

Calculating forensic trace-suspect match probabilities for Y-STRs using coalescent theory

Mikkel Meyer Andersen^a, Amke Caliebe^b, Arne Jochens^b, Sascha Willuweit^c, Michael Krawczak^b

a) Department of Mathematical Sciences, Aalborg University, Denmark
 b) Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
 c) Institute of Legal Medicine, Charité, Universitätsmedizin, Berlin, Germany

DNA in Forensics 2012

Match probabilities are needed

$$LR = \frac{P(E|H_p)}{P(E|H_d)}$$

- *H_p*: The suspect is the donor of the genetic data (prosecutor's hypothesis)
- *H_d*: The suspect unconnected to the crime (defense attorney's hypothesis)
- $P(E|H_p) = 1$ is often assumed
- $P(E|H_d)$: 'match probability', the probability that the suspect matches the haplotype found at the crime scene given that the suspect is unconnected to the crime (how probable is it that some random man's haplotype matches the haplotype found at the crime scene)

Aim and terminology

- Aim: Obtain the match probability for a haplotype (If we knew the haplotypes of the entire population, the population frequency of the haplotype in question would be the match probability.)
- Terminology:
 - The match probability is *p* assuming the *X* model
 - Using the X-based estimator, the match probability is p
- A way to estimate the match probability is called a match probability estimator

Most haplotypes are rare

Introduction

1111

- German Y-STR database (15 loci, ignoring DYS385a/b): 1,757 of 1,469 haplotypes (84%) were singletons (haplotypes only observed once)
- We focus on singletons because they are difficult to treat and there are a lot of them

Introduction	Coalescent-based estimator	
Notation		

- Let n-1 be the size of the reference database
- The haplotype h found at the crime scene has not previously been observed
- Adding h to the database, we get a database of size n and h is a singleton

	Existing estimators ∎	Coalescent-based estimator	
Evicting	atimatara		

Existing estimators

• Binomial estimator: Match probability is 1/n, thus $LR = n_{p}$

- ► Adding the haplotype that has not previously been observed to a database of size n - 1, we get 1 observation in n haplotypes
- Too conservative
- Surveying estimator (implemented on http://www.yhrd.org): Match probability depends on the genetic information of the haplotype in question
 Brenner's κ
 - ► Inspired by a clever argument by Robbins (1968) about unobserved probability mass in an experiment
 - κ is the singleton proportion ($\kappa = \alpha/n$, where α is the number of singletons observed)
 - Assume $0 < \kappa < 1$, thus $0 < 1 \kappa < 1$ making $\frac{1}{1-\kappa} > 1$
 - Match probability is $\frac{1-\kappa}{n} = \frac{1}{n} \frac{\kappa}{n} < \frac{1}{n}$
 - Inflates the *LR* from the binomial LR = n to

$$LR = \frac{n}{1-\kappa} = n \times \frac{1}{1-\kappa}$$

Existing estimators

- Binomial estimator 1/n and Brenner's estimator (1 κ)/n does NOT depend on the genetics of the singleton in question:
 - Same match probability to all singletons
- Surveying estimator depends on the genetics of the haplotype in question
 - Different estimates depending on the singleton's weighted inverse distance – how much alleles are alike – to the other haplotypes in the database

Fisher-Wright model: basics

- *N*: the constant number of individuals in the population
- Generations are discrete and non-overlapping
- Selectively neutral mutation process (single-step mutation model)
- Evolution forwards in time
- Y-STR: assume that one individual can get children (as opposed to when two individuals are required to get a child)

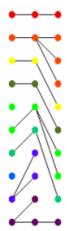
Fisher-Wright model: evolution

- Initial population: Each individual in the initial population of size N is assigned a haplotype (this can be the same for all individuals)
- A new generation is obtained as follows:
 - 1. Create *N* individuals:

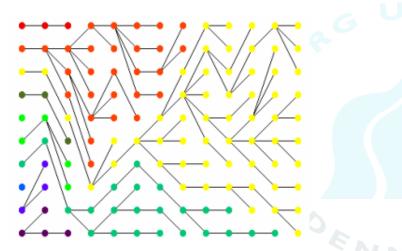
For individual i = 1, 2, ..., N, choose the *i*'th individual's parent (father) at random from the previous generation (each with probability 1/N) and inherit this parent's haplotype

