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1Forensic genetics

I Aims: Identify people and investigate legal issues using genetic evidence
I Legal issues: criminal, paternity and immigration cases
I Genetic evidence: blood, saliva, semen, ...

I Unbiased evidence evaluation (using statistics, not subjective assessments)
I Rule out suspects
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2Trace found at crime scene

1. Trace of genetic evidence from the perpetrator found at crime scene
2. Suspect arrested
3. DNA profiles are compared
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3Evidential weight

I E : evidence (e.g. DNA profile from crime scene)
I Weight of the evidence (likelihood ratio):

LR =
P (E | Hp)

P (E | Hd )
,

I Hp (prosecutor’s hypothesis) is ’the suspect is the donor of the genetic data’ (often
assumed equal to 1)

I Hd (defence attorney’s hypothesis) is ’the suspect is unconnected to the crime’
I P (E | Hd ): Match probability ≈ match by chance ≈ ’How probable it is that some

random man’s DNA profile matches the DNA profile found at the crime scene?’
(population frequency)
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4Evidential weight interpretation

I E : evidence (e.g. DNA profile from crime scene)
I Hp (prosecutor’s hypothesis) is ’the suspect is the donor of the genetic data’
I Hd (defence attorney’s hypothesis) is ’the suspect is unconnected to the crime’
I Ideal usage of LR:

P (Hp | E)

P (Hd | E)︸ ︷︷ ︸
Posterior odds

=
P (E | Hp)

P (E | Hd )︸ ︷︷ ︸
LR

×
P (Hp)

P (Hd )︸ ︷︷ ︸
Prior odds

,

I Toss a coin 10 times to obtain E = {4 heads,6 tails}
I H1 : θ = 0.5 vs H2 : θ = 0.9 (θ = P(heads))
I P (θ = 0.5 | E) /P (θ = 0.9 | E)?
I P (E | θ = 0.5) = 20.51% and P (E | θ = 0.9) = 0.01%
I LR = P (E | θ = 0.5) /P (E | θ = 0.9) = 1488
I P (H1) /P (H2) must be known to say anything about posterior odds
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5DNA

I Bases: A, T, C, G (A-T and C-G)
I 3.3 billion base pairs (3.3 billion = 3,300,000,000)
I 23 chromosome pairs
I In each pair: One chromosome inherited from

mother and one from father

From www.wikimedia.org
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6DNA profiles
Based on short tandem repeats, STRs

I Method used today in forensic genetics: short tandem repeat (STR)
I Locus (loci in plural): Location at a certain chromosome (e.g. D3S1358, DYS391)
I Allele: The number of times a motif (short sequence of 3-5 base pairs) repeats itself
I An example of an allele of 3:

AGAT︸ ︷︷ ︸
motif

AGAT AGAT = [AGAT ]3

I STR’s can mutate during meiosis causing variation (e.g. 11→ 10)
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7DNA profiles
Based on short tandem repeats, STRs

I Traditional DNA profile: Based on autosomal (non-sex) chromosomes
I DNA profile consists of 10-30 loci
I Example of autosomal STR DNA profile (only three loci shown):

D3S1358 = {15,18}, D5S818 = {12,12}, D7S820 = {10,11}

I Other types (lineage markers): e.g. Y chromosomal
I Y-STR haplotypes: DNA profiles from the Y chromosome using STR
I Example of Y-STR DNA profile (only three loci shown):

DYS391 = 10, DYS437 = 15, DYS635 = 22
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8DNA profiles: autosomal vs Y profiles

Why bother using anything else than traditional autosomal STR DNA profiles?
I Unbalanced mixture of female/male DNA (minor male component masked), e.g.

sexual assault cases:
I touch DNA / male DNA under the fingernails of a victim
I rape without ejaculation or by a vasectomised male

I Extract (biochemically) Y chromosomal DNA to obtain Y chromosomal DNA profile
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9DNA profiles: autosomal vs Y profiles

From www.wikimedia.org

Statistical properties (due to genetic inheritance)
I Autosomal: 2 alleles per locus inherited independently between and within loci from

each parent
I Widely used and a lot of statistics for that area exist
I Match probability (grossly simplified) of DNA profile: Product of the allele frequencies at

each locus
I Y chromosomal: 1 allele per locus inherited as a whole from the father

I Strong dependency between loci
I Match probability of DNA profile: Very different than for autosomal DNA profiles
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10Match probability

I Match probability ≈ DNA profile frequency
I Count method (works for any trait, e.g. blood type)

I n: Database (DB) size
I nx : Number of times x is observed in the database
I P(X = x) = nx/n such that LR = n/nx

I Problem: Singletons (haplotypes only observed once) are common (a lot of rare
variants), > 90% of observed haplotypes are singletons

I
∑

x∈DB nx/n = 1, hence P(X = x) = 0 for x 6∈ DB
I 1/n overestimates the match probability for singletons

I Many suggestions (not probability distributions on all haplotypes)
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11Discrete Laplace distribution

Discrete Laplace distributed X ∼ DL(p, µ):
I Dispersion parameter 0 < p < 1 and
I Location parameter
µ ∈ Z = {. . . ,−2,−1,0,1,2, . . .}

Probability mass function:

f (X = x ;p, µ) =
1− p
1 + p

· p|x−µ| for x ∈ Z.

Perfectly homogeneous population with
1-locus haplotypes:

P(X = x) = f (X = x ;p, µ)

8 9 10 11 12 13 14 15 16 17 18

x, e.g. Y−STR allele
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12Discrete Laplace exponential family

I Andersen (2013): Exponential family for known location parameter (θ = log p and
d = x − µ):

f (d ; θ) = exp (θ|d | − A(θ)) with A(θ) = log
(

1 + eθ

1− eθ

)
.

