Forensic Statistics of Lineage DNA Markers PhD defence

Feb 28, 2014

Mikkel Meyer Andersen

Department of Mathematical Sciences

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

- 1. Introduction (to forensic genetics)
- 2. Overview of PhD work
- 3. Details of parts of the PhD work (discrete Laplace method)

Dept. of Mathematical Sciences Aalborg University Denmark

2

31

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

) Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

Dept. of Mathematical Sciences Aalborg University Denmark

Introduction

Forensic genetics

3

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

 Aims: Identify people and investigate legal issues using genetic evidence

- Unbiased evidence evaluation (using statistics, not subjective assessments)
- Rule out suspects (like innocents on death row)

Dept. of Mathematical Sciences Aalborg University Denmark

Trace found at crime scene

4

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

 Trace of genetic evidence from the perpetrator found at crime scene

- 2. Suspect arrested
- 3. DNA profiles are compared

Dept. of Mathematical Sciences Aalborg University Denmark

Evidential weight

- ► E: evidence (e.g. DNA profile from crime scene)
- Weight of the evidence (likelihood ratio):

$$LR = \frac{P(E \mid H_p)}{P(E \mid H_d)},$$

- ► H_p (prosecutor's hypothesis) is 'the suspect is the donor of the genetic data' (often assumed equal to 1)
- ► *H_d* (defence attorney's hypothesis) is 'the suspect is unconnected to the crime'
- ► P(E | H_d): Match probability ≈ match by chance ≈ 'How probable it is that some random man's DNA profile matches the DNA profile found at the crime scene?' (population frequency)

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

Evidential weight interpretation

- ► E: evidence (e.g. DNA profile from crime scene)
- H_p (prosecutor's hypothesis) is 'the suspect is the donor of the genetic data'
- ► *H_d* (defence attorney's hypothesis) is 'the suspect is unconnected to the crime'
- ► Ideal usage of *LR*:

$$\frac{\underbrace{P(H_{\rho} \mid E)}_{P(H_{d} \mid E)}}{\underbrace{P(H_{d} \mid E)}_{\text{Posterior odds}}} = \underbrace{\frac{P(E \mid H_{\rho})}_{LR}}_{LR} \times \underbrace{\frac{P(H_{\rho})}_{P(H_{d})}}_{\text{Prior odds}},$$

- Toss a coin 10 times to obtain $E = \{4 \text{ heads}, 6 \text{ tails}\}$
- $H_1: \theta = 0.5 \text{ vs } H_2: \theta = 0.9 \ (\theta = P(\text{heads}))$
- $P(\theta = 0.5 | E) / P(\theta = 0.9 | E)$?
- $P(E \mid \theta = 0.5) = 20.51\%$ and $P(E \mid \theta = 0.9) = 0.01\%$
- $LR = P(E \mid \theta = 0.5) / P(E \mid \theta = 0.9) = 1488$
- ► P(H₁)/P(H₂) must be known to say anything about posterior odds

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

HING NEW GROUND

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

DNA

- ▶ Bases: A, T, C, G (A-T and C-G)
- ► 3.3 billion base pairs (3.3 billion = 3,300,000,000)
- ► 23 chromosome pairs
- In each pair: One chromosome inherited from mother and one from father

<u>крк хк</u> <u>киса</u>арх лкп налп

From www.wikimedia.org

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

- Method used today: short tandem repeat (STR)
- Locus (*loci* in plural): Location at a certain chromosome (e.g. D3S1358, DYS391)
- Allele: The number of times a *motif* (short sequence of 3-5 base pairs) repeats itself
- An example of an allele of 3:

$$\underbrace{AGAT}_{motif} AGAT AGAT = [AGAT]_3$$

• STR's can mutate during meiosis causing variation (e.g. $11 \rightarrow 10$)

Mikkel Meyer Andersen

Outline

HING NEW GROUND

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

```
Dept. of Mathematical
Sciences
Aalborg University
Denmark
```

DNA profiles Based on short tandem repeats, STRs

- Traditional DNA profile: Based on autosomal (non-sex) chromosomes
- DNA profile consists of 10-20 loci
- Example of autosomal STR DNA profile (only three loci shown):

 $D3S1358 = \{15, 18\}, D5S818 = \{12, 12\}, D7S820 = \{10, 11\}$

- Other types (lineage markers): e.g. Y chromosomal
 - Y-STR haplotypes: DNA profiles from the Y chromosome using STR
 - Example of Y-STR DNA profile (only three loci shown):

DYS391 = 10, DYS437 = 15, DYS635 = 22

9

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

```
PhD work
Paper III
Match probability
Paper IV
Paper VI & VIII
Model
Applications
```

Dept. of Mathematical Sciences Aalborg University Denmark

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

10 Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

31

Why bother using anything else than traditional autosomal STR DNA profiles?