2. For every locus at every individual in the new generation, determine if a mutation (and its direction) will happen

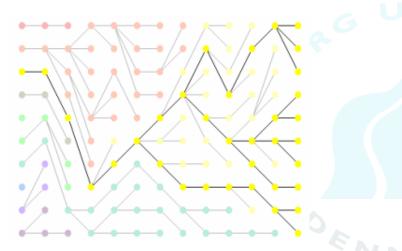
Introduction Existing estimators Coalescent-based estimator Simulation study Results


Fisher-Wright model: evolution

Introduction Existing estimators Coalescent-based estimator Simulation study Results

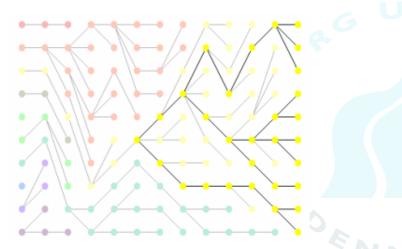

Fisher-Wright model: evolution

 Introduction
 Existing estimators
 Coalescent-based estimator
 Simulation study
 Results


 Fisher W/right model:
 evolution

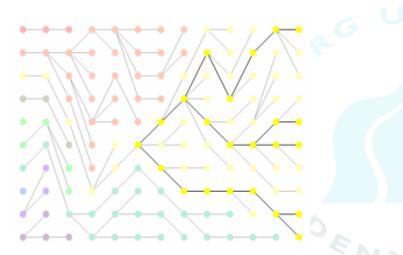
Fisher-Wright model: evolution

	Coalescent-based estimator	
Founder		



Coalescent-based estimator

Simulation study


Results

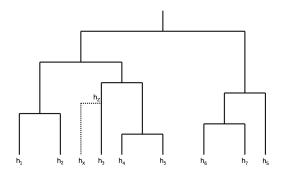
Most recent common ancestor (MRCA)

	Coalescent-based estimator	

Sample from population

Coalescent theory

- Given a sample from a population, coalescent theory aims to make inference about the population and its evolution (e.g. time to most recent common ancestor, TMRCA)
- Invented by J. F. C. Kingman in the 1970s-1980s
- Lineages are said to coalesce when they have the same father
- Uses approximations of properties of the Fisher-Wright model
- Widely used for a lot of population genetics applications


Coalescent theory

Inference:

Sample random evolutionary histories giving rise to the sample (e.g., by using MCMC as Wilson and others (1998, 2003) or importance sampling) and record the relevant quantaties in each evolutionary history (for example the time to the MRCA)

Match probability under an sampled evolutionary history

 h_1, h_2, \ldots, h_7 : haplotypes in a reference database H

h_S: suspect haplotype

 h_X : haplotype of trace donor X

 h_Z : haplotype of the MRCA Z of trace donor X and the most closely related individual(s) in the database, including suspect S

The match probability of h_S , $P(h_X = h_S | H, h_S)$, under this database and evolutionary history is the probability that h_Z mutates into h_S during the time span indicated by the dotted line, thereby creating a match between the suspect and trace haplotype

Match probability under an unknown evolutionary history

- We do not know the actual evolutionary history (tree)
- Sample a large number of histories at random according to their probabilities and averaging out to get match probability under the coalescent model
- Sampling trees: Wilson and others (1998, 2003) implemented in BATWING

		Coalescent-based estimator	
Converge	ence		

Two different types of convergence:

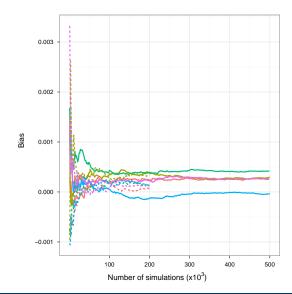
- For a given reference database *H* and a given suspect haplotype *h_S*, estimates *p̂_{H,h_S,m}* converge to *P*(*h_X* = *h_S* | *H*, *h_S*) as the number of sampled trees *m* increases
- P (h_X = h_S | H, h_S) converges to the true match probability P(h_X = h_S) when the reference database H expands to comprise the whole population

