Stochastic methods for forensic lineage markers

Aug 28, 2018

<u>Mikkel M Andersen</u>* and David J Balding * mikl@math.aau.dk

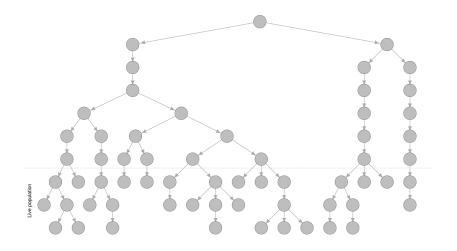
Advanced Statistical and Stochastic Methods in Forensic Genetics University of Cologne, Germany

Outline

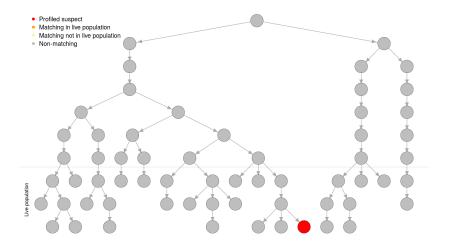
Joint work with David Balding (Isaac Newton Institute, 2016):

- 2017: "How convincing is a matching Y-chromosome profile?" (PLoS Genetics)
 - Modern kits, many loci: all profiles are rare and share by close relatives
 - Match probability what population?
- Today
 - ► Recap
 - "Y-profile evidence: close paternal relatives and mixtures"
 - https:

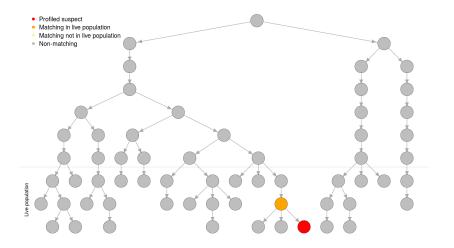
//www.biorxiv.org/content/early/2018/07/20/373423

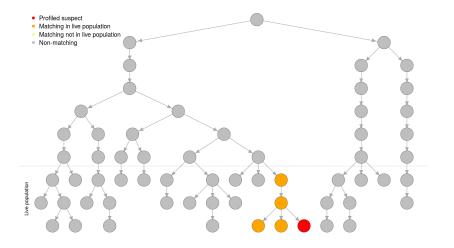

- "How many individuals share a mitochondrial genome?"
 - ▶ https:

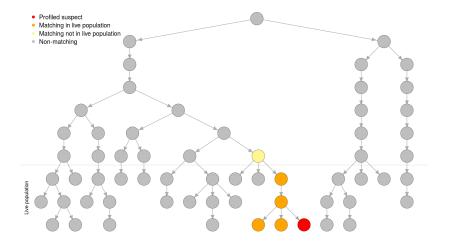
//www.biorxiv.org/content/early/2018/07/23/374686

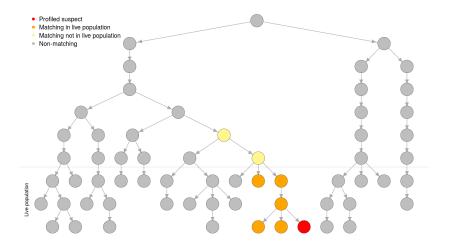

► All results: Yfiler Plus (PowerPlex Y23 in papers)

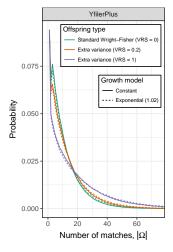
Recap

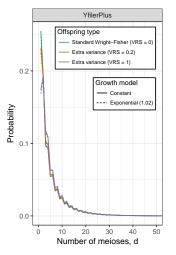












95% quantile \approx 40

95% quantile \approx 20

Recap: Evidence

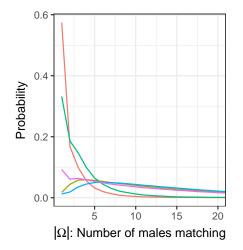
 $[\dots]$ the number of males in the population with a matching Y profile is very unlikely (probability < 5%) to exceed 40 $[\dots]$

They are all **paternal-line relatives** of Q, but the relationship may extend over many father-son steps, well beyond the known relatives of Q. [...] **similar in ethnic identity, language, religion, physical appearance and place of residence**.

