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Chapter 1

Courses

I’ve been enrolled in the following courses at La Trobe University, Melbourne, Aus-
tralia (the descriptions is taken from [University, 2009a]):

STA4SI – Statistical Inference (taught by Paul Kabaila) This unit covers a selec-
tion of topics in classical statistical inference at the fourth year level. It con-
sists of a selection of material from the following chapters of [Casella and
Berger, 2002]: Chapter 6 (Principles of Data Reduction), Chapter 7 (Point Esti-
mation), Chapter 8 (Hypothesis Testing), Chapter 9 (Interval Estimation) and
Chapter 10 (Asymptotic Evaluations). A knowledge of this material is help-
ful in almost any statistical endeavour. References: Lecture material based on
[Casella and Berger, 2002].

STA4AMD – Analysis of Medical Data (taught by Robert Staudte) This unit con-
siders calibrating evidence in a test, variance stabilizing transformations, one-
and two-sample Binomial models, evaluating and comparing Poisson rates,
evidence in one and two-sample Welch t-tests and compensating for publi-
cation bias. The evidence obtained by variance stabilization will be the basis
for confidence intervals for effects, which are demonstrably more accurate
than those obtained by traditional large-sample methods. Further, variance
stabilizations facilitates a meta-analysis of results from different studies. Ref-
erences: [Kulinskaya et al., 2008].

STA3AS – Applied Statistics (taught by Luke Prendergast and Andriy Olenko)
This unit provides advanced-level introductions to the topics of sample sur-
veys, multivariate analysis and time series analysis. These topics are very
important in applied statistics. The unit also includes an introduction to sta-
tistical consulting. On successful completion of this unit, the student should
have: 1) An understanding of the subtle difficulties encountered when analysing
data sampled using simple random sampling. 2) A theoretical understanding
of some common, yet powerful, statistical methods for the analysis of multi-
variate data. 3) An understanding of formulating, estimating and interpreting
various linear time series models for empirical studies. 4) An understanding
of conducting basic statistical inquiries with meaningful interpretation. Refer
to [University, 2009b] for a unit guide. References: [Prendergast and Kabaila,
2009] (lecture notes based on [Rice, 2006], [Johnson and Wichern, 2001], and
[Box et al., 1994]).
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1.1 STA3AS – Applied Statistics

1.1.1 Studied topics

• Sample surveys

– Simple random sampling

– Stratified random sampling

– Overview of other survey sampling schemes and potential improper
uses (systematic, cluster, and unrepresentative sampling)

• The multivariate normal distribution

– The connection with the χ2
p-distribution

– Solid ellipsoids and the squarred statistical distance (X − µ)> Σ−1 (X − µ)
of X from µ

– Estimation of the mean vector and covariance matrix

– Checking for multivariate normality (through univariate marginals, bi-
variate maginals etc.)

– Testing the normal population mean (and how Hotelling’s T2-test is in-
ferred from the t-test in the univariate case)

– Simultaneous confidence statements: T2 intervals inferred from the Max-
imization lemma in [Johnson and Wichern, 2001] stating that: For a pos-
itive definite p × p matrix B and d a given p-dimensional vector, let

f (x) = (x>d)2

x>Bx . Then it’s true that maxx 6=0 f (x) = d>B−1d. It’s also
true that for c 6= 0 then x = cB−1d maximizes f (x).

• Principal component analysis

– Population principal components

– Sample principal components

• Classification (only for two populations)

– Known pdfs for the populations

∗ ECM – Expected cost of misclassification
∗ TPM – Total probability of misclassification (equivalent to equaling

the costs of misclassification)

– Multivariate normal distributed populations

∗ Explicit ECM for both equal and unequal covariance matrices

– Fisher’s discriminant function for equal covariance matrices

– Problems with classification rules, e.g. (estimation of) covariance matrix
can be singular if the dimension of data equals or exceeds the number of
observations

– Use of principal component analysis together with classification in order
to avoid singular (estimation of) covariance matrix

• Time series

– First and second order autoregressive process, i.e. AR(1) and AR(2)
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– Introduction to processes of arbitrary order: AR(p), MA(q) (moving
average), ARMA(p, q) (autoregressive moving average process), and
ARIMA(p, d, q) (autoregressive integrated moving average process), e.g.
finding autocovariance functions for given processes and 1-, 2-, and 3-
step forecasting

• One and a half weeks with statistical consulting (a very little theory on what is
important when meeting a client, how to start, pitfalls etc., but mainly learn-
ing by doing though one mini-project/assignment)

Some general mathematical topics used and slightly studied (no proofs):

• The δ-method

• Lagranges multipliers

• Simple operation theory (used for the the delay operator in time series)

1.1.2 Assignments

One weekly assignment making 12 in total. Those were divided on 11 theoretical
assignments (7 in sample surveys and multivariate analysis in addition to 4 in time
series) and 1 in statistical consultancy (practical with another student so that we
each others clients and statistician).

1.2 STA4SI – Statistical Inference

A continuation of STA3SI, which should be somewhat equivalent to the MAT4-
course ”Statistical Theory and Method“ at AAU, but some overlap occured.

1.2.1 Studied topics

• Data reduction

– By sufficiency (a bit of repitition of ”Statistical Theory and Method“)

– By an ancillary statistic (a statistic that doesn’t depend on the unknown
parameter θ, whereas we in general want statistics to depend on θ as
much as possible to make inference from it)

∗ Motivated with Cox’s example of mixtured normal distributions
∗ Useful practical examples: linear regression (how conditioning on

observations makes inference easier to deal with as opposed to treat-
ing observations as random variables) and how conditioning on the
column sum in a 2× 2 contingency table is ”a kind of ancillary statis-
tic” (rumor has it that this was Fisher’s words) and can make infer-
ence easier
∗ How the order of data reduction matters (through Cox’s example of

mixtured normal distributions)

– By equivariance

9



• Exact and approximate confindence intervals and their properties such as
coverage and risk functions

• The effect of preliminary model selection on confidence intervals studied
through [Freeman, 1989] (”The performance of the two-stage analysis of two-
treatment, two-period crossover trials“)

– The confidence coefficient of the confidence interval after a preliminary
test is horrible (an example is made for certain choices of parameters
such as level of significans and the confidence coefficient is below 0.5)

– Preliminary testing in this certain case with analysis of two-treatment,
two-period crossover trials gives false security – the recommendation is:
don’t do it!

• Estimators

– Maximum likelihood estimation and invariance property of MLEs (if θ̂
is a MLE of θ then, for any function τ (θ), an MLE of τ (θ) is τ

(
θ̂
)
)

– Methods of evaluating estimators: mean squarred error and risk func-
tions (with a generic loss function measuring the distance between the
estimator and the parameter of interest)

– The Cramér-Rao Inequality

• Hypothesis testing basics

• The Neyman-Pearson Lemma

• Intersection-Union Tests

• The Probability Integral Transformation Theorem

• Confidence sets obtained by inverting a family of hypothesis tests

• Large-sample results and a asymptotic theory

– Convergence in probability and distribution (and why the first implies
the latter)

– Slutsky’s Theorem (without proof)

– The δ-method / the delta-method and the flaws in the simple formula-
tion (refer to the footnote in section 3.2.2)

– Consistent estimators (and sufficient conditions)

– Asymptotic variance, limiting variance and the inequality for unbiased
estimators (when the limiting variance exist)

– The optimality of MLE’s in regards to asymptotic variance under certain
regularity conditions

1.2.2 Assignments

Seven assignments in total.
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1.3 STA4AMD – Analysis of Medical Data

1.3.1 Studied topics

• Asymptotic results (no proofs)

• Different approximate confidence intervals for the binomial distribution (among
with the Agresti and Coull-correction)

• Traditional meta analysis (combining evidence from K studies)

– Unequal fixed effects model (UFEM)

– Fixed effects model (FEM)

– Random effects model (REM)

– How to choose a model e.g., Cochran’s Q

• Calibration of evidence – refer to section 3.2 for a quick overview of some of
the theory

– What is evidence and what it is in regards to p-values

– Motivating examples (taken from course material):

∗ How much evidence is there in a p-value of 0.01, say, relative to 0.05?
(refer to Table 3.1)
∗ How small must a p-value be to represent twice as much evidence

against the null hypothesis as 0.05?
∗ The random p-value is a monotone function of a test statistic and

hence contains the same evidence for the alternative. This is easily
measured by transforming it to the normal location family, which
serves as a convenient calibration scale.

