Y-profile evidence: Close paternal relatives and mixtures

Sep 13, 2019

Mikkel M Andersen* and David J Balding * mikl@math.aau.dk

The 28th Congress of the International Society for Forensic Genetics Prague, the Czech Republic

All (modern) Y profiles are rare and shared by close relatives only.

All (modern) Y profiles are rare and shared by close relatives only.

Very likely that at most 40 men share a YfilerPlus profile and they are very likely only separated by up to 20 meioses.

All (modern) Y profiles are rare and shared by close relatives only.

Very likely that at most 40 men share a YfilerPlus profile and they are very likely only separated by up to 20 meioses.

All results are for YfilerPlus.

Simulation model

Close paternal relatives

HUNG NEW

Grandfather: Does NOT match

Close paternal relatives

HING NEW GROUND

Reporting weight of evidence

Match probability

- No. of meioses between suspect and members of suspect/reference population
- Suspect population specified: e.g. birth years, genealogy, ...
- Recently discussed for Y profiles by Caliebe and Krawczak (2018)

► Very likely that at most 40 men share a YfilerPlus profile

- Previously used for autosomal profiles; different from the LR reporting
- Additional information (on close paternal relatives): matching/non-matching, living elsewhere, ...

Example with *LR*'s

Suspect population size N: $LR \approx 1/(n/N) = N/n$.

Example with *LR*'s

Suspect population size N: $LR \approx 1/(n/N) = N/n$.

Nothing known about suspect's paternal pedigree:

N		LR
2,000,000	2,000,000/40 =	50,000
200,000	200,000/40 =	5,000
20,000	20,000/40 =	500

Example with *LR*'s

Suspect population size N: $LR \approx 1/(n/N) = N/n$.

Nothing known about suspect's paternal pedigree:

	LR
2,000,000/40 =	50,000
200,000/40 =	5,000
20,000/40 =	500
	2,000,000/40 = 200,000/40 = 20,000/40 =

Suspect and his father have different profiles:

N		ĹR
2,000,000	2,000,000/10 =	200,000
200,000	200,000/10 =	20,000
20,000	20,000/10 =	2,000

Example with *LR*'s

Suspect population size N: $LR \approx 1/(n/N) = N/n$.

Nothing known about suspect's paternal pedigree:

	LR
2,000,000/40 =	50,000
200,000/40 =	5,000
20,000/40 =	500
	2,000,000/40 = 200,000/40 = 20,000/40 =

Suspect and his father have different profiles:

N		ĹR
2,000,000	2,000,000/10 =	200,000
200,000	200,000/10 =	20,000
20,000	20,000/10 =	2,000

Suspect has no brothers; has two uncles (one matching); ...

MIXTURES

A person is upper-case; the corresponding person's profile is lower-case.

- ▶ *m*: Observed mixture
- Q: Queried contributor (with profile q)
- Hypotheses
 - $H_p: Q + U$ for unknown U s.t. m = q + u
 - H_d : R + S for any pair unknowns R and S such that m = r + s

$$LR_{2} = \frac{P(m \mid H_{p})}{P(m \mid H_{d})} = \frac{n_{u}/N}{\sum_{(r,s)=m}(n_{r}/N)(n_{s}/N)} = \frac{Nn_{u}}{\sum_{(r,s)=m}n_{r}n_{s}}$$
$$N/LR_{2} = \frac{\sum_{(r,s)=m}n_{r}n_{s}}{n_{u}}$$

for population size N and n_a the population count of profile a.

Mixtures

— N/LR₂ (2 pers.) — N/LR₄ (4 pers.)

SIMULATED VS REAL POPULATIONS

Population simulations vs real populations

Danish data (retrived in 2017):

- ▶ 5,052,681 males
- ▶ Birthyear range: 1858-2017
- Unfortunately:
 - Individuals born 1969 and later: complete data (e.g. father, mother, ...)
 - ▶ Individuals born 1968 and before: most probably incomplete
 - Many small pedigrees (largest of size 37 males, many much smaller)
- Merge pedigrees by adding surrogate ancestors
 - Future: more different ways

In silico merge to larger genealogy

VERSI

Randomly assign YfilerPlus haplotypes

14

Randomly assign YfilerPlus haplotypes

How realistic are population simulations?

Doing this for many pedigrees, many

merges and many mutation process (a total of 125,000 realisations):

Thank you for your attention!

Thank you for your attention!

References:

- "How convincing is a matching Y-chromosome profile?" (DOI: 10.1371/journal.pgen.1007028)
- "Y-profile evidence: close paternal relatives and mixtures" (DOI: 10.1016/j.fsigen.2018.10.004)
- Software: https://github.com/mikldk/malan

Advertisements for posters:

- P316: "Validation of a population simulation model for the estimation of Y-haplotype frequencies in forensic cases using a large French-Canadian dataset" (R Landry, MM Andersen, E Milot)
- P512: "Isoallelic frequency estimation for STR markers from massive parallel sequencing data" (MM Andersen and T Tvedebrink)