Recap: Results

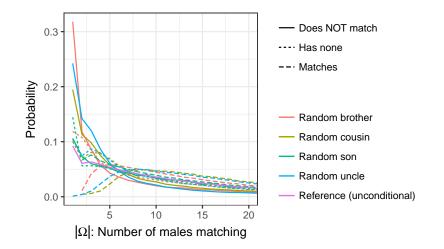
- Likelihood ratio:
 - ► Match probability: Number of meioses from queried contributor *Q* to the particular individual *X*
 - ► Known population of interest (???) with size N: LR = 1/(40/N) = N/40
 - "Unrelated man" vs "Random man"
 - ► What population? Varying population frequency.
- ► Report: Number of males with matching Y profiles
 - Previously done for autosomal DNA profiles (in mid-1990s, the England and Wales Court of Appeal recommended this instead of a match probability)

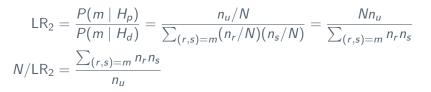
Extensions



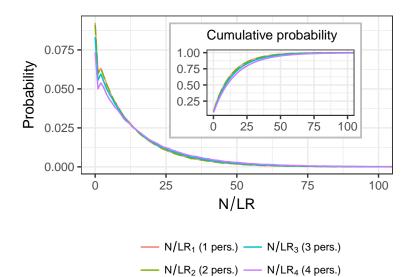
- Database information
 - Representative sample?
 - Importance sampling reweighting: number of matching males conditional on a database frequency
 - ▶ 95% quantiles:

- Close paternal relatives
- Mixtures


Close paternal relatives


- Father: Does NOT match
- Father: Matches
- Grandfather: Does NOT match
- Grandfather: Matches
- Reference (unconditional)

Close paternal relatives


BREAKIN

Mixtures

- ► Q: Queried contributor
- ► q: Profile of Q
- ▶ *m*: Observed mixture
- N: population size
- ► n_a: Population count of profile a
- ▶ u = m q: profile of U, the unknown in H_p $(H_p : Q + U)$
- (r, s): Pairs that make up $m(H_d : R + S)$

Mixtures

15

UNIVERSIT

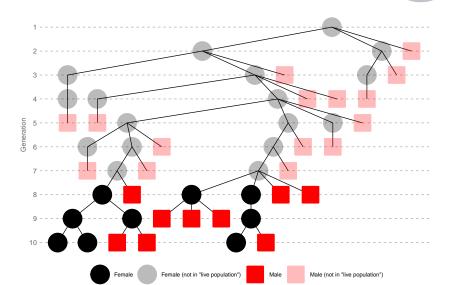
 Inclusion in a (2 pers.) Y-mixture: Almost as strong evidence as a single-contributor evidence profile.

Number of (r, s) sets	Count	%
0	15	0.00%
1	482,896	96.58%
2	16,411	3.28%
3-49	678	0.14%
≥ 50	0	0%

$$N/LR_2 = \frac{\sum_{(r,s)=m} n_r n_s}{n_u} \quad \stackrel{|\{(r,s)=m\}|=1}{=} \quad \frac{n_u n_q}{n_u} = n_q = N/LR_1$$

Simulating Y-profiles: Malan

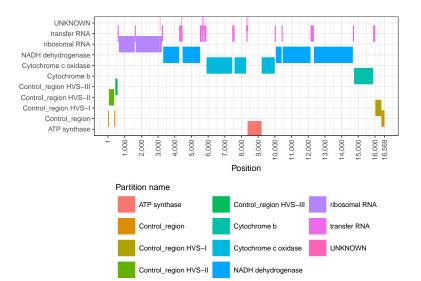
- ► Open source R package with C++ code through Rcpp
 - https://github.com/mikldk/malan
 - http://joss.theoj.org/papers/10.21105/joss.00684
- 2017: "How convincing is a matching Y-chromosome profile?" (PLoS Genetics)
 - https://doi.org/10.1371/journal.pgen.1007028
- "Y-profile evidence: close paternal relatives and mixtures"