• Vst’s (variance stabilization transformations), why (e.g. to get known inverse
variance weights in meta analysis and as a bonus often quick convergence to
normal in distribution), and how to derive them (simple approach using the
δ-method) – refer to section 3.2.2 for details

• Evidence in different statistics (t-statistics, simple Binomial and Poisson mod-
els, matched binomial pairs and some others)

• ”New“ meta analysis based on vst’s (refer to section 3.2 for a quick overview
of some of the theory)

– Fixed effects model (FEM) (and an example with matched binomial pairs)

– Random transformed effects model (and an example with matched bi-
nomial pairs)

• Confidence intervals for the risk difference of two binomials

– The confidence interval in [Newcombe, 1998] (using Wilson’s score in-
tervals) for the risk difference

– A vst for the risk difference

– A quick comparing between these and the new exact confidence interval
in [Chan and Zhang, 1999]
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• Evaluating Poisson rates: transformed effect, evidence, and an example using
the L. J. Bortkewitsch’s horse-kicks data set

• Comparing Poisson rates: transformed effect and evidence for unconditional
approach (inference of the rate difference) and conditional approach (infer-
ence of the rate ratio)

• Simple linear meta-regression

1.3.2 Assignments

Four assignments in total.
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Chapter 2

Statistical inference

This chapter is where some of the material from the courses has been described in
details.

2.1 CLT – central limit theorem

A theorem used throughout all the courses is the Central Limit Theorem (CLT). For
i.i.d. random variables X1, . . . , Xn with mean µ and variance σ2 > 0 define

Sn :=
n

∑
i=1

Xi and Xn =
Sn

n
.

Then CLT states that

Zn
D→ N(0, 1) and n→ ∞ where Zn :=

Sn − nµ

σ
√

n
=

Xn − µ

σ/
√

n
.

The theorem can be shown to be true for weaker requirements than i.i.d. random
variables.

It’s worth mentioning that this is a asymptotical result and in practice the conver-
gence can be quite poor.

2.2 Confidence intervals

Confidence intervals are very important. They contain a lot more information than
e.g. p-values. Confidence intervals can roughly be devided into two parts: exact
and approximate confidence intervals. In order to make a proper distinction, a few
defitions have be be made.

Let Θ ⊆ Rd be the parameter space and θ ∈ Θ the unknown parameter. Suppose
that τ(θ) ∈ R is a scalar parameter of interest. Then a confidence interval for τ(θ) is
any pair of real-valued functions L(X) and U(X) satisfying L(x) ≤ U(x) for all data
points x and such that if X = x is observed, then the inference L(x) ≤ τ(θ) ≤ U(x)
is made.

The following two definitions are taken directly from the lecture material of STA4SI.
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Definition 2.1 (Coverage probability). For the confidence interval [L(X), U(X)] for
τ(θ), the coverage probability is the probability that the random interval [L(X), U(X)]
covers τ(θ). In other words, the coverage probability is

Pθ (τ(θ) ∈ [L(X), U(X)]) . �

Definition 2.2 (Confidence coefficient). For the confidence interval [L(X), U(X)]
for τ(θ), the confidence coefficient is defined to be

inf
θ∈Θ

Pθ (τ(θ) ∈ [L(X), U(X)]) .

A confidence interval with confidence coefficient equal to some value, say 1− α, is
called a 1− α confidence interval. �

With these definitions in mind, it possible to make a proper distinction between ex-
act and approximate confidence intervals. Exact confidence intervals usually rely
on the actually distribution of the data, and have a garuanteed confidence coeffi-
cient. On the other hand, approximate confidence intervals usually rely on approx-
imate results (e.g. asymptotic normality, variance stabilization transformations or
similar) and thus usually have a poor confidence coefficient. This means that for
approximate confidence intervals the coverage probability is only as promised for
a sample size n → ∞, which practically is not true no matter how large n is. This
means that in certain cases it’s possible to end up with a quite poor coverage prob-
ability without knowing it.

In this section, I’ll take a closer look at the mentioned topics and give some exam-
ples of how bad things can be.

2.2.1 Confidence intervals for the binomial distribution

Binomial random variables has a great practical importance. Because of this a lot
of reseach in binomal confidence intervals has been performed. First I’ll review
some simple approximate confidence intervals, and afterwards I’ll discuss exact
confidence intervals.

Approximate confidence intervals

This section is based on the lecture material from STA4AMD.

If X ∼ Binomial(n, p), and p̂ = X
n , then for fixed p, CLT states that

X− np√
np(1− p)

D→ N(0, 1) for n→ ∞.

Hence a (1− α)100% approximate confidence interval for p is

I(X) = p̂± z1− α
2

√
p̂ (1− p̂)

n
.

This is also called the Wald interval. Because of the CLT is asymptotical result,
sufficiently big n is required. Because several problems arise near the boundary

14



of the parameter space, samples some people requires that np(1− p) ≥ 5 for the
approximate confidence interval to be sufficiently reliable.

The Wald interval is really poor, and one should avoid using it. To see why, define

A(p) = {x ∈ {0, 1, . . . , n} : p ∈ I(x)} .

Then

Pp (p ∈ I(X)) = ∑
x∈X

Pp (p ∈ I(X) | X = x) Pp (X = x) (by the Law of Total Probability)

= ∑
x∈A(p)

Pp (p ∈ I(X) | X = x) Pp (X = x) +

∑
x∈(A(p))c

Pp (p ∈ I(X) | X = x) Pp (X = x)

(because X = A(p) ∪ (A(p))c and trivially A(p) ∩ (A(p))c = ∅)

= ∑
x∈A(p)

Pp (p ∈ I(X) | X = x) Pp (X = x) +

∑
x 6∈A(p)

Pp (p ∈ I(X) | X = x) Pp (X = x)

= ∑
x∈A(p)

1 · Pp (X = x) + ∑
x 6∈A(p)

0 · Pp (X = x)

= ∑
x∈A(p)

Pp (X = x)

because Pp (p ∈ I(X)) = 1 when X ∈ A(p) and Pp (p ∈ I(X)) = 0 when X 6∈ A(p)
by definition of A(p). Hence Pp (p ∈ I(X)) as a function of p is a discontinuous
function. A terrifying characteristic about the Wald interval is, that for no mat-
ter what n is, we can select a p ∈ (0, 1) such that the coverage probability comes
arbitrary close to 0. This fact will now be proven.

We have to prove that for a given n, we can select p ∈ (0, 1) and ε > 0 such that

Pp (p ∈ I(X)) < ε.

Let n we given. Then we have that

Pp (p ∈ I(X)) = ∑
x∈A(p)

Pp (X = x)

≤ ∑
x∈{1,2,...,n−1}

Pp (X = x) (because A(p) ⊆ {1, 2, . . . , n− 1})

= 1− ∑
x∈{0,n}

Pp (X = x)

= 1−
((

n
0

)
p0 (1− p)n−0 +

(
n
n

)
pn (1− p)n−n

)
= 1−

(
(1− p)n + pn) (because (n

0) = (n
n) = 1)

= 1− (1− p)n − pn.

So for given n, we can choose ε and p such that

Pp (p ∈ I(X)) ≤ 1− (1− p)n − pn < ε,

i.e. when we have been given n and chosen an ε, we have to solve the inequality

1− (1− p)n − pn < ε

15



for p.

