Y-profile evidence:
 Close paternal relatives and mixtures

$$
\text { Sep 13, } 2019
$$

Mikkel M Andersen* and David J Balding * mikl@math. aau.dk

The 28th Congress of the International Society for Forensic Genetics Prague, the Czech Republic

Y profiles are rare

All (modern) Y profiles are rare and shared by close relatives only.

Y profiles are rare

All (modern) Y profiles are rare and shared by close relatives only.

Very likely that at most 40 men share a YfilerPlus profile and they are very likely only separated by up to 20 meioses.

All (modern) Y profiles are rare and shared by close relatives only.

Very likely that at most 40 men share a YfilerPlus profile and they are very likely only separated by up to 20 meioses.

All results are for YfilerPlus.

Simulation model

- Profiled suspect
- Matching in live population

Matching not in live population

- Non-matching

Close paternal relatives

- Father: Does NOT match
- Father: Matches
- Grandfather: Matches
- Reference (unconditional)
- Grandfather: Does NOT match

Close paternal relatives

- Does NOT match
---. Has none
--. Matches
- Random brother - Random uncle
- Random cousin - Reference (unconditional)
- Random son

Reporting weight of evidence

- Match probability
- No. of meioses between suspect and members of suspect/reference population
- Suspect population specified: e.g. birth years, genealogy, ...
- Recently discussed for Y profiles by Caliebe and Krawczak (2018)
- Very likely that at most 40 men share a YfilerPlus profile
- Previously used for autosomal profiles; different from the $L R$ reporting
- Additional information (on close paternal relatives): matching/non-matching, living elsewhere, ...

Example with $L R^{\prime}$ s

Suspect population size $N: L R \approx 1 /(n / N)=N / n$.

Example with $L R^{\prime}$ s

Suspect population size $N: L R \approx 1 /(n / N)=N / n$.
Nothing known about suspect's paternal pedigree:

N		$L R$
$2,000,000$	$2,000,000 / 40=$	50,000
200,000	$200,000 / 40=$	5,000
20,000	$20,000 / 40=$	500

Example with $L R$'s

Suspect population size $N: L R \approx 1 /(n / N)=N / n$.
Nothing known about suspect's paternal pedigree:

N		$L R$
$2,000,000$	$2,000,000 / 40=$	50,000
200,000	$200,000 / 40=$	5,000
20,000	$20,000 / 40=$	500

Suspect and his father have different profiles:

N		$L R$
$2,000,000$	$2,000,000 / 10=$	200,000
200,000	$200,000 / 10=$	20,000
20,000	$20,000 / 10=$	2,000

Example with $L R^{\prime}$ s

Suspect population size $N: L R \approx 1 /(n / N)=N / n$.
Nothing known about suspect's paternal pedigree:

N		$L R$
$2,000,000$	$2,000,000 / 40=$	50,000
200,000	$200,000 / 40=$	5,000
20,000	$20,000 / 40=$	500

Suspect and his father have different profiles:

N		$L R$
$2,000,000$	$2,000,000 / 10=$	200,000
200,000	$200,000 / 10=$	20,000
20,000	$20,000 / 10=$	2,000

Suspect has no brothers; has two uncles (one matching); ...

MIXTURES

Mixtures

A person is upper-case; the corresponding person's profile is lower-case.

- m: Observed mixture
- Q: Queried contributor (with profile q)
- Hypotheses
- $H_{p}: Q+U$ for unknown U s.t. $m=q+u$
- $H_{d}: R+S$ for any pair unknowns R and S such that $m=r+s$

$$
\begin{aligned}
\mathrm{LR}_{2} & =\frac{P\left(m \mid H_{p}\right)}{P\left(m \mid H_{d}\right)}=\frac{n_{u} / N}{\sum_{(r, s)=m}\left(n_{r} / N\right)\left(n_{s} / N\right)}=\frac{N n_{u}}{\sum_{(r, s)=m} n_{r} n_{s}} \\
N / \mathrm{LR}_{2} & =\frac{\sum_{(r, s)=\boldsymbol{m}} \boldsymbol{n}_{r} \boldsymbol{n}_{s}}{\boldsymbol{n}_{\boldsymbol{u}}}
\end{aligned}
$$

for population size N and n_{a} the population count of profile a.

Mixtures

SIMULATED VS REAL POPULATIONS

Population simulations vs real populations

Danish data (retrived in 2017):

- 5,052,681 males
- Birthyear range: 1858-2017
- Unfortunately:
- Individuals born 1969 and later: complete data (e.g. father, mother, ...)
- Individuals born 1968 and before: most probably incomplete
- Many small pedigrees (largest of size 37 males, many much smaller)
- Merge pedigrees by adding surrogate ancestors
- Future: more different ways

Observed pedigree

- Pedigree member

Person of interest (Pol)

In silico merge to larger genealogy

- Pedigree member - Real male

Person of interest (Pol) • Surrogate male

Randomly assign YfilerPlus haplotypes

Matching in total: 14
Matching in live population (1959-2003): 9

- Matching (in live population) - Real male
- Matching (not live)
- Serson of interest (Pol)

Randomly assign YfilerPlus haplotypes

Matching in total: 83
Matching in live population (1959-2003): 10

- Matching (in live population) : Real male
- Matching (not live)
: Surrogate male
Person of interest (Pol)

How realistic are population simulations?

Doing this for many pedigrees, many merges and many mutation process (a total of 125,000 realisations):

Thank you for your attention!

Thank you for your attention!

References:

- "How convincing is a matching Y-chromosome profile?" (DOI: 10.1371/journal.pgen.1007028)
- "Y-profile evidence: close paternal relatives and mixtures" (DOI: 10.1016/j.fsigen.2018.10.004)
- Software: https://github.com/mikldk/malan

Advertisements for posters:

- P316: "Validation of a population simulation model for the estimation of Y-haplotype frequencies in forensic cases using a large French-Canadian dataset" (R Landry, MM Andersen, E Milot)
- P512: "Isoallelic frequency estimation for STR markers from massive parallel sequencing data" (MM Andersen and T Tvedebrink)