		Coalescent-based estimator	Simulation study ∎।	
Simulatior	ı study			

- Sample a population of 50,000,000 individuals (7 loci and mutation rate 0.003)
- From this, sample a database
- For each singleton in the database, assume it belongs to the suspect
- Estimate the match probability of this singleton and compare estimate with (the now known) population frequency
- We did this for 5 databases of size 100 and 5 databases of size 200

		Coalescent-based estimator	Simulation study	
Comparis	son instrument			

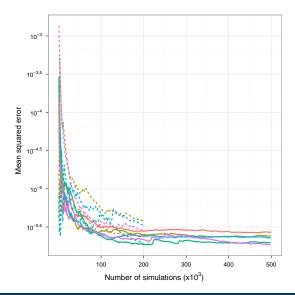
- h_{S_i} : *j*th singleton out of *v* singletons in the database
- H_j : the database with the *j*th singleton excluded
- *p̂*_{H_j,h_{S_j}: an estimate of the match probability (e.g., coalescent-based, surveying, ...)}
- *p*_{hs_j}: the population frequency of h_{Sj}
 Bias


$$\frac{1}{v}\sum_{j=1}^{v}(\hat{p}_{H_j,h_{S_j}}-p_{h_{S_j}})$$

Mean squared error

$$rac{1}{v}\sum_{j=1}^{v}(\hat{p}_{H_{j},h_{S_{j}}}-p_{h_{S_{j}}})^{2}$$

■ Spearman correlation coefficient between $\hat{p}_{H_j,h_{S_i}}$ and $p_{h_{S_i}}$


Solid lines: databases of size 100 (500,000 simulated coalescent trees per singleton)

Dashed lines: databases of size 200 (200,000 simulated coalescent trees per singleton)

Each color correspond to a database

Introduction Existing estimators Coalescent-based estimator Simulation study Results

Plot of mean squarred error

Solid lines: databases of size 100 (500,000 simulated coalescent trees per singleton)

Dashed lines: databases of size 200 (200,000 simulated coalescent trees per singleton)

Each color correspond to a database

		Existir I I	ng estimat			Coalescent-based estimator		Simula ⁻	Results							
Com	npar	rison w	vith c	other	es	tima	tor	S								
_					(200,	000 simul			s per singleton) s per singleton)		3 U					
	<i>c</i> :				Bia					MSE						
_	Size	Database			Surve			lescent	Brenner	Surveying	Coalescent					
	100	1	-9.4 · 1		.1 · 1			10-4	$4.3 \cdot 10^{-6}$	$1.5 \cdot 10^{-4}$	$2.7 \cdot 10^{-6}$					
		2	-3.3 · 1		.9 · 1			10-4	$4.7 \cdot 10^{-6}$	$8.3 \cdot 10^{-5}$	$2.4 \cdot 10^{-6}$					
		3	4.3 · 1		.6 • 1			10-4	$2.4 \cdot 10^{-6}$	$9.5 \cdot 10^{-5}$	$2.0 \cdot 10^{-6}$					
		4	5.4 · 1	LO_J 8	.8 · 1	0-3	-4.0	10 ⁻⁵	$3.4 \cdot 10^{-6}$	$9.8 \cdot 10^{-5}$	$2.3 \cdot 10^{-6}$					
_		5	-6.4 · 1	10 7 8.1 · 1	4 8.1 · 1) ⁺ 8.1 · 1		+ 8.1 · 1	0 + 8.1 · 1	0-3		10-4	$2.5 \cdot 10^{-6}$	$9.6 \cdot 10^{-5}$	$1.9 \cdot 10^{-6}$
	200	1	7.7 · 1	L0 ⁻⁵ 4	.1 · 1	0-3	5.6	10-5	$1.8 \cdot 10^{-6}$	$2.7 \cdot 10^{-5}$	$2.3 \cdot 10^{-6}$					
		2	3.5 · 1		.9 · 1			10 ⁻⁴	$2.6 \cdot 10^{-6}$	$2.6 \cdot 10^{-5}$	$3.8 \cdot 10^{-6}$					
		3	$6.1 \cdot 1$.2 · 1			10 ⁻⁴	$1.8 \cdot 10^{-6}$	$2.5 \cdot 10^{-5}$	$1.9 \cdot 10^{-6}$					
		4	4.9 · 1		.7 · 1			10-4	$1.7 \cdot 10^{-6}$	$2.7 \cdot 10^{-5}$	$3.3 \cdot 10^{-6}$					
		5	-8.4 · 1	LO ⁻⁵ 4	.3 · 1	0-3	9.8	10 ⁻⁵	$2.0 \cdot 10^{-6}$	$2.2 \cdot 10^{-5}$	$2.8 \cdot 10^{-6}$					
								Correlation								
			Size	Databas	е	Brenne		Surveying	Coalescent							
			100	1			0	0.528	0.446							
				2			0	0.566	0.509 0.327							
				3 4			0 0	0.413 0.401	0.327							
				4 5			0	0.389	0.274							
			200	1			0	0.309	0.154							
				2			0	0.490	0.267							
				3			0	0.283	0.343							
				4			0	0.381	0.184		NN					
				5			0	0.389	0.250							