As an example, consider n = 10. Now say that we want a coverage probability
below 1− α = 0.5, i.e. very bad. Then we have the inequality

1− (1− p)10 − p10 < 0.5

which we – by the use of Maple – find is true for

p < 0.066 or p > 0.934.

(The true results are p < 0.06696700846 . . . and p > 0.9330329915 . . ., but instead of
traditional rounding, the decimals are chosen to maintain the inequalities.)

To conclude the example, when n = 10 then by choosing p ∈ (0 ; 0.066) ∪
(0.934 ; 1) we get a coverage probability below 0.5.

Notice that the limits are symmetric, i.e. 0.066 = 1− 0.934, this is – by construction
– generally true as well.

With a coverage probability below 1− α = 0.01 we get

p < 0.001 or p > 0.999.

Another example is with n = 783 and a coverage probability below 1− α = 0.5.
Then the inequality is not solve symbolically, but instead one can use numerical
solving (in this case Newton’s Method). We then get

p < 0.00089 or p > 0.99911.

As demonstrated, larger n and smaller ε leads to p closer to 0 and 1.

As mentioned and showed, the convergence is especially poor near the boundary
of the parameter space i.e., for p close to 0 and 1. In these cases it’s highly likely
that x = 0 or x = 1, such that p̂ = 0 or p̂ = 1, respectively. In these cases the
Wald interval becomes a point estimate, namely p̂. Because of this another estimate
given by

p̃ =
X + c
n + 2c

for c ∈ R+,

has been proposed. It can be interpreted as adding c heads and c tails such we move
away from the boundary and the problematic degenerated approximate confidence
interval. This estimate, p̃, is a generalization of the one Agresti and Coull proposed
with c = 1

2 .

Confidence interval through use of a vst

Another way of constructing a confidence interval is to use a vst to obtain a ap-
proximate normal distributed statistic. With the same notation as earlier, let X ∼
Binomial (n, p) and Sn = X

n . Then E [Sn] = p and Var [Sn] = p(1−p)
n . Thus Var [Sn] =

g (E [Sn]) for g(t) = t(1−t)
n . Hence a simple approximate vst is

h(x) =
∫ x

(g(t))−
1
2 dt =

∫ x ( n
t(1− t)

) 1
2

dt = 2
√

n sin−1 (√x
)
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by the δ-method (refer to section 3.2.2 for details). Now h (Sn) is approximately nor-
mal, hence the usual confidence interval can be used. Then by finding the inverse
of the vst, an approximate confidence interval for p can be found. In [Kulinskaya
et al., 2008, chapter 17] further details can be found, e.g. on how further refinements
can improve the coverage of the interval.

Final remarks

For a comparison of different binomal confidence intervals, please refer to [Brown
et al., 2001].

Because of the poor properties (typically poor coverage probability) of the approxi-
mate confidence intervals, it’s desireable to find and use exact confidence intervals
based on the exact distribution of X and not just a convergence in distribution to
normality as n tends infinity. This is because these kinds of intervals are guaranteed
to have confidence coefficient equal to a pre-specified value 1− α.

One way of finding exact confidence intervals is analysed in [Kabaila, 2005] and
[Kabaila, 2008], but none of these are going to be analyzed in this project.

2.2.2 Risk functions for confidence intervals

There’s several ways to measure the quality of a confidence interval. Besides the
coverage, one can evaluate the so-called risk function.

Definition 2.3 (Risk function). Let X be a random variable whose distribution de-
pends on the parameters θ ∈ Rn. Let [L(X), U(X)] be a confidence interval for a
scalar of interest τ(θ) ∈ R. Then the risk function of this confidence interval is

R(θ) = Eθ [U(X)− L(X)] . �

That is the expected value of the length of the confidence interval.

Two 1− α confidence interval can be compared by comparing their risk functions.

Example 2.4. This example has its starting point in a superficial example in the
lecture notes to STA4SI. Suppose that X ∼ N(θ, 1). The usual confidence interval is

I(x) = [x− z1− α
2

; x + z1− α
2
].

The risk function for this interval is

R(θ) = Eθ [U(X)− L(X)] = Eθ

[(
x + z1− α

2

)
−
(

x− z1− α
2

)]
= Eθ

[
2z1− α

2

]
= 2z1− α

2

which doesn’t depend on θ. A different 1− α confidence interval minimizing the
expected length when θ = 0 is proposed in [Pratt, 1961] as

Ĩ(θ) =


[x− z1−α ; 0] if x ≤ −z1−α

[x− z1−α ; x + z1−α] if −z1−α < x < z1−α

[0 ; x + z1−α] if z1−α ≤ x

It can be shown that both intervals are a 1− α confidence intervals, i.e.

Pθ (θ ∈ I(X)) = Pθ

(
θ ∈ Ĩ(X)

)
= 1− α for all θ.
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Denote the risk function for Ĩ(θ) as R̃(θ) defined by

R̃(θ) = Eθ

[
Ũ(X)− L̃(X)

]
.

To compare the widths of the interval, define

f (θ) =
R̃(θ)
R(θ)

,

where we then are interested in extrema for f (θ). Actually f (θ) has one extremum,
i.e. a minimum at θ = 0 (this can be verified with various method). Now two
different approaches will be demonstrated to find f (0):

1. Simulate it with R and

2. use Maple to perform the calculations.

It’s also possible to find a closed form expression by using the fact that

d
dx

ϕ(x) = −xϕ(x)

where ϕ(x) is the pdf for the standard normal distribution.

Instead of doing that, I’ll first simulate f (θ) with the following R-code:

Mdefault = 1000

alpha <- 0.05

z.a <- qnorm(1-alpha)

R <- 2*qnorm(1-alpha/2)

Rtilde <- function(theta, M=Mdefault)

{

x <- rnorm(M, mean=theta, sd=1)

l <- rep(0, M)

u <- rep(0, M)

for (i in 1:M)

{

if (x[i] <= -z.a)

{

l[i] <- x[i] - z.a

next

}

if (z.a <= x[i])

{

u[i] <- x[i] + z.a

next

}

l[i] <- x[i] - z.a

u[i] <- x[i] + z.a

}

R.tilde <- mean(u-l)

}

f <- function(theta, M=Mdefault)

{

Rtilde(theta, M) / R

}

f0 <- 0

thetas <- seq(-5, 5, 0.01)
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thetas.len <- length(thetas)

ratio <- numeric(thetas.len)

for (i in 1:thetas.len)

{

if (thetas[i] == 0)

{

f0 <- f(0)

ratio[i] <- f0

}

else

{

ratio[i] <- f(thetas[i])

}

}

plot(thetas, ratio, type="l", main="Relative risk functions",

sub=paste("alpha = 0.05 and R.tilde(0)/R(0) =~", round(f0, 4)),

xlab="theta", ylab="R.tilde(theta)/R(theta)")

abline(1, 0)

abline(f(0), 0, lty=3)

cat("Plot based on", Mdefault, "simulations.\n")

cat("f(0) =~", round(f0, 4), " based on", Mdefault, "simulations\n")

for (i in c(10, 100, 1000))

cat("f(0) =~", round(f(0, Mdefault*i), 4), " based on", Mdefault*i, "simulations\n")

Producing figure 2.1 and this output (=~ means approximately):

Plot based on 1000 simulations.

f(0) =~ 0.8501 based on 1000 simulations

f(0) =~ 0.8495 based on 10000 simulations

f(0) =~ 0.85 based on 1e+05 simulations

f(0) =~ 0.8499 based on 1e+06 simulations

Remember that θ = 0 is the one and only minimum of f (θ). With this result in
mind, it’s quite obvious that if θ is near 0, then Ĩ(θ) is a better confidence interval,
but f (θ)→ ∞ as |θ| → ∞.