- Unbalanced mixture of female/male DNA (minor male component masked)
- Extract Y chromosomal DNA to obtain Y chromosomal DNA profile

DNA profiles: autosomal vs Y profiles

Statistical properties (due to genetic inheritance)

- Autosomal: 2 alleles per locus inherited independently between and within loci from each parent
 - Widely used and a lot of statistics for that area exist
 - Match probability of DNA profile: Product of the allele frequencies at each locus
- Y chromosomal: 1 allele per locus inherited as a whole from the father
 - Strong dependency between loci
 - Match probability of DNA profile: Very different than for autosomal DNA profiles (main focus of PhD thesis)

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

) PhD work

12

31

Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

PhD work

PhD work

Dept. of Mathematical Sciences Aalborg University Denmark

31

Extraction of DNA profile from biological material

- Paper I-III
- Haplotype distribution modelling
 - Paper IV, VI, VIII
- Utilities
 - Paper V, VII, IX

Example of Y-STR signal

Aalborg University Denmark

Paper III: Modelling drop-out rates

Forensic Science International: Genetics

Alleles not showing up (no signal or signal indistinguishable from background noise)

- Null alleles: Alleles hidden due to molecular mechanism (e.g. mutation in primer region)
 - ► Unique *primer sequences* anchor the allele (here allele 13):

Reverse primer

- Happens approx. 1:5,000 alleles (http://www.yhrd.org, release 39)
- Drop-out: Stochastic error (e.g. due to low amount of input DNA)
 - Simple logistic regression model: P(Drop-out) modelled by (mainly) signal strength
 - Peak height model: $\log x_j \sim N_{\log t} \left(\theta_j + \log S, \sigma^2 \right)$
 - Truncation ($N_{\log t}$, t = 50 RFU) and interlocus balances (θ_j)
 - $P(\text{Drop-out} \mid S \approx 4,000 \text{ RFU}) \approx 1:100,000$
 - 20 times less likely than null allele
 - $P(\text{Drop-out} \mid S \approx 75 \text{ RFU}) \approx 1:5$
 - ► 1,000 times more likely than null allele

Forensic Statistics of Lineage DNA Markers

> Mikkel Meyer Andersen

Outline

ntroduction

PhD work Paper III Match probabilit Paper IV Paper VI & VIII Model Applications

Paper III: Modelling drop-out rates

Forensic Science International: Genetics

16

31

P(Null alleles) = 1:5,000 (independent of signal strength)

- ► P(Drop-out | Signal strength ≈ 4,000 RFU) ≈ 1:100,000 (20 times less likely than null allele)
- ► P(Drop-out | Signal strength ≈ 75 RFU) ≈ 1:5 (1,000 times more likely than null allele)

Forensic Statistics of Lineage DNA Markers

> Mikkel Meyer Andersen

Outline

Introduction

PhD work

Paper III Match probability Paper IV Paper VI & VIII Model Applications

Match probability

Forensic Statistics of Lineage DNA Markers Mikkel Meyer Andersen Outline Introduction PhD work PhD work PhD work Paper III Match probability Paper IV Paper VI & VIII

- Match probability \approx DNA profile frequency

- Count method (works for any trait, e.g. blood type)
 - n: Database (DB) size
 - ► n_x: Number of times x is observed in the database

•
$$P(X = x) = n_x/n$$

 Problem: Singletons (haplotypes only observed once) are common (a lot of rare variants)

• $\sum_{x \in \text{DB}} n_x/n = 1$, hence P(X = x) = 0 for $x \notin \text{DB}$

Many suggestions (not probability distributions)

Paper IV: Coalescent method

Forensic Science International: Genetics

- ► X: Unknown trace donor (random lineage in each tree)
- Z: Most recent common ancestor of X and closest from database
- ► P (h_X = h_S | H, h_S, h_Z(i), t(i)): Probability that h_Z mutates into h_S when passed down from Z to X