Results

Comparison with other estimators

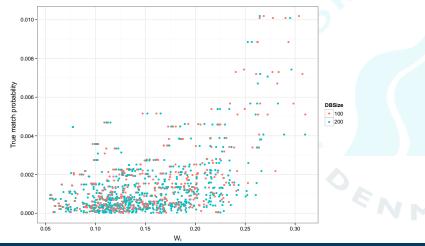
In-depth analysis for 10 randomly selected singletons per database of size 200 of the coalescent-based estimator of match probabilities, using different numbers of simulated coalescent trees $(2 \times 10^5 \text{ and } 10^6 \text{ per singleton})$:

	(
		Bias				MSE	
Sample	2×10^{5}	10 ⁶	Brenner		2×10^{5}	10 ⁶	Brenner
1	$-4.1 \cdot 10^{-4}$	$-1.8 \cdot 10^{-4}$	$-4.7 \cdot 10^{-4}$		$6.0 \cdot 10^{-6}$	$6.0 \cdot 10^{-6}$	$8.9 \cdot 10^{-6}$
2	$-6.7 \cdot 10^{-4}$		$-2.0 \cdot 10^{-4}$				$4.8 \cdot 10^{-6}$
3	$-6.9 \cdot 10^{-4}$						$1.7 \cdot 10^{-6}$
4	$1.4 \cdot 10^{-3}$						$1.1 \cdot 10^{-6}$
5	$-3.6 \cdot 10^{-4}$	$-3.2 \cdot 10^{-4}$	$-2.8 \cdot 10^{-4}$		$1.2 \cdot 10^{-6}$	$1.2 \cdot 10^{-6}$	$2.5 \cdot 10^{-6}$

	Coalescent-based estimator	Results
Results		

- Coalescent-based estimation seems promising (works for non-singletons, too)
- Computationally difficult (at the moment): Requires many trees (many simulations of the evolutionary history)
 - More loci and more samples lead to better estimates of the match probabilities (in principle)
 - More loci and more samples increase the number of possible evolutionary histories (more simulations)
- Research on improving speed must be done in order to make it an everyday tool

		Coalescent-based estimator	Results □□□□∎
Ressource	es		


The modified BATWING program with the forensic match probability module included can be downloaded from the 'Software' page at http://people.math.aau.dk/~mikl

References:

- I. J. Wilson, D. J. Balding, Genealogical Inference From Microsatellite Data, Genetics 150 (1998) 499–510.
- I. J. Wilson, M. E. Weale, D. J. Balding, Inferences from DNA Data: Population Histories, Evolutionary Processes and Forensic Match Probabilities, Journal of Royal Statistical Society Series A 166 (2003) 155–201.

Plot of weighted inverse distance and true frequency

 W_i : weighted inverse molecular distance (like used in the surveying method); a measure of how much alleles are alike.

Match probabilities for Y-STRs using coalescent theory

Mikkel Meyer Andersen - mikl@math.aau.dk