Instead of relying on simulation, we can also just use Maple to evaluate f (θ) be-
cause

R̃(θ) = Eθ

[
Ũ(X)

]
− Eθ

[
L̃(X)

]
=
∫ ∞

−∞
Ũ(x)g(x)dx−

∫ ∞

−∞
L̃(x)g(x)dx

=
(∫ −z1−α

−∞
0× g(x)dx +

∫ z1−α

−z1−α

(x + z1−α) g(x)dx +
∫ ∞

z1−α

(x + z1−α) g(x)dx
)
−(∫ −z1−α

−∞
(x− z1−α) g(x)dx +

∫ z1−α

−z1−α

(x− z1−α) g(x)dx +
∫ ∞

z1−α

0× g(x)dx
)

=
∫ ∞

−z1−α

(x + z1−α) g(x)dx−
∫ z1−α

−∞
(x− z1−α) g(x)dx

where g(x) is the pdf for X. Then the following Maple-script produces figure 2.2
for α = 0.05:

z := 1.644853626951472;

g :=

proc (x) options operator, arrow;

exp(-(1/2)*(x-t)^2)/sqrt(2*Pi)

end proc;

Rtilde :=

proc (t) options operator, arrow;

int((x+z)*g(x), x = -z .. infinity)-(int((x-z)*g(x), x = -infinity .. z))
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Figure 2.1: Relative risk functions f (θ) = R̃(θ)
R(θ) for α = 0.05 and 1000 simulations. The exact

value for θ = 0 is f (0) = 0.8499.

end proc;

plot([Rtilde(t)/(2*1.959963984540054), 1,

eval(Rtilde(t)/(2*1.959963984540054), t = 0)], t = -5 .. 5)

Notice that the numerical values have been found with the following R-script:

options(digits=22)

qnorm(1-0.05)

[1] 1.644853626951472

qnorm(1-0.05/2)

[1] 1.959963984540054

It’s also possible to calculate the exact minimum with this Maple-code:

eval(Rtilde(t)/(2*1.959963984540054), t = 0)

which gives
f (0) = 0.8498863239.

Notice how the methods yield the same result (if the number of simulated random
variables is high enough)1.

1The lecture notes from STA4SI in week 3 suggests that the minimum is 0.8485, but this result is
invalid. This number appears because [Pratt, 1961, Table 1] states that the ( f (0))2 = 0.72, and the
lecturer has then apparently just used it such that f (0) =

√
0.72 ≈ 0.8485, but this is clearly incorrect.

Please notice that 0.84988632392 ≈ 0.72 so that results indeed is in coherence with the original article.
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Figure 2.2: Relative risk functions f (θ) = R̃(θ)
R(θ) for α = 0.05 made with Maple. The exact

value for θ = 0 is f (0) = 0.8499.

[Farchione and Kabaila, 2008] goes futher and describes how to use prior knowl-
edge, and limiting the error for θ far away from 0. �

2.3 Equivariance

Equivariance is a principle stating that a statician’s inference for given data should
not change when the data is expressed in a different but equivalent form.

This principle will now be illustrated with inference about a binomial distributed
random variable.

Example 2.5 (Binomial Equivariance). This example is based on [Casella and Berger,
2002, Example 6.4.1]. Suppose that

X ∼ Binomial (n, θ)

and that we have a specific prodecure for obtaining an estimate T(x) of θ for an
observed X = x.

Now imagine that x and the specific prodecure for obtaining an estimate T(x) of θ
is provided to two scientists. Scientist 1 just uses T(x), whereas scientist 2 instead
constructs

Y ∼ Binomial (n, 1− θ)
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corrosponding to focusing on the number of failures of the n independent Bernoulli
trials instead of the successes. Now scienist 2 uses T(y) as an estimate of 1− θ. This
estimate is equivalent to the estimate 1− T(y) = 1− T(n− x) of θ.

The principle of equivariance states that it’s reasonable to require that the two sci-
entists obtain the same estimate for θ for all x ∈ {0, 1, . . . , n} i.e.,

T(x) = 1− T(n− x) for all x ∈ {0, 1, . . . , n}.

The principle of equivariance states that we should only consider estimators satis-
fying this condition. This is a greatly simplification of the possible estimators.

For simplicify assume that n = 2k. Then an estimator requires specification of

T(0), T(1), . . . , T(n),

but using the principle of equivariance it’s only necessary to specify

T(0), T(1), . . . , T(k)

because

T(n) = 1− T(n− n) = 1− T(0)
T(n− 1) = 1− T(1)

...
T(k + 1) = 1− T(k− 1).

If for example we consider the generalized Agresti-Coull estimator of p given by

T̃(X) =
X + c
n + 2c

,

then it’s easy to verify that

1− T̃(n− x) = 1− (n− x) + c
n + 2c

=
(n + 2c)− (n− x + c)

n + 2c

=
n + 2c− n + x− c

n + 2c

=
x + c

n + 2c
= T̃(x)

for all x ∈ {0, 1, . . . , n}, showing that it satisfies the principle of equivariance. �
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Chapter 3

Meta analysis

This entire chapter is based on [Kulinskaya et al., 2008] and the lecture material
from STA4AMD.

In this chapter some theory about meta analysis and neo meta analysis (using trans-
formed effects) will be described. In chapter 4 some examples utilizing the different
meta analysis approaches will be presented.

Meta analysis is a theory of how to combine studies to one conclusion using the
information in the provided studies in the best possible way.

What we want to combine from each study is an effect, and all the studies estimate
the same effect. Throughout this chapter it is assumed that K independent studies
are to be combined. The estimated effect for the k’th study is denoted θ̂k and are
based on Nk observations.

A key assumption is that the effect is asymptotic normal distributed. Non-trivial
examples where this is the case is for two binomial samples (e.g. treatment and
control group) with the effect is risk difference, log relative risk, or log odds ratio.
Notice that relative risk and odds ratio are not asymptoticly normal without the
logarithm transformation. This assumptions is denoted as

θ̂k ∼ AN

(
θk,

σ2
k

Nk

)
for k = 1, 2, . . . , K.

Effects for comparing normal samples can be mean difference µ1− µ2 or Cohen’s d
defined as d = µ1−µ2

σ with σ2 is assumed to be a common variance.

By combining the estimated effects one either hopes to be able to estimate a rep-
resentative θ for all K studies, or maybe even for all studies of the same type (the
latter is treated in section 3.1.3).

Also define zβ by P
(
Z ≤ zβ

)
= β for Z ∼ N(0, 1).

3.1 Traditional meta analysis

Often one operates with three different models, UFEM, FEM, and REF which will
now be described.
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Like inituiotion might tell us, each study has to be weightened when combining the
studies. This is normally done using an inverse variance approach. This is perfectly
reasonable when the variance is known, but that is often not the case. Therefore the
weights wk are estimated with the inverse estimate of the variances. This estimation
of wk turns out to be crucial in the quality of the confidence intervals for a combined
”true“ parameter in terms of coverage probability. This topic is investigated further
in section 3.2.

3.1.1 Unequal fixed effects model (UFEM)

This model assumes that the the true effects are fixed and not necessarily equal,
hence the name.

Because the effects are asymptotic normal, a large sample 100(1− α)% confidence
interval for each θk is

θ̂k ± z1− α
2
σkN−

1
2

k

if the variance is known, and if that is not the case, then

θ̂k ± z1− α
2
σ̂kN−

1
2

k

where the variance is estimated by the usual estimate.

In order to combine the studies, each study is weigthed by

wk =
Nk

σ2
k

to calculate a weighted effect

θw = ∑K
k=1 wkθk

W
for W =

K

∑
k=1

wk.

yielding
θ̂w ∼ AN

(
θw, W−1

)
.

Now the a large sample 100(1− α)% confidence interval for θw is

θ̂w ± z1− α
2
W−

1
2 .

Because we seldom have the wk’s (and hence not θw nor W), these are estimated by
their usual estimates. Thus the a large sample 100(1− α)% confidence interval for
θw is

θ̂ŵ ± z1− α
2
Ŵ−

1
2 .

Here a representative θ for all K studies is estimated.

