Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

25th ISFG Congress, Melbourne, 2013

Mikkel Meyer Andersen^{1,*}, Poul Svante Eriksen¹ and Niels Morling²

¹Department of Mathematical Sciences, Aalborg University, Denmark

²Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

*mikl@math.aau.dk

Introduction

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introduction

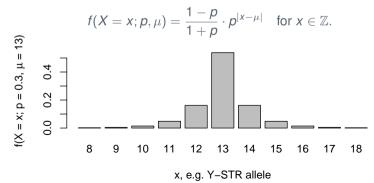
Statistical model for Y-STR haplotypes

Dumon dutu

European data

Conclusion

Count method


- ► Frequency surveying (2000, 2001, 2010)
- ► Brenner (2010)
- ► Coalescent method (2013)

... based on the discrete Laplace distribution

Discrete Laplace distributed $X \sim DL(p, \mu)$:

- dispersion parameter 0 and
- ▶ location parameter $\mu \in \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

Probability mass function:

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

Statistical model for Y-STR haplotypes

Danish data

European data

Conclusion

... based on the discrete Laplace distribution

Perfectly homogeneous population with a 1-locus haplotype:

$$P(X = x) = f(X = x; p, \mu) = \frac{1 - p}{1 + p} \cdot p^{|x - \mu|}$$

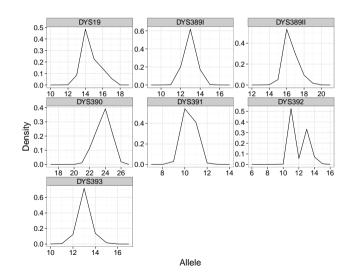
- ▶ *p* depends on e.g. mutation rate and population growth
- μ is central haplotype/allele
- Motivated by theoretical result for Fisher-Wright population with neutral single step mutation model

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

Statistical model for Y-STR haplotypes


Danish data

European data

Conclusion

...based on the discrete Laplace distribution

4

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

HING NEW GROUND

PLBORG UNIVERSI

Statistical model for Y-STR haplotypes

Danish data

European data

Conclusion

... based on the discrete Laplace distribution

- ► L loci: Neutral mutations across loci are assumed independent
- ► S subpopulations/clusters: Mixture of distributions
 - τ_s is the a priori probability for originating from the s'th subpopulation $(\sum_{s=1}^{S} \tau_s = 1)$
- ► Parameter estimation from database of Y-STR haplotype (R library disclapmix)

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

+ING NEW GROUNS

Statistical model for Y-STR haplotypes

Danish dat

European data

Conclusion

... based on the discrete Laplace distribution

Simulation study

- ► 60 different (growth, mutation rate, initial size) populations of size 20,000,000
- From each population: 50 data sets of 500, 1,000 and 5,000 Y-STR-profiles sampled (total: 9,000 data sets)
- Smaller prediction error than existing estimators (like naïve count and Brenner's method)

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

+ING NEW GROUNS

Statistical model for Y-STR haplotypes

Danish data

European data

Conclusion

... based on the discrete Laplace distribution

- ► Let $\{x_i\}_{i=1}^n$ be a database of *n* Y-STR haplotypes (one x_i per observation)
- Subpopulation membership:

 $v_{is} = \begin{cases} 1 & \text{if individual } i \text{ originates from subpopulation } s \\ 0 & \text{otherwise} \end{cases}$

- ► An individual can originate from only one subpopulation
- ► Membership not observed, infer the probability of each outcome:

$$\hat{v}_{is} = P(v_{is} = 1 \mid x_i)$$

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductio

NEW GROU

Statistical model for Y-STR haplotypes

Danish data

European data

Conclusion

Danish data

- Example with 7-locus Y-STR haplotypes from n = 63 Danes (43 are singletons)
- Sum of observed probability

$$\underbrace{\frac{1 - \frac{43}{63 + 1}}_{\text{Robbins (1968)}} = 0.328}$$

• Discrete Laplace method: $\hat{S} = 3$ and sum of observed probability

$$\sum_{x\in \mathsf{DB}_u} P(X=x) = 0.318$$

where DB_u is the different (unique) haplotypes in the database.