Mikkel Meyer Andersen Outline

Forensic Statistics of Lineage DNA Markers

PhD work Paper III Match probabilit Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

Paper IV: Coalescent method

Forensic Science International: Genetics

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work

Paper III

Paper IV

19

31

Paper VI & VIII Model Applications

Dept. of Mathematical Sciences Aalborg University Denmark

Results:

- Theoretically interesting approach
- Current method/software too slow
- Focuses on one haplotype (distribution only given implicitly)

Paper VI & VIII: Discrete Laplace method VI: Journal of Theoretical Biology; VIII: Submitted to FSI: Genetics

Model the (multivariate) probability distribution of Y-STR haplotypes

HUNG NEW GROUND

Forensic Statistics of Lineage DNA Markers

> Mikkel Mever Andersen

PhD work

Paper VI & VIII

Dept. of Mathematical Sciences Aalborg University Denmark

Discrete Laplace distribution

Discrete Laplace distributed $X \sim DL(p, \mu)$:

► Dispersion parameter 0 < *p* < 1 and

• Location parameter $\mu \in \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ Probability mass function:

$$f(X = x; p, \mu) = \frac{1-p}{1+p} \cdot p^{|x-\mu|}$$
 for $x \in \mathbb{Z}$.

Perfectly homogeneous population with 1-locus haplotypes:

$$P(X = x) = f(X = x; p, \mu)$$

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

ntroduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model

> Dept. of Mathematical Sciences Aalborg University Denmark

State NEW GROUND

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

Exponential family for known location parameter (θ = log p and d = x − μ):

$$f(d; \theta) = \exp(\theta |d| - A(\theta))$$
 with $A(\theta) = \log\left(\frac{1 + e^{\theta}}{1 - e^{\theta}}\right)$.

 R family object for generalized linear model implemented in R library disclap (also {d, p, r}disclap)

▶ glm(d \sim 1, dat, family = DiscreteLaplace())

Dept. of Mathematical Sciences Aalborg University Denmark

Perfectly homogeneous population with *r*-locus haplotypes:

$$P(X = (x_1, x_2, \dots, x_r)) = \prod_{k=1}^r f(x_k - \mu_k; p_k)$$

- $\mu = (\mu_1, \mu_2, \dots, \mu_r)$: central haplotype
- ▶ p = (p₁, p₂, ..., p_r): discrete Laplace parameters (one for each locus)
- Mutations happen independently across loci (relative to μ)

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

ntroduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

Statistical model for Y-STR haplotypes

Non-homogeneous population with *c* subpopulations and *r*-locus haplotypes:

$$P(X = (x_1, x_2, \dots, x_r)) = \sum_{j=1}^{c} \tau_j \prod_{k=1}^{r} f(x_k - \mu_{jk}; p_{jk})$$

- *τ_j*: a priori probability for originating from the *j*'th subpopulation (∑^c_{j=1} *τ_j* = 1)
- ▶ µ_j = (µ_{j1}, µ_{j2}, ..., µ_{jr}): central haplotype for j'th subpopulation
- ▶ p_j = (p_{j1}, p_{j2},..., p_{jr}): parameters for all loci at j'th subpopulation
- Parameter estimation from observations using R library disclapmix
- Software tutorial on using the discrete Laplace method software (paper VII)

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

ntroduction

PhD work Paper III Match probabilit Paper IV Paper VI & VIII Model

> Dept. of Mathematical Sciences Aalborg University Denmark

Data and fit

Sciences Aalborg University Denmark

Estimate match probability

Paper VI: Journal of Theoretical Biology

Forensic Statistics of Lineage DNA Markers

Mikkel Mever Andersen

PhD work Applications

Estimate haplotype frequency and compare to true value

- Simulate population (e.g. 20 mio. individuals)
- Draw random database of individuals (e.g. 1,000)
- Paper V: Efficient simulation of populations (simulate haplotypes, not individuals)
- Result: smaller prediction error than existing estimators

Dept. of Mathematical Sciences Aalborg University Denmark

Paper VIII: Submitted to FSI: Genetics

Forensic Statistics of Lineage DNA Markers

Mikkel Mever Andersen

PhD work Applications

European 7-loci Y-STR database from 2004 consisting of 12,727 individuals in 91 European sample locations