3.1.2 (Equal) Fixed effects model (FEM)

This is a special case of UFEM with θk = θ for all k. This directly results in

θw = ∑K
k=1 wkθk

∑K
k=1 wk

=
θ ∑K

k=1 wk

∑K
k=1 wk

= θ,
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and hence a large sample 100(1− α)% confidence interval for θ is

θ̂ ± z1− α
2
W−

1
2 for θ̂ = ∑K

k=1 wk θ̂k

W

if the weights are known, because this results in the smallest asymptotic variance
among all unbiased linear combinations of the θk’s (this can be shown using for
instance Lagrange multipliers). If the weights are to be estimated, a large sample
100(1− α)% confidence interval for θ is

θ̂ ± z1− α
2
Ŵ−

1
2 for θ̂ = ∑K

k=1 ŵk θ̂k

Ŵ
.

3.1.3 Random effects model (REM)

This model tries to estimate effects from all studies of the same type. It is assumed
that the true effects θk are realizations of a random variable distributed as N

(
θ, γ2)

with both parameters unknown, where γ2 interprets as an inter-study variance.
Hence inference on θ can be interpreted as saying something about all such possible
studies.

Because it is assumed that the K studies is a random sample from the possible
studies, it is further assumed that the results for (U)FEM is condifional on the θk’s,
i.e.

θ̂k|θk ∼ AN

(
θk,

σ2
k

Nk

)
for k = 1, 2, . . . , K.

Then the unconditional distribution is

θ̂k ∼ AN

(
θk,

σ2
k

Nk
+ γ2

)
for k = 1, 2, . . . , K.

If the conditional distribution is exactly normal, then the unconditional distribution
would be exactly normal as well. Hence the inverse variance weights are

w∗k =

(
σ2

k
Nk

+ γ2

)−1

=
(

w−1
k + γ2

)−1

used by the estimator

θ∗ =
∑K

k=1 w∗k θ̂k

W∗
∼ AN

(
θ, (W∗)−1

)
for W∗ =

k

∑
k=1

w∗k .

Because γ2 is in general unknown, this has to be estimated. To do that, first define
Cochran’s Q as

Q =
K

∑
k=1

wk
(
θ̂k − θ̂w

)2
for θ̂w = ∑K

k=1 wk θ̂k

W
.

It is possible to show that under the null hypothesis of homogeneity, i.e. θk = θ for
all k, it is true that

Q ∼ χ2
K−1
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asymptotically, so that a level α-test rejects the null hypothesis of homogeneity
when

Q ≥ χ2
K−1,1−α.

Using these facts, we can estimate γ2. To do that, define

Mr =
k

∑
k=1

wr
k and a = M1 −

M2

M1

for the inverse variance weights wk = Nk
σ2

k
like before. Then it can be shown that

E [Q] = K− 1 + aγ2,

yielding the DerSimonian and Laird estimator given by

γ̂2
DL =

{Q− (K− 1)}+
a

where

{x}+ =

{
x if x > 0
0 otherwise.

Using the γ̂2
DL estimator, we are now able to estimate the weights

ŵ∗k =
(

ŵ−1
k + γ̂2

DL

)−1

and hence also the estimator

θ̂∗ =
∑K

k=1 ŵ∗k θ̂k

Ŵ∗

of θ and hence a large sample 100(1− α)% confidence interval for θ is

θ∗ ± z1− α
2
(W∗)−

1
2

estimated by

θ̂∗ ± z1− α
2

(
Ŵ∗
)− 1

2 .

3.2 Neo meta analysis

Like described in section 3.1, the inverse variance weights are often estimated be-
cause the variance is unknown. This leads to quite poor intervals if the sample sizes
are small because the results are only asymptotic. To avoid this problem, one ap-
proach is to get known variances, e.g. to get variance 1 such that the weights only
depend on the known sample sizes for the studies. A way to do this is to transform
the effects to evidence with vst’s (variance stabilization transformations). Although
this also has to be done approximate, [Kulinskaya et al., 2008, p. 128] states that it
turns out to yield much better results than the traditional approach.

First the concept of evidence is described, and then how effects can be transformed
to evidence, usually with vst’s. This way of getting known variance usually gives
the great bonus of giving fast converging (asymptotic) normality as well.

The theory described in this section will be used for some examples in chapter 4.
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3.2.1 Evidence

[Kulinskaya et al., 2008] gives a lot of motivation of defining evidence. To get this
background-material, please refer to [Kulinskaya et al., 2008].

A measure of evidence is defined as follows. Let θ be an unknown effect and imag-
ine that we want to test H0 : θ = 0 against H1 : θ > 0. Furthermore, let S be a test
statistic which rejects H0 for large values of S. Then the evidence T should fulfill
the following four properties (found in [Kulinskaya et al., 2008, p. 115]):

• E1: The one-sided evidence T is monotonically increasing function of S

• E2: The distribution of T is normal for all values of the unknown parameters

• E3: Var [T] = 1 for all values of the unknown parameters

• E4: The expected evidence τ = τ(θ) = Eθ [T] is monotonically increasing in θ
from τ(0) = 0

Note that a measure of evidence will always have a standard error of 1. Also note
that:

In general, properties E2 fo E4 will hold only approximately, but to a surprising
degree, even for small sample sizes.

[Kulinskaya et al., 2008, p. 115]

The p-value for an observed S = s is p = P0 (S ≥ s) where P0 is the probability
under the null hypothesis. For an observed value of a measure of evidence T = t,
then the p-value can be computed by

p = P0 (T ≥ t) = Φ (−t)

because T is normal with mean value τ and variance 1, and at the null hypothesis
τ = 0 so that T is standard normal at the null hypothesis. This also means that a
p-value can be converted to evidence as

p = 1−Φ (t) ⇔ Φ (t) = 1− p ⇔ t = t(p) = Φ−1 (1− p) .

In table 3.1, which is a reproduction of [Kulinskaya et al., 2008, Table 16.1, p. 116],
a comparison between p-values and values for evidence is shown. The last row in
the table suggests that a p-value of 0.01 only represents

√
2 more evidence than a

p-value of 0.05. To get twice as much evidence compared to a p-value of 0.05, a
p-value of 0.0005 is required.

p 0.0005 0.001 0.01 0.02 0.025 0.05 0.1 0.1587
t(p) 3.291 3.090 2.326 2.054 1.960 1.645 1.276 1.000
t(p)/t(0.05) 2.000 1.879 1.414 1.248 1.192 1.000 0.779 0.608

Table 3.1: Selected values of p-values and comparitive values of evidence
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Example 3.1 (Simple example of evidence in normal sample with known variance).
This example is based on the one given in [Kulinskaya et al., 2008, p. 114-115]. As-
sume that n independent random samples X1, X2, . . . , Xn are taken with

Xi ∼ N
(
µ, σ2

0
)

for i = 1, 2, . . . , n

for unknown µ and known σ2
0 > 0. Further let

θ = µ− µ0

be the unknown effect for a given µ0 ∈ R. Now define the evidence T = T(S) for
H0 : θ = 0 against H1 : θ > 0 (corresponding to µ > µ0) by

T = T(S) =
√

n (S− µ0)
σ0

=
√

n
(
Xn − µ0

)
σ0

for S = Xn =
1
n

n

∑
i=1

Xi.

This is also called the Z-statistic. Now see that the evidence T satisfies all the four
properties:

• E1 (The one-sided evidence T is monotonically increasing function of S): Clearly
statisfied

• E2 (The distribution of T is normal for all values of the unknown parameters):
Satisfied because S is normal and T is just a scaled and shifted compared to
S, hence also normal

• E3 (Var [T] = 1 for all values of the unknown parameters): Var [T] = n
σ2

0
Var

[
Xn
]

=
n
σ2

0

σ2
0

n = 1 for all values of µ

• E4 (The expected evidence τ = τ(θ) = Eθ [T] is monotonically increasing
in θ from τ(0) = 0): τ = Eθ [T] =

√
n

σ0

(
Eθ [Xn]− µ0

)
=
√

n(µ−µ0)
σ0

=
√

nθ
σ0

is
monotonically increasing in θ from τ(0) = 0

Thus T = T(S) is a measure of evidence.

