Statistics and R in Forensic Genetics

UseR! 2016, Stanford University, USA

Mikkel Meyer Andersen mikl@math.aau.dk

Department of Mathematical Sciences, Aalborg University, Denmark

- ► Aims: Identify people and investigate legal issues using genetic evidence
 - ► Legal issues: criminal, paternity and immigration cases
 - ► Genetic evidence: blood, saliva, semen, ...
- Unbiased evidence evaluation (using statistics, not subjective assessments)
- Rule out suspects

Trace found at crime scene

HONEROLES 2

- 1. Trace of genetic evidence from the perpetrator found at crime scene
- 2. Suspect arrested
- 3. DNA profiles are compared

Evidential weight

Property on the second

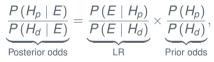
- E: evidence (e.g. DNA profile from crime scene)
- Weight of the evidence (likelihood ratio):

$$LR = \frac{P(E \mid H_p)}{P(E \mid H_d)},$$

- ► H_p (prosecutor's hypothesis) is 'the suspect is the donor of the genetic data' (often assumed equal to 1)
- H_d (defence attorney's hypothesis) is 'the suspect is unconnected to the crime'
- ► P(E | H_d): Match probability ≈ match by chance ≈ 'How probable it is that some random man's DNA profile matches the DNA profile found at the crime scene?' (population frequency)

Evidential weight interpretation

- E: evidence (e.g. DNA profile from crime scene)
- ► *H_p* (prosecutor's hypothesis) is 'the suspect is the donor of the genetic data'
- ► *H_d* (defence attorney's hypothesis) is 'the suspect is unconnected to the crime'
- ► Ideal usage of *LR*:



- Toss a coin 10 times to obtain $E = \{4 \text{ heads}, 6 \text{ tails}\}$
- $H_1: \theta = 0.5 \text{ vs } H_2: \theta = 0.9 \ (\theta = P(\text{heads}))$
- $P(\theta = 0.5 | E) / P(\theta = 0.9 | E)?$
- $P(E \mid \theta = 0.5) = 20.51\%$ and $P(E \mid \theta = 0.9) = 0.01\%$
- $LR = P(E \mid \theta = 0.5) / P(E \mid \theta = 0.9) = 1488$
- $P(H_1)/P(H_2)$ must be known to say anything about posterior odds

DNA

	X	Ş	X		ξ	()	ι	
 Bases: A, T, C, G (A-T and C-G) 3.3 billion base pairs (3.3 billion = 3,300,000,000) 23 chromosome pairs 	K		(C	1)	((2)	X	
 In each pair: One chromosome inherited from mother and one from father 	JL	JL	11		н	זר	11	
			85			11	51	

From www.wikimedia.org

DNA profiles Based on short tandem repeats, STRs

- Method used today in forensic genetics: short tandem repeat (STR)
- ► Locus (*loci* in plural): Location at a certain chromosome (e.g. D3S1358, DYS391)
- ► Allele: The number of times a motif (short sequence of 3-5 base pairs) repeats itself
- An example of an allele of 3:

$$\underbrace{AGAT}_{motif} AGAT AGAT = [AGAT]_3$$

 $\blacktriangleright\,$ STR's can mutate during meiosis causing variation (e.g. 11 \rightarrow 10)

DNA profiles Based on short tandem repeats, STRs

- Traditional DNA profile: Based on autosomal (non-sex) chromosomes
- DNA profile consists of 10-30 loci
- ► Example of autosomal STR DNA profile (only three loci shown):

 $D3S1358 = \{15, 18\}, D5S818 = \{12, 12\}, D7S820 = \{10, 11\}$

- ► Other types (lineage markers): e.g. Y chromosomal
 - ► Y-STR haplotypes: DNA profiles from the Y chromosome using STR
 - Example of Y-STR DNA profile (only three loci shown):

DYS391 = 10, DYS437 = 15, DYS635 = 22

DNA profiles: autosomal vs Y profiles

Why bother using anything else than traditional autosomal STR DNA profiles?

