/islands within a country
- \blacktriangleright H_d: 'A random Dane originating from the same small island, Bornholm, as the suspect left the Y-chromosome DNA in the crime stain'
- ► Use θ correction: $\theta + (1 \theta)p_h$ with known θ and population frequency, p_h , based on a Danish reference database

Example 3: Reference database from Bornholm (small Danish island). We assume no population substructure (haplotype distributions) same in cities and rural areas).

- \blacktriangleright H_d : 'A random man from Bornholm left the Y-chromosome DNA in the crime stain'
- ► Use population frequency, p_h , based on a reference database from Bornholm (and no θ correction)

Examples of θ values (1)

Coloured squares represent haplotypes.

We have a sample from the population without complete substructure information.

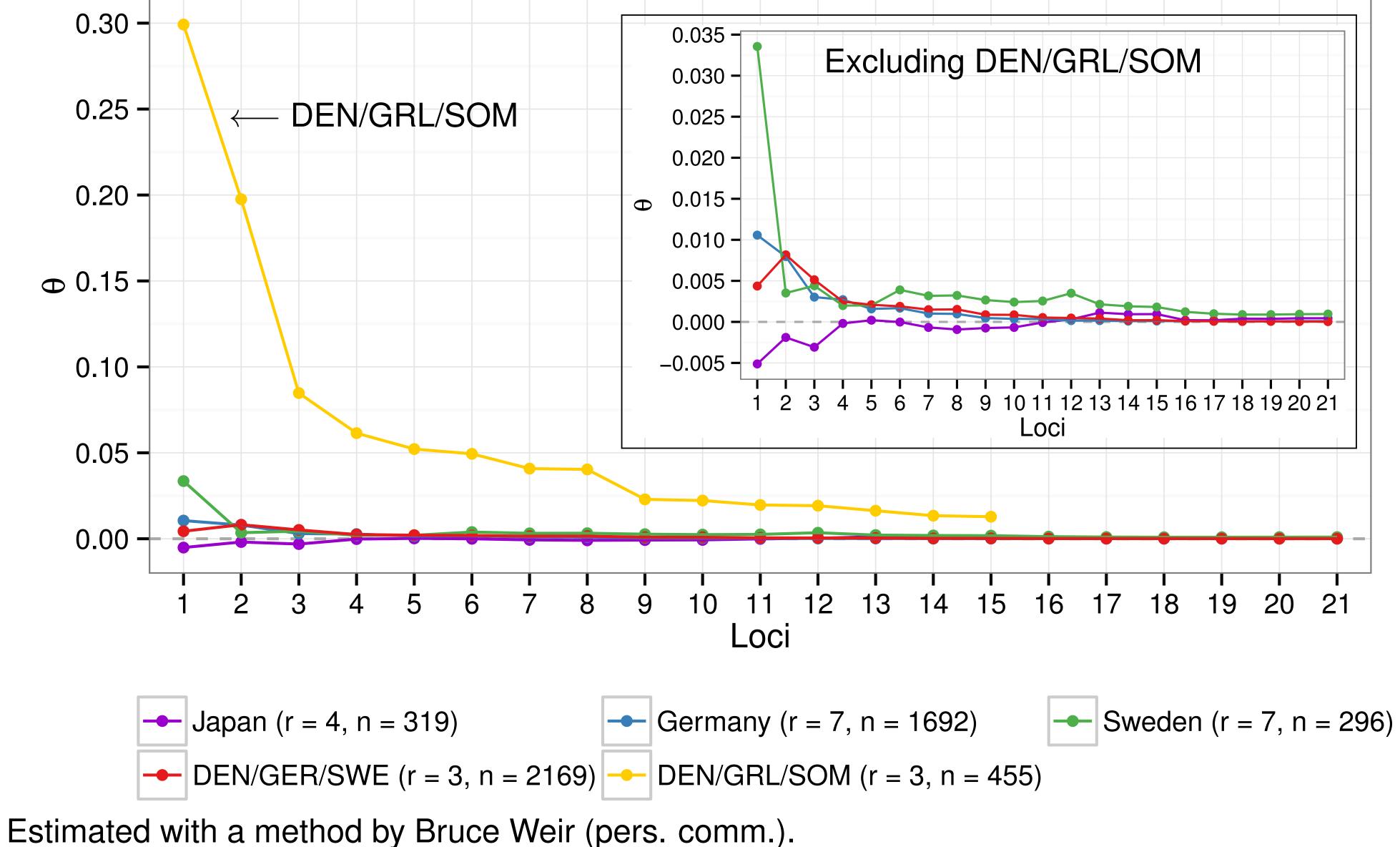
Frequency of **I** in:

- Entire population? (4/12 = 1/3)
- ► Subpopulation 1? (0/4 unseen)
- Subpopulation r? (3/4)

Match probability

Imagine that we have a random sample from the entire population.

- 1. H_d : 'A random man from the entire population left the Y-chromosome DNA in the crime stain'
- 2. H_d : 'A random man from subpopulation r left the Y-chromosome DNA in the crime stain'
- 3. H_d : 'A random man from the same sub-



population as the suspect left the Ychromosome DNA in the crime stain'

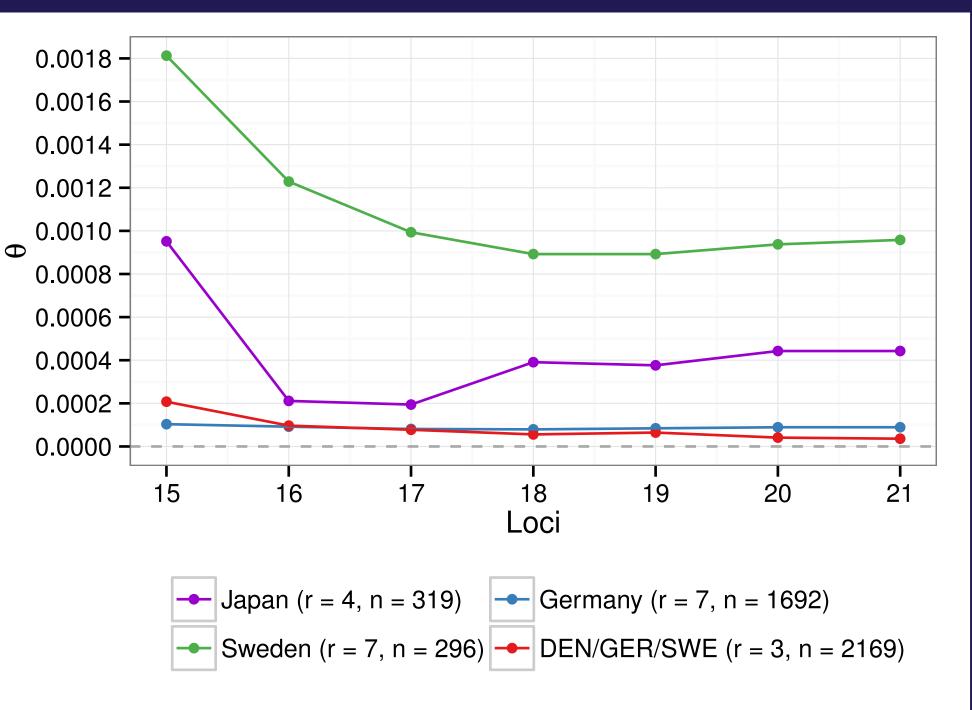
Ad 3: A haplotype may be more frequent in a subpopulation than in the population. But no information about population substructure.

Balding-Nichols model with population structure:

 $P(E \mid H_d) \stackrel{BN}{=} \theta + (1 - \theta)p_h$

- \blacktriangleright θ (theta) (0 < θ < 1): Population structure parameter
- ▶ p_h : Population frequency of h ($0 < p_h < 1$)

Examples of θ values (2)



Considerations

- \blacktriangleright θ (theta) correction in the form presented is a remedy for using a 'wrong' reference database, i.e. not taking population substructure into account
- How can we identify subpopulations?
- Can population data of ethnic groups be used to estimate θ in large cities?
- \blacktriangleright Many loci: Use θ as the match probability θ dominates because most haplotypes are very rare?

Thanks to Bruce Weir and John Buckleton for discussions about θ .