As a simple example, choose µ0 = σ0 = 5. For n = 4 and X4 = 10, the evi-
dence against the null hypothesis against the favor of the positive alternative is

T =
√

4(10−5)
5 = 2 with standard error 1 corresponding to a p-value of Φ(−2) =

0.023. For n = 36 and X36 = 10, the evidence against the null hypothesis is 6
corresponding to a p-value of Φ(−6) = 9.87 · 10−10. �

3.2.2 Variance stabilisation

In example 3.1 the Z-test statistic

Zn =
√

n
(
Xn − µ

)
σ

=
Xn − µ

σ√
n

was used. Because the variance σ2 was assumed known, this gave variance 1 for
all unknown parameter values of µ. In general, forming Zn for n independent
observations Xi for i = 1, 2, . . . , n of any random variable with mean µ and variance
σ2, means that Zn is approximately standard normal because of the central limit
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theorem which was stated in section 2.1. For practical purposes, this is also the case
although the variance is actually unknown and replaced by the usual estimator s2

[Kulinskaya et al., 2008, p. 126].

It is stated in [Kulinskaya et al., 2008, p. 126] that variance stabilization is about
chosing hn (Sn) for a test statistic Sn, where hn might depend on the sample size,
such that

Var [hn (Sn)] ≈ 1

where ≈ means approximately close to. Like [Kulinskaya et al., 2008, definition
17.1, p. 126], this means that Var [hn (Sn)] = 1 + o

(
n−1) = 1 + cn where ncn → 0 as

n→ ∞ where {cn}n∈N could depend on parameter values.

Simplifying with X = Sn, a simple way of actually finding such hn is noting that
the δ-method states1

Var [hn(X)] ≈ Var [X]
(
h′n(X)

)2 .

Then provided that it’s possible to write Var [X] = g (E [X]) for a known function
g [Kulinskaya et al., 2008, p. 127], the vst can then be found as

hn(x) =
∫ x

(g(t))−
1
2 dt

provided that the indefinite integral exists. Thus hn(x) is defined up to an additive
constant. This constant can be chosen, and is often used to center the expected
value of the evidence at 0 at the null hypothesis. Also, we have that

E [hn(X)] ≈ hn (E [X]) .

In practise, although the δ-method only gives approximations to vst’s, this ap-
proach turns out to give rise to better confidence intervals than the traditional ap-
proach cf. [Kulinskaya et al., 2008, p. 128]. This is due to the fact that the vst found
often converges very quickly. Unfortunately, although the method seems simple,
it’s not always easy to find the vst in practise, for example we can end up with a hn
that depends on unknown parameters.

3.2.3 The Key Inferential Function

In [Kulinskaya et al., 2008, section 17.2.2, p. 127] it’s argumented that the four
properties for a measure of evidence is statisfied by hn (Sn). At least if substituting
estimates for unknown parameters still gives a stabilized variance. If that is the
case, the arguments are as follows, directly taken from [Kulinskaya et al., 2008,
section 17.2.2, p. 127] (still remembering that θ is the unknown effect in interest
with the null hypothesis θ = θ0 against the alternative θ > θ0):

1At least the informal version of the δ-method states this whereas the formal statement of δ-
method involves cdf’s instead. For assume that X1, X2, . . . are i.i.d. N(µ, σ2) where µ 6= 0. Let Xn be
the usual estimator of µ. Then it can be shown that using the simple δ-method, 1

Xn
≈ 1

µ −
1

µ2

(
Xn − µ

)
and thus E

[
1

Xn

]
≈ 1

µ , but it can be shown that E
[

1
Xn

]
is not even defined! In [Casella and Berger,

2002, Theorem 5.5.24] a correct version of the δ-method is states as: Suppose that Y1, Y2, . . . is se-
quence of random variables that satisfies

√
n
(
Yn − θ

)
∼ N(0, σ2) in distribution. For a given func-

tion g and a specific value of θ, suppose that g′(θ) exits and is non-zero. Then
√

n
(

g
(
Yn
)
− g(θ)

)
→

N
(

0, (g′ (θ))2
σ2
)

in distribution.
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• E3 (Var [T] = 1 for all values of the unknown parameters): This is exactly how
hn (Sn) was chosen.

• E1 (The one-sided evidence T is monotonically increasing function of S): It is
often the case that hn (Sn) can be chosen to be monotonically increasing in its
argument. In other words, hn (Sn) is still a valid test statistic.

• E4 (The expected evidence τ = τ(θ) = Eθ [T] is monotonically increasing in θ
from τ(0) = 0): In many cases E [hn (Sn)] is of the form

√
nK(θ) where K is

a known monotonic increasing function. By substracting the known constant√
nK (θ0) we can ensure that Tn = hn (Sn)−

√
nK (θ0) will have a mean τ =

E [Tn] that satisfies E4 as well as inheriting properties E1 and E3 from hn (Sn),
because hn is defined only up to an additive constant.

• E2 (The distribution of T is normal for all values of the unknown parameters):
It often turns out that this actually is the case, at least approximately and
usually with quick convergence. But this indeed has to be checked.

Hence a measure of evidence is often chosen to be

Tn = hn (Sn)−
√

nK (θ0)

where E [hn (Sn)] is of the form
√

nK(θ).

Definition 3.2 (The Key Inferential Function). This is [Kulinskaya et al., 2008, def-
inition 17.2, p. 127]. Let a statistical model and a measure of evidence Tn that sat-
isfies properties E1 to E4 be given. Supposing further that its expected evidence
τ = E [Tn] ≈

√
nK (θ). Then K is called the Key Inferential Function or simply the

Key for the statistical model. �

Note that the Key Inferential Function is free of the sample size n.

Like stated in [Kulinskaya et al., 2008, p. 128], the Key Inferential Function is in-
volved in solving many routine problems, among others is finding a 100(1− α)%
confidence interval for θ, which is then[

K−1
(Tn − z1− α

2√
n

)
; K−1

(Tn + z1− α
2√

n

)]
(3.1)

where K−1 denotes the inverse of the Key Inferential Function and z1− α
2

defined
such that P (Z ≤ zα) = α for Z ∼ N(0, 1).

So to summarize: in traditional meta analysis one has two problems:

• asymptotic normality of the effect

– showing that the effect indeed is asymptotic normal

– (choosing an effect with) quick convergence in order to get good confi-
dence intervals for even small sample sizes

• estimate the weights (under the inverse variance approach), where the usual
estimate s2 turns out not always to be that good for small sample sizes

These problems can somewhat be overcome with the concepts just described of
transformed effects and evidence.
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3.2.4 Unequal fixed transformed effects model

Refer to section 3.1.1 for the traditional UFEM-approach and to section 3.1.2 for the
traditional FEM-approach.

Assume that the evidence Tk for θ > θ0 is given for k = 1, 2, . . . , K such that

Tk ∼ N(τk, 1)

where
τk =

√
nkκ and κ = Kθ0 (θ) .

and K is the Key Inferential Function (refer to section 3.2.3 for details).

Now define the combined evidence for θ > θ0 by

T1:K =
√

n1T1 + · · ·+√nKTK√
N

for N =
K

∑
i=1

ni.

Then
E [T1:K] ≈

√
Nκ

such that a 100(1− α)% approximate confidence interval for κ is

T1:K ± z1− α
2√

N
.

Now because κ = Kθ0 (θ) such that θ = K−1
θ0

(κ), a 100(1− α)% approximate confi-
dence interval for θ is[

K−1
θ0

(T1:K − z1− α
2√

N

)
; K−1

θ0

(T1:K + z1− α
2√

N

)]
.

3.2.5 Random transformed effects model

Refer to section 3.1.3 for the traditional REM-approach.

Assume that κ1, . . . , κK are a sample from a N
(
κ, γ2) where both κ and γ > 0 is

unknown. Further, assume that each estimator

κ̂k =
Tk√
nk

has a conditional distribution, given κk, which is N
(

κk, n−1
k

)
. This means that

κ̂k|κk ∼ N
(

κk, n−1
k

)
.