- Unbalanced mixture of female/male DNA (minor male component masked), e.g. sexual assault cases:
 - ► touch DNA / male DNA under the fingernails of a victim
 - rape without ejaculation or by a vasectomised male
- Extract (biochemically) Y chromosomal DNA to obtain Y chromosomal DNA profile

DNA profiles: autosomal vs Y profiles

From www.wikimedia.org

K	$\langle \! \rangle$	K		SL (r			
K	K	((1)	"	2)	χ	
л	1	11		н	11	**	
		н		н	п	51	

Statistical properties (due to genetic inheritance)

- Autosomal: 2 alleles per locus inherited independently between and within loci from each parent
 - Widely used and a lot of statistics for that area exist
 - Match probability (grossly simplified) of DNA profile: Product of the allele frequencies at each locus
- ► Y chromosomal: 1 allele per locus inherited as a whole from the father
 - Strong dependency between loci
 - ► Match probability of DNA profile: Very different than for autosomal DNA profiles

Match probability

- Match probability \approx DNA profile frequency
- Count method (works for any trait, e.g. blood type)
 - ► n: Database (DB) size
 - ► *n_x*: Number of times *x* is observed in the database
 - $P(X = x) = n_x/n$ such that $LR = n/n_x$
- Problem: Singletons (haplotypes only observed once) are common (a lot of rare variants), > 90% of observed haplotypes are singletons
 - $\sum_{x \in DB} n_x/n = 1$, hence P(X = x) = 0 for $x \notin DB$
 - 1/n overestimates the match probability for singletons
- Many suggestions (not probability distributions on all haplotypes)

Discrete Laplace distribution

Discrete Laplace distributed $X \sim DL(p, \mu)$:

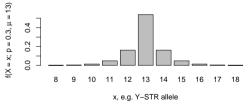
- ▶ Dispersion parameter 0 < *p* < 1 and
- Location parameter
 - $\mu \in \mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$

Probability mass function:

$$f(X = x; p, \mu) = rac{1-p}{1+p} \cdot p^{|x-\mu|} \quad ext{for } x \in \mathbb{Z}.$$

Perfectly homogeneous population with 1-locus haplotypes:

$$P(X = x) = f(X = x; p, \mu)$$



Discrete Laplace exponential family

► Andersen (2013): Exponential family for known location parameter (θ = log p and d = x - μ):

$$f(d; \theta) = \exp(\theta |d| - A(\theta))$$
 with $A(\theta) = \log\left(\frac{1 + e^{\theta}}{1 - e^{\theta}}\right)$.

- R family object for generalized linear model implemented in R library disclap (also {d, p, r}disclap)
- \blacktriangleright glm(d \sim 1, dat, family = DiscreteLaplace())

Statistical model for Y-STR haplotypes

Perfectly homogeneous population with *r*-locus haplotypes:

$$P(X = (x_1, x_2, \dots, x_r)) = \prod_{k=1}^r f(x_k - \mu_k; p_k)$$

• $\mu = (\mu_1, \mu_2, \dots, \mu_r)$: central haplotype

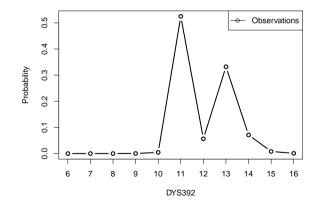
- $p = (p_1, p_2, \dots, p_r)$: discrete Laplace parameters (one for each locus)
- Mutations happen independently across loci (relative to μ)

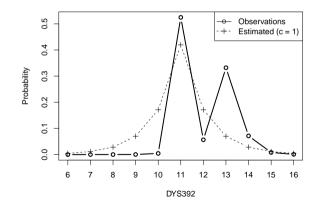
Statistical model for Y-STR haplotypes

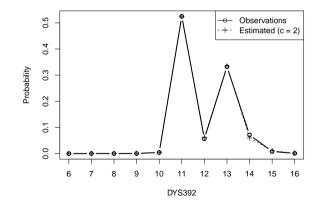
Non-homogeneous population with *c* subpopulations and *r*-locus haplotypes:

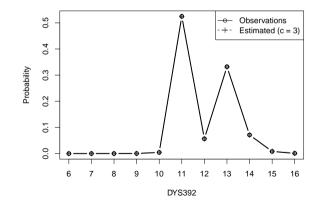
$$P(X = (x_1, x_2, \dots, x_r)) = \sum_{j=1}^{c} \tau_j \prod_{k=1}^{r} f(x_k - \mu_{jk}; p_{jk})$$

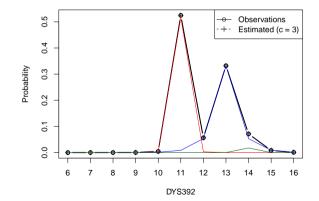
- ► τ_j : a priori probability for originating from the *j*'th subpopulation $(\sum_{j=1}^{c} \tau_j = 1)$
- $\mu_j = (\mu_{j1}, \mu_{j2}, \dots, \mu_{jr})$: central haplotype for *j*'th subpopulation
- $p_j = (p_{j1}, p_{j2}, \dots, p_{jr})$: parameters for all loci at *j*'th subpopulation
- Parameter estimation explanation coming up! (Implemented in R library disclapmix)