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introduction

+ING NEW GROUNS

Statistical model for Y-STR haplotypes

Danish data

European data

Conclusion

Example with 7-locus Y-STR haplotypes from n = 63 Danes (43 are singletons)

Danish data

		<i>s</i> = 1	<i>s</i> = 2	<i>s</i> = 3
	$\hat{ au}_s$ (a priori probability)	0.37	0.55	0.08
Central haplotype, $\hat{\mu}_{\mathcal{S}}$	DYS19	14	14	15
	DYS389I	12	13	14
	DYS389II	28	29	32
	DYS390	22	24	23
	DYS391	10	11	10
	DYS392	11	13	12
	DYS393	13	13	14
	$n_{\hat{\mu}_s}$ (# in database)	4	4	1
	Haplogroup (yhrd.org)		R1b	l2/l2b

Mikkel Meyer Andersen

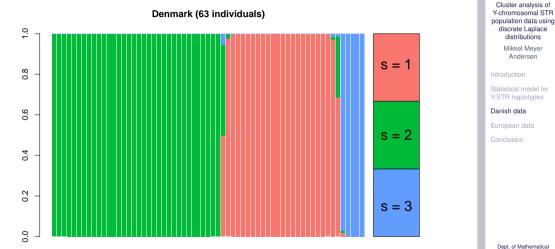
Introduction

HING NEW GROUND

PLOORG UNIVERS

Statistical model for Y-STR haplotypes

Danish data


European data

Conclusion

Danish data 3 clusters/subpopulations: \hat{v}_{is} values for each individual

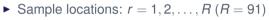
0

Columns: Individuals. Rows: Subpopulations. Bar at column *i*, row *s*: \hat{v}_{is}

- European 7-loci Y-STR database from 2004 consisting of 12,727 individuals in 91 European sample locations
- First analysed in 'Signature of recent historical events in the European Y-chromosomal STR haplotype distribution' by Roewer *et al.* in 2005
- Our study
 - Fit a discrete Laplace model (including the optimal number of subpopulations, \hat{S})
 - Parameters (genetic information) versus known sample locations
 - Discrete Laplace model does not know about sample locations, it infers 'genetic' subpopulations (or clusters)

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen


ntroduction

Statistical model for Y-STR haplotypes

Danish dat

European data

Conclusion

- Subpopulations: s = 1, 2, ..., S ($\hat{S} = 40$)
- w_{rs} : Fraction of individuals from location r originating from subpopulation s

 w_{rs} values for selected subpopulations and regions:

	<i>s</i> = 1	<i>s</i> = 4	<i>s</i> = 14	<i>s</i> = 17	<i>s</i> = 27	s = 40
Croatia	0.13		0.19			
Denmark		0.13			0.17	
Finland				0.39		
Northern Poland			0.09			0.14

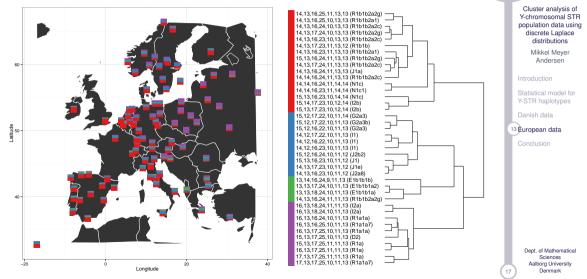
Empty cell means 0.0.

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductior

Statistical model for Y-STR haplotypes


Danish data

12 European data

Conclusion

European data Collapsed *w*_{rs} values for 4 mega clusters

- AMOVA (Excoffier, 1992): Pairwise Φ_{ST} distances calculated with Arlequin version 3.5
- ► Distance between sample location *r* and sample location *q*

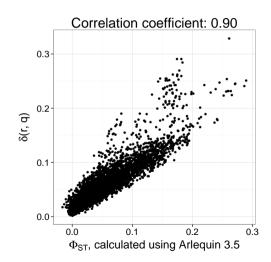
$$\delta(r,q) = \sum_{s=1}^{S} \left(w_{rs} - w_{qs} \right)^2$$

Squared Euclidean distance between vector (*w_{r1}*, *w_{r2}*,..., *w_{rS}*) and vector (*w_{q1}*, *w_{q2}*,..., *w_{qS}*)

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

ntroduction


Statistical model for Y-STR haplotypes

Danish data

14 European data

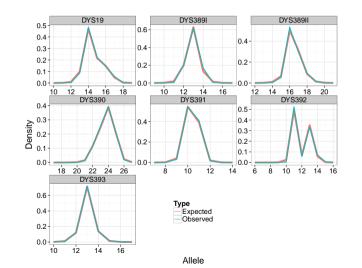
Conclusion

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introduction

Statistical model for Y-STR haplotypes


Danish data

15 European data

Conclusior

European data Marginal distribution

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introduction

Statistical model for Y-STR haplotypes

Danish data

16 European data

Conclusion

- ► Estimation of Y-STR haplotype population frequencies
 - Sound statistical properties
 - Simulation study showed smaller prediction error than existing estimators
- Cluster analysis
 - Many analyses possible
 - Gives results similar to previous study and AMOVA
- Computationally feasible
- ► Open source software: R library disclapmix (tutorial available online)

Cluster analysis of Y-chromosomal STR population data using discrete Laplace distributions

> Mikkel Meyer Andersen

Introductior

Statistical model for Y-STR haplotypes

Danish dat

European data

17 Conclusion