Now because in general E [X] = E [E [X|Y]], we have the unconditional properties

E [κ̂k] = κ and Var [κ̂k] = n−1
k + γ2

which defines the random transformed effects model.

Let κ and s2
κ be the sample mean and sample variance of the κ̂k’s. If all nk are equal,

then

SK−1 =
√

K (κ − 0)
sκ

∼ tK−1 (λ) ,
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hence the evidence for κ > 0 is

T∗1:K =
√

2Ksinh−1
(

κ√
2sκ

)
.

(Refer to [Kulinskaya et al., 2008] for derivation of the vst and the Key Inferential
Function for the non-central t-distribution.)

A 100(1 − α)% approximate confidence interval for κ is based on the Student t
confidence interval given by[

κ − tK−1,1− α
2

sκ√
K

; κ + tK−1,1− α
2

sκ√
K

]
.

Even if the nk differ, then as long as they do not differ too much, the above results
hold. [Kulinskaya et al., 2008, chapter 25] states this requirement as when

γ > 2s1/nk ,

where s2
1/nk

is the sample variance of the n−1
k ’s, then the above result hold.
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Chapter 4

Examples of variance stabilisation
and meta analysis

This sections uses the theory from chapter 3.

4.1 Variance stabilising a non-central χ2 distribution

This example is based on assigment 4 in STA4AMD.

Assume that X ∼ χ2
ν(λ), i.e. chi-square distributed with ν degrees of freedom and

non-centrality parameter λ ≥ 0. Let ν be known (often it is just the sample size
shifted by one) and λ unknown. Assume that we want to derive a measure of
evidence for the alternative λ > 0 against the null hypothesis of λ = 0.

First we will have to derive a vst for X before we can find the measure of evidence.

We known that
E [X] = ν + λ.

Because ν is known,

Var [X] = 2ν + 4λ = 4ν + 4λ− 2ν = 4(ν + λ)− 2ν = 4E [X]− 2ν = g (E [X])

for
g (t) = 4t− 2ν.

Thus

h(X) =
∫ X

(g(t))−
1
2 dt

=
∫ X

(4t− 2ν)−
1
2 dt

=
1
2

(4X− 2ν)
1
2

=
1
2

√
4X− 2ν for X ≥ ν

2

is a variance stabilizing transformation for X up to an additive constant.
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At the null hypothesis λ = 0, so by the δ-method we have that

Eλ=0[h(X)] ≈ h (Eλ=0[X])

= h (ν + λ)

∣∣∣∣∣
λ=0

=
1
2

√
4 (ν + λ)− 2ν

∣∣∣∣∣
λ=0

=
1
2

√
2ν + 4λ

∣∣∣∣∣
λ=0

=
1
2

√
2ν.

For x ≥ ν
2 define

Tν = Tν(x) = h(x)− Eλ=0[h(X)] ≈ 1
2

√
4x− 2ν− 1

2

√
2ν =

1
2

(√
4x− 2ν−

√
2ν
)

as the evidence for the alternative hypothesis λ > 0 to the null hypothesis λ = 0.

To check that the distribution of the evidence Tν is indeed normal, the R-script in
Listing 4.1 has been used. First 100 samples from χ2

ν(λ) are simulated. Then these
are transformed to the centered evidence Tν. Then normal Q-Q plots are made to
check the asymptotic normality. This is done for different values of ν and λ. The
normal Q-Q plots can be seen in Figure 4.1. In Table 4.1 a few summary statistics
are presented.�

1 M <− 100

2 decimals <− 2

3

4 ncchisq.evidence <− function(nu, lambda)

5 {

6 X <− rchisq(M, df=nu, ncp=lambda)

7 X <− X[X >= nu/2]
8 T.nu <− 0.5 ∗ ( sqrt(4∗X - 2∗nu) - sqrt(2∗nu) )

9

10 qqnorm(T.nu, main=paste("QQ plot: nu =", nu, "and lambda =", lambda))

11 qqline(T.nu)
12

13 cat("$",
14 nu, "$ & $",
15 lambda, "$ & $",
16 round(var(X), decimals), "$ & $",
17 round(var(T.nu), decimals), "$ & $",
18 round(mean(T.nu), decimals), "$ \\\\\\hline\n", sep="")

19 }

20

21 lambdas <− c(5, 10, 20)

22 nus <− c(10, 50, 100, 1000)

23 plots <− length(lambdas) ∗ length(nus)
24

25 cols <− 4

26 rows <− floor(sqrt(plots))
27 while (cols ∗ rows < plots)

28 rows <− rows + 1

29

30 png(file="../figures/ex-non-central-chisq-vst-sim.png",
31 bg="white", width = 2000, height = 2000)
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32 par(mfrow=c(rows, cols))

33 par(cex=1.3)
34

35 sink(file="../topics/meta-analysis-examples-ex-non-central-chisq-vst-sim-tab.tex")
36 cat("\\begin{center}\n")
37 cat("\\begin{tabular}{|r|r||r|r|r|r|}\\hline\n")
38 cat("$\\nu$ & $\\lambda$ & $\\hat{\\sigma} X$ & ", sep="")

39 cat("$\\hat{\\sigma} {T {\\nu}}$ & $\\overline{T {\\nu}}$ \\\\\\hline\n", sep="")

40 cat("\\\\[-1em]\\hline\n")
41

42 i <− 1

43 lambdas.len <− length(lambdas)
44 for (lambda in lambdas)

45 {

46 for (nu in nus)

47 ncchisq.evidence(nu, lambda)

48

49 if (i < lambdas.len)

50 cat("\\\\[-1em]\\hline\n")
51

52 i <− i + 1

53 }

54

55 cat("\\end{tabular}\n")
56 cat("\\end{center}\n")
57 sink()
58

59 par(mfrow=c(1,1))
60 dev.off()� �

Listing 4.1: Code for simulating the distribution of Tν

ν λ σ̂X σ̂Tν Tν

10 5 41.16 0.99 0.99
50 5 124.17 1.07 0.4

100 5 238.56 1.06 0.43
1000 5 2028.35 1 0.02

10 10 79.53 1.32 1.54
50 10 137.11 0.93 0.93

100 10 263 1.14 0.71
1000 10 1605.22 0.79 0.27

10 20 122.48 1.16 2.81
50 20 180.32 1.06 1.56

100 20 307.59 1.07 1.31
1000 20 2086.88 1 0.54

Table 4.1: Table with summary statistics of simulating the transformed evidence

Instead of simulating, the distribution can be found by finding the pdf and then
plotting that together with the one for the standard normal distribution. To do this,
we use the theorem that if W = g(V), g is monotonically increasing, and the pdf fV
for V is known, then the pdf fW of W is

fW (w) =

∣∣∣∣∣ 1
g′ (g−1(w))

∣∣∣∣∣ fV

(
g−1(w)

)
.

35



Figure 4.1: Normal Q-Q plots of the transformed evidence.

We have that
y = Tν = Tν(x) =

1
2

(√
4x− 2ν−

√
2ν
)

is a monotonic function of x. With a little algebra, the inverse is found to be

T−1
ν (y) =

1
4

((
2y +

√
2ν
)2

+ 2ν

)
.