Parameter estimation

$$L_{f} = L_{f} \left(\{ p_{jk} \}_{j,k}, \{ \mu_{j} \}_{j}, \{ \tau_{j} \}_{j}, \{ v_{ij} \}_{i,j}; \{ x_{i} \}_{i} \right)$$
(1)

$$=\prod_{i=1}^{n}\prod_{j=1}^{c}\prod_{k=1}^{r}\left(\tau_{j}^{1/r}f(|x_{ik}-\mu_{jk}|;p_{jk})\right)^{v_{ij}},$$
(2)

- ► *n* individuals, *c* subpopulations/clusters, *r* loci
- Wedel and DeSarbo (1995): 'power v_{ij} is equivalent to fixed, known weights in a GLM likelihood'
- ► Finite mixture model of generalized linear models (e.g. R library FlexMix)
- GLIMMIX models in the marketing literature

Parameter estimation

- $\{x_i\}_{i=1}^n$: database of *n* Y-STR haplotypes
- $\hat{v}_{ij} = P(\text{From subpopulation } j \mid \text{Haplotype} = x_i)$
- ► Initial μ_{jk} 's from e.g. partitioning around medoids (PAM) with L_1 norm

Repeat until convergence:

$$\blacktriangleright d_{ijk} = |x_{ik} - \mu_{jk}|$$

- EM-algorithm to estimate $\{\hat{p}_{jk}\}_{j,k}, \{\hat{\tau}_j\}_j$ and $\{\hat{v}_{ij}\}_{i,j}$
 - Repeat until convergence:
 - ► Estimate $\{p_{jk}\}_{j,k}$ using GLM model $d_{ijk} \sim \omega_j + \lambda_k$ with discrete Laplace family and weights \hat{v}_{ij} $(p_{jk} = \exp(\omega_j + \lambda_k))$:

glm(d \sim locus + cluster, dat, family = DiscreteLaplace(), weights = v)

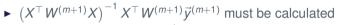
- Update \hat{v}_{ij} and $\hat{\tau}_j = \frac{\hat{v}_{+j}}{n}$
- ► Move subpopulation centers, $\{\hat{\mu}_{jk}\}_{j,k}$, if others are more optimal
 - Update $d_{ijk} = |x_{ik} \mu_{jk}|$

Estimation

- \$ glm(d ~ cluster + locus, dat, family = DiscreteLaplace(), weights =
 ...)
- Design matrix of dimension $(n \cdot c \cdot r) \times (c + r 1)$
 - ► 20,000 DNA profiles (*n*), 20 loci (*r*), 150 mixture components (*c*), $n \cdot c \cdot r = 6 \times 10^7 = 60,000,000$ and c + r 1 = 169

All individuals (balanced design), no matter DNA profiles (response vector)

Estimation



- Calculate $(X^{\top}W^{(m+1)}X)^{-1}$ without constructing *X*...
- ▶ It turns out $(D_k \text{ is diagonal } k \times k \text{ and } H \text{ is } c \times (r-1))$ that

$$X^{\top}W^{(m+1)}X = \begin{bmatrix} D_c & H \\ H^{\top} & D_{r-1} \end{bmatrix}.$$
(3)

► According to Seber (1984), the inverse of this is

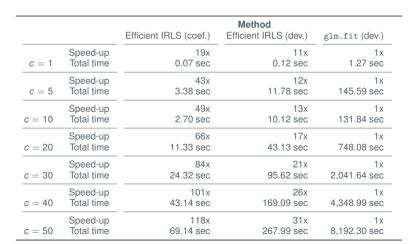
$$\left(X^{\top} W^{(m+1)} X \right)^{-1} = \begin{bmatrix} D_c & H \\ H^{\top} & D_{r-1} \end{bmatrix}^{-1} = \begin{bmatrix} D_c^{-1} + FE^{-1}F^{\top} & -FE^{-1} \\ -E^{-1}F^{\top} & E^{-1} \end{bmatrix},$$
(4)

where

$$E = D_{r-1} - H^{\top} D_c^{-1} H$$
 and $F = D_c^{-1} H$. (5)

Details not (yet?) published (except in my PhD thesis)

 Deviance is expensive, measure changes in paramter vector first, and then deviance when that's converged



- R. Road UNIVERSIT
- n = 1,690 DNA profiles (with r = 23 Y-STR loci)
- dev.: deviance as convergence criterium
- coef.: relative change in the coefficient vector
- Speed-up: compared to glm.fit (dev.)
- Total time: time for the entire EM algorithm (many IRLS's) to converge