- First analysed in 'Signature of recent historical events in the European Y-chromosomal STR haplotype distribution' by Roewer et al. in 2005
- Our study
 - Fit a discrete Laplace model
 - Parameters (genetic information) versus known sample locations
 - Discrete Laplace model does not know about sample locations, it infers 'genetic' subpopulations (or clusters)

Lineage DNA Markers

Mikkel Meyer Andersen

Forensic Statistics of

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

- ► Sample locations: *s* = 1, 2, ..., *S* (*S* = 91)
- ► Subpopulations: *j* = 1, 2, ..., *c* (*c* = 40)
- ► w_{sj}: Fraction of individuals from location s originating from subpopulation j

•
$$W_{s+} = \sum_{j=1}^{c} W_{sj} = 1$$

 w_{sj} values for selected subpopulations and regions:

S	Location	<i>j</i> = 1	<i>j</i> = 4	<i>j</i> = 14	<i>j</i> = 17	j = 27	<i>j</i> = 40
1	Croatia	0.13		0.19			
2	Denmark		0.13			0.17	
3	Finland				0.39		
4	Northern Poland			0.09			0.14

Empty cell means 0.0.

Dept. of Mathematical Sciences Aalborg University Denmark

Collapsed w_{si} values for 4 mega clusters:

14.13.16.25.11.13.13 (R1b1b2a2g) 14 13 16 25 10 13 13 (R1b1b2a1) 14 13 16 24 10 13 13 (R1b1b2a2c) 14.13.17.24.10.13.13 (R1b1b2a2g) 14.13.16.23.10.13.13 (R1b1b2a2c) 14 13 17 23 11 13 12 (R1b1b) 14,13,16,23,11,13,13 (R1b1b2a1) 15.13.16.24.11.13.13 (R1b1b2a2g) 14,13,17,24,11,13,13 (R1b1b2a2c) 14.13.16,24,11,13,13 (J1a) 14.14.16.24.11.13.13 (R1b1b2a2c) 14.14.16.24.11.14.14 (N1c) 14 14 16 23 11 14 14 (N1c1) 15 13 16 23 10 14 14 (N1c) 15.14.17.23.10.12.14 (I2b) 15.13.17.23.10.12.14 (I2b) 15.12.17,22,10,11,14 (G2a3) 15.12.17.22.10.11.13 (G2a3b) 15.12.16.22.10.11.13 (G2a3) 14 12 17 22 10 11 13 (11) 14 12 16 22 10 11 13 (11) 14.12.16.23.10.11.13 (11) 15.12.16.24.10.11.12 (J2b2) 15,13,16,23,10,11,12 (J1) 14,13,17,23,10,11,12 (J1e) 14.13.16.23.10.11.12 (J2a8) 13 14 16 24 9 11 13 (E1b1b1b) 13,13,17,24,10,11,13 (E1b1b1a2) 13.13.18.24.10.11.13 (E1b1b1a) 14.13.16.24.11.11.13 (R1b1b2a2g) 16,13,18,24,11,11,13 (I2a) 16,13,18,24,10,11,13 (l2a) 16.13.16.24.10.11.13 (R1a1a) 16.13.16.25.10.11.13 (R1a1a7) 16,13,17,25,10,11,13 (R1a1a) 15,13,17,25,10,11,13 (D2) 15.13.17.25.11.11.13 (R1a) 16 13 17 25 11 11 13 (R1a) 17,13,17,25,11,11,13 (R1a) 17.13.17.25.10.11.13 (R1a1a7)

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

Introduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

Columns: Individuals. Rows: Mega clusters. Bar at column *i*, row *m*: *P*(Indiv. *i* orig. *m*)

Dept. of Mathematical Sciences Aalborg University Denmark

Conclusion Capabilities of the discrete Laplace method

Forensic Statistics of Lineage DNA Markers

Mikkel Meyer Andersen

Outline

ntroduction

PhD work Paper III Match probability Paper IV Paper VI & VIII Model Applications

> Dept. of Mathematical Sciences Aalborg University Denmark

► Estimation of Y-STR haplotype population frequencies

- Sound statistical properties
- Simulation study showed smaller prediction error than existing estimators
- Cluster analysis
 - Many analyses possible
 - Gives results similar to previous studies
- Computationally feasible
- ► Open source software: R library disclap and disclapmix

Forensic Statistics of Lineage DNA Markers Mikkel Meyer Andersen

Thank you for your attention