I R family object for generalized linear model implemented in R library disclap (also {d,
p, r}disclap)

I glm(d ∼ 1, dat, family = DiscreteLaplace())
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13Statistical model for Y-STR haplotypes

Perfectly homogeneous population with r -locus haplotypes:

P(X = (x1, x2, . . . , xr )) =
r∏

k=1

f (xk − µk ;pk )

I µ = (µ1, µ2, . . . , µr ): central haplotype
I p = (p1,p2, . . . ,pr ): discrete Laplace parameters (one for each locus)
I Mutations happen independently across loci (relative to µ)
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14Statistical model for Y-STR haplotypes

Non-homogeneous population with c subpopulations and r -locus haplotypes:

P(X = (x1, x2, . . . , xr )) =
c∑

j=1

τj

r∏
k=1

f (xk − µjk ;pjk )

I τj : a priori probability for originating from the j ’th subpopulation (
∑c

j=1 τj = 1)
I µj = (µj1, µj2, . . . , µjr ): central haplotype for j ’th subpopulation
I pj = (pj1,pj2, . . . ,pjr ): parameters for all loci at j ’th subpopulation
I Parameter estimation explanation coming up! (Implemented in R library disclapmix)
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15Data and fit
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15Data and fit
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15Data and fit
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15Data and fit
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15Data and fit
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16Parameter estimation

I Maximise the full likelihood of the n independent observations {xi}n
i=1:

Lf = Lf ({pjk}j,k , {µj}j , {τj}j , {vij}i,j ; {xi}i) (1)

=
n∏

i=1

c∏
j=1

r∏
k=1

(
τ

1/r
j f (|xik − µjk |;pjk )

)vij

, (2)

I n individuals, c subpopulations/clusters, r loci
I Wedel and DeSarbo (1995): ’power vij is equivalent to fixed, known weights in a GLM

likelihood’
I Finite mixture model of generalized linear models (e.g. R library FlexMix)
I GLIMMIX models in the marketing literature
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17Parameter estimation

I {xi}n
i=1: database of n Y-STR haplotypes

I v̂ij = P(From subpopulation j | Haplotype = xi)

I Initial µjk ’s from e.g. partitioning around medoids (PAM) with L1 norm

Repeat until convergence:
I dijk = |xik − µjk |
I EM-algorithm to estimate {p̂jk}j,k , {τ̂j}j and {v̂ij}i,j

I Repeat until convergence:
I Estimate {pjk}j,k using GLM model dijk ∼ ωj + λk with discrete Laplace family and weights v̂ij

(pjk = exp(ωj + λk )):
glm(d ∼ locus + cluster, dat, family = DiscreteLaplace(), weights = v)

I Update v̂ij and τ̂j =
v̂+j
n

I Move subpopulation centers, {µ̂jk}j,k , if others are more optimal
I Update dijk = |xik − µjk |
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18Estimation

I glm(d ∼ cluster + locus, dat, family = DiscreteLaplace(), weights =
...)

I Design matrix of dimension (n · c · r)× (c + r − 1)
I 20,000 DNA profiles (n), 20 loci (r ), 150 mixture components (c), n · c · r = 6× 107 =

60,000,000 and c + r − 1 = 169
All individuals (balanced design), no matter DNA profiles (response vector)

> model.matrix(~ cluster + locus - 1,
data = expand.grid(cluster = factor(1:2), locus = factor(1:3)))

cluster1 cluster2 locus2 locus3
1 1 0 0 0
2 0 1 0 0
3 1 0 1 0
4 0 1 1 0
5 1 0 0 1
6 0 1 0 1
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19Estimation

I
(
X>W (m+1)X

)−1
X>W (m+1)~y (m+1) must be calculated

I Calculate
(
X>W (m+1)X

)−1
without constructing X ...

I It turns out (Dk is diagonal k × k and H is c × (r − 1)) that

X>W (m+1)X =

[
Dc H
H> Dr−1

]
. (3)

I According to Seber (1984), the inverse of this is(
X>W (m+1)X

)−1
=

[
Dc H
H> Dr−1

]−1

=

[
D−1

c + FE−1F> −FE−1

−E−1F> E−1

]
, (4)

where

E = Dr−1 − H>D−1
c H and F = D−1

c H. (5)

I Details not (yet?) published (except in my PhD thesis)
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20Notes

I Deviance is expensive, measure changes in paramter vector first, and then deviance
when that’s converged

mikl@math.aau.dk


Mikkel Meyer Andersen, mikl@math.aau.dk | Statistics and R in Forensic Genetics

21Speed-up

Method
Efficient IRLS (coef.) Efficient IRLS (dev.) glm.fit (dev.)

c = 1
Speed-up 19x 11x 1x
Total time 0.07 sec 0.12 sec 1.27 sec

c = 5
Speed-up 43x 12x 1x
Total time 3.38 sec 11.78 sec 145.59 sec

c = 10
Speed-up 49x 13x 1x
Total time 2.70 sec 10.12 sec 131.84 sec

c = 20
Speed-up 66x 17x 1x
Total time 11.33 sec 43.13 sec 748.08 sec

c = 30
Speed-up 84x 21x 1x
Total time 24.32 sec 95.62 sec 2,041.64 sec

c = 40
Speed-up 101x 26x 1x
Total time 43.14 sec 169.09 sec 4,348.99 sec

c = 50
Speed-up 118x 31x 1x
Total time 69.14 sec 267.99 sec 8,192.30 sec

I n = 1,690 DNA
profiles (with r = 23
Y-STR loci)

I dev.: deviance as
convergence criterium

I coef.: relative change
in the coefficient
vector

I Speed-up: compared
to glm.fit (dev.)

I Total time: time for the
entire EM algorithm
(many IRLS’s) to
converge
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