

# Analytical thresholds for Yfiler<sup>®</sup> Plus

Mikkel Meyer Andersen<sup>1,\*</sup>, Helle Smidt Mogensen<sup>2</sup>, Poul Svante Eriksen<sup>1</sup> and Niels Morling<sup>2</sup>

AALBORG UNIVERSITY DENMARK 1 Dept. of Mathematical Sciences, Aalborg University, Denmark 2 Sect. of Forensic Genetics, Dept. of Forensic Medicine, University of Copenhagen, Denmark \* mikl@math.aau.dk



- Analytical thresholds affect the balance between drop-outs of true alleles and drop-ins of false alleles
- Most softwares do not allow for sample dependent thresholds, hence average thresholds for all loci are commonly used
- AB3500/AB3500xl Genetic Analyzers (Life Technologies): Need for dye dependent thresholds since the signal intensities vary between the fluorescent dyes

## ROC

We know profiles of the males, hence all peaks can get a label: 'Signal' (n = 2,306) or 'Noise' (n = 15,691).



## **Drop-out**

- Drop-out: When a peak has a height less than the dye specific threshold
- Fitted logistic regression model
- Full model with main effects and all first order (pairwise) interactions between explanatory variables: locus, dye and mean peak height (of the peaks not dropped out in each profile)
- Full model was reduced according to Akaikes Information Criterion (AIC)
- Final model consisted only of mean peak height of allele peaks as explanatory vari-



UNIVERSITY OF COPENHAGEN

## Data

Dilution series: DNA from 4 males in 8 dilutions  $(F_1 - F_8)$  with each dilution run in triplicates (n = 96 samples).

DNA was extracted from blood samples using EZ1 Investigator (Qiagen), quantified using Quantifiler<sup>®</sup> Hum (Life Technologies), amplified for 30 cycles using Yfiler®Plus (Life Technologies) and electrophoresed on an AB3500xI (Life Technologies). Results were analyzed with GeneMapper IDX 1.4 with 5 RFU threshold.

Quantified DNA in the non-diluted samples ( $F_1$ ): Male A: 265 pg; Male B: 488 pg; Male C: 545 pg; Male D: 478 pg

## DNA amount vs peak height

Relationship between expected pg (dilution factor, 1/2<sup>d-1</sup> for dilution F<sub>d</sub>, times quantified DNA in the non-diluted samples) and sample mean allele peak height
The hatched area is a 95% prediction interval
The adjusted R<sup>2</sup> values of the linear regression model is 0.816

- Receiver operating characteristic (ROC) curve on separating signal (allele) from noise (specificity and sensitivity have same weight)
- Sensitivity is true positive rate (the allele dropped out, how good are we to detect this?)
- Specificity is true negative rate (the allele did not drop out, how good are we to detect this?)
- The labels are thresholds followed by the coordinates for that particular point (specificity, sensitivity)

| Dye | Threshold | Threshold<br>rounded <sup>1</sup> | Spec <sup>2</sup> | Sens <sup>3</sup> |
|-----|-----------|-----------------------------------|-------------------|-------------------|
| B   | 52 RFU    | 50 RFU                            | 0.963             | 0.827             |
| G   | 68 RFU    | 75 RFU                            | 0.956             | 0.797             |

able (no locus nor dye)

The logistic regression predictions are superimposed on the boxplots:



### Locus balances

Correcting for locus balances as described in [1] did not make a big difference on signal strength estimates:



|   | 6      |        | 0     |       |
|---|--------|--------|-------|-------|
| Y | 56 RFU | 50 RFU | 0.983 | 0.862 |
| R | 52 RFU | 50 RFU | 0.971 | 0.862 |
| Ρ | 78 RFU | 75 RFU | 0.950 | 0.819 |

<sup>1</sup> Rounded to nearest 25, <sup>2</sup> Spec = Specificity, <sup>3</sup> Sens = Sensitivity

#### Bootstrap

- 10,000 random samples of all peaks with replacement (gives a new sample of same size)
- For each, we determined the dye thresholds with ROC (and rounded to nearest 25)
- Almost same as before except B (50 vs 75), but both 50 and 75 have large probabilities (43% and 53%, resp.)

## Allele peak height distribution for each male, dilution and dye





Each boxplot shows all allele peaks from all loci and all three replicates for the particular male, dilution and dye

## References

[1] Andersen, M. M., Mogensen, H. S., Eriksen, P. S., Olofsson, J. K., Asplund, M. and Morling, N. (2013) Estimating Y-STR allelic drop-out rates and adjusting for interlocus balances. *Forensic Science International: Genetics*, 7, 327–336