▶ https:

//www.biorxiv.org/content/early/2018/07/20/373423

Mitochondrial genomes (mitogenomes)

- ► Whole mitochondrial genome (*mitogenome*)
- ► Similar to Y-profiles, but lower mutation rate
- Different genetics
- Mutation rates (phylotree/pedigree)


Simulating mitogenomes

19

PLBOAG UNIVERSIT

Mutation schemes

GROUNO

PLOAC UNIVERSIT

20

TEAK ON THE

Mutation schemes

Number of sites:

Region	Rieux (2014)	Översti (2017)
HVS1 + HVS2	698	1,122
PC1 + PC2	7,565	
PC3	3,776	
rRNA + tRNA	4,031	
—		
Mitogenome	16,070	16,494

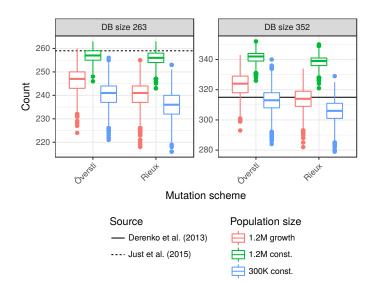
Mutation schemes

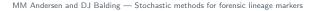
Read INTRODUCED

- Mutation rate per site class
- ▶ Generation time: 25 years

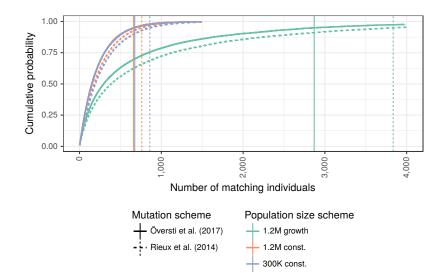
Region	Rieux (2014)	Översti (2017)
Entire mitegenome	0.0110 (1:90)	0.0135 (1:74)

 Sample from 95% highest posterior density interval for each class

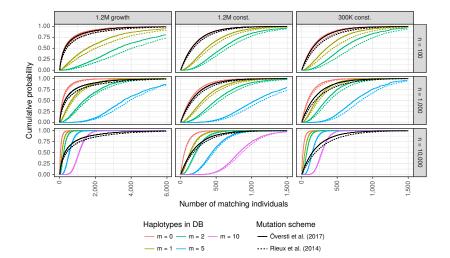

Population sizes

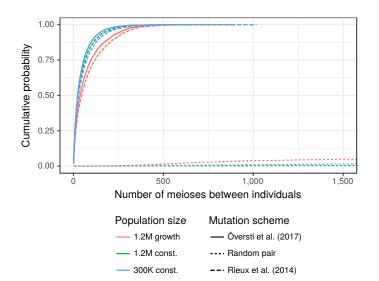


Three demographic scenarios yielding a live population of 300 K, 1.2 M, and 1.2 M:


- ► Constant-size Wright-Fisher populations
 - ► 50K females per generation for 1,200 generations; live population of 2 × 3 × 50,000 = 300K
 - ► 200K females per generation for 1,200 generations; live population of 2 × 3 × 300,000 = 1.2M
- Growth
 - ► 10,000 for 1,000 generations
 - ▶ Growth: 2% per generation for 150 generations
 - ► Final generation with 200K females
 - Live population of $2 \times 3 \times 300,000 = 1.2M$

Comparing to real DBs – number of different mitogenomes




Mitogenomes

Mitogenomes

Mitogenomes

- ► Not as few matching individuals as with modern Y-profiles
- Simulation tool for further research
- Exploit database information?
 - ► DBs randomly sampled?

Simulating mitogenomes: Mitolina

- ► Open source R package with C++ code through Rcpp
 - https://github.com/mikldk/mitolina
- "How many individuals share a mitochondrial genome?"
 - https:

//www.biorxiv.org/content/early/2018/07/23/374686