First notice that the pdf fX of X, i.e. the pdf for a non-central χ2 distributed random
variable with ν degrees of freedom and non-centrality parameter λ, is given by

fX(x) =
∞

∑
i=0

exp
(
−λ

2

) (
λ
2

)i

i!
fVν+2i (x)

where Vν+2i ∼ χ2
ν+2i. Thus

fTν (y) =

∣∣∣∣∣ 1

T′ν
(

T−1
ν (y)

)∣∣∣∣∣ fX

(
T−1

ν (y)
)

.
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By using R, the dchisq-command can be used instead of the explicit infinite series
for fX(x). We can then compare the pdf’s for the standard normal distribution and
fTν (y) with the R-script in Listing 4.2. The plots can be found in Figure 4.2. Notice
how well the pdf’s match and that the pdf of the transformed evidence is centered
at the null hypothesis of λ = 0.�

1 pdf.T <− function(y, nu, lambda)

2 {

3 T.diff <− function(x) (4∗x - 2∗nu)^(-1/2)
4 T.inv <− function(y) 0.25 ∗ ( (2∗y + sqrt(2∗nu))^2 + 2∗nu)
5 abs(1 / ( T.diff( T.inv(y) ) )) ∗ dchisq( T.inv(y), df=nu, ncp=lambda )

6 }

7

8 plot.pdf.T <−function(nu, lambda)

9 {

10 curve(dnorm(x), ylab="Probability density", xlim=c(-2, 2))

11 curve(pdf.T(x, nu, lambda), add=T, lty="dashed")

12 legend("topright", c("pdf for N(0, 1)", "pdf for T nu"),

13 lty=c("solid", "dashed"))

14 }

15

16 lambdas <− c(0, 5, 10)

17 nus <− c(10, 50, 100, 1000)

18 plots <− length(lambdas) ∗ length(nus)
19

20 cols <− 4

21 rows <− floor(sqrt(plots))
22 while (cols ∗ rows < plots)

23 rows <− rows + 1

24

25 png(file="../figures/ex-non-central-chisq-vst-pdf.png",
26 bg="white", width = 2000, height = 2000)

27 par(mfrow=c(rows, cols))

28 par(cex=1.3)
29

30 for (lambda in lambdas)

31 for (nu in nus)

32 plot.pdf.T(nu, lambda)

33

34 par(mfrow=c(1,1))
35 dev.off()� �

Listing 4.2: Code for plotting the pdf of the transformed evidence

Based on the tables and these plots, it is not unfair to claim that Tν is approximate
standard normal at the null hypothesis, and also normal with variance 1 elsewhere.

4.2 Evidence in the t-statistic

In [Kulinskaya et al., 2008, chapter 20] evidence in the t-statistic is defined and
derived. Here a simple walk-through of some of the results are presented.

Let
Xi ∼ N

(
µ, σ2) for i = 1, 2, . . . , n

for unknown µ and σ2 and Xi independent of Xj for i 6= j.

Assume we have the null hypothesis of µ = µ0 against the alternative µ > µ0 for
some specified µ0. This corresponds to finding the evidence of a positive effect
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Figure 4.2: Plots of the pdf of the transformed evidence Tn against the standard normal
pdf.

µ− µ0 > 0 for a given µ0. Equivalently we can define the effect as the standardised
one, i.e.

θ =
µ− µ0

σ

such that the null hypothesis H0 : θ = θ0 = 0 against H1 : θ > θ0 = 0.

We have the t-statistic given by

tν =
√

n
(
Xn − µ0

)
sn

∼ tn−1(λ),

i.e. non-central t distributed with ν = n− 1 degrees of freedom and non-centrality
parameter λ =

√
nθ. Xn is the usual estimator of µ and sn is the usual unbiased

estimator of σ.

Azorin (supervised by Professor David Cox) published his thesis [Azorin, 1953]
where he derived a vst for a tν(λ) distributed statistic, namely

hν(x) =
√

2ν sinh−1
(

x√
2ν

)
.
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How this can be derived is described in [Kulinskaya et al., 2008, p. 160-161]. Ob-
serve that

hν (tν) =
√

2ν sinh−1

 √n(Xn−µ0)
sn√
2ν

 =
√

2(n− 1) sinh−1

 √
n(Xn−µ0)

sn√
2(n− 1)


which simplifies if replacing ν = n− 1 with n. With this minor correction, we can
define the evidence as

T = hν (tν) ≈
√

2n sinh−1

((
Xn − µ0

)
√

2sn

)
∼ AN (τ, 1)

By multiplying a finite sample correction of n−1.7
n−1 , [Kulinskaya et al., 2008, (20.5), p.

161] claims that the approximation gets better in the tails.

The expected evidence can be found to be

τ = E [T] ≈
√

nK(θ)

for the Key Inferential Functions (refer to section 3.2.3) given by

K(x) =
√

2 sinh−1
(

x√
2

)
.

4.2.1 Power of a level α-test

A level α-test rejects the null hypothesis θ = θ0 = 0 when T ≥ z1−α. To find the
power of such test, denote with β(θ1) the probability of falsely accepting the null
hypothesis when θ1 6= θ0 is the true alternative. Then the power of detecting θ1 > 0
is

1− β(θ1) =1− Pθ1 (T < z1−α)
=Pθ1 (T ≥ z1−α)
=Pθ1 (T − τ ≥ z1−α − τ)
=1− Pθ1 (T − τ ≤ z1−α − τ)
=1−Φ (z1−α − τ)
=Φ (τ − z1−α) .

4.2.2 Choosing sample size

Assume that we want to obtain a specified amount of expected evidence τ =√
nK (θ1) for an actually existing effect θ1. To find the required sample size, one

just solves τ =
√

nK (θ1) for n such that

n =
(

τ

K (θ1)

)2

.
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4.2.3 Confidence interval

Because the set-up is general, the confidence interval for θ in (3.1) can be used with

K−1 (y) =
exp

(
y/
√

2
)
− exp

(
−y/
√

2
)

√
2

in this particular case.

4.3 Overview of evidence for statistics

This section merely plays the role of showing a few other evidence transformations
for other distributions.

For one-sample t-tests we have

T =
√

2ν sinh−1
(

tν√
2ν

)
.

For one-sample Binomial tests we have

T = 2
√

n
(

sin−1
(√

p̃
)
− sin−1 (

√
p0)
)

where p0 is the null hypothesis and p̃ is an estimate of p (or with an ad-hoc correc-
tion applied like described in section 2.2.1).

For X ∼ χ2(λ) statistics, the evidence is

T =
(

X− ν

2

) 1
2 −

(ν

2

) 1
2

.

Evidence in other statistics is also possible. Refer to [Kulinskaya et al., 2008] for
details.

4.4 Example of a meta analysis

4.4.1 Drop in systolic blood pressure

This example is based on an assignment in STA4AMD. A lot of the theory will
be applied on a data set, although not all the theory will be covered thoroughly,
refer to [Kulinskaya et al., 2008] for further details. The R-code used to produce the
results can be found in appendix A.

Summary statistics from K = 7 studies in [Mulrow et al., 2004] can be found in Table
1 in the first seven columns (with k as the first column). The last four columns are
found as follows.

The estimated effect θ̂k is found as the difference between the patient groups, such
that

θ̂k = yk − xk.
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Control group Treatment group
k mk xk s1k nk yk s2k Nk θ̂k spool,k tpool,k Tk
1 24 0.20 13.80 27 −4.80 13.80 51 −5.00 13.80 −1.29 −1.29
2 18 7.40 8.10 20 13.30 8.10 38 5.90 8.10 2.24 2.22
3 64 4.00 15.70 66 11.00 17.10 130 7.00 16.43 2.43 2.42
4 9 −3.00 13.50 10 4.00 15.30 19 7.00 14.48 1.05 1.05
5 25 15.00 16.50 24 8.00 20.40 49 −7.00 18.51 −1.32 −1.32
6 5 2.50 5.10 5 9.80 7.10 10 7.30 6.18 1.87 1.82
7 14 9.90 6.40 19 12.50 6.30 33 2.60 6.34 1.16 1.16

Table 4.2: Summary statistics from the seven studies in [Mulrow et al., 2004]. In each study
the sample mean xk gives the average drop in systolic blood pressure with corresponding
standard deviation s1k for a control group of mk patients. yk is the average drop with cor-
responding standard deviation s2k for a group of nk patients following a weight reducing
diet. Nk is the total number of patiens in the k’th study, i.e. Nk = mk + nk.

The pooled estimate spool,k of standard deviation is found by

spool,k =

√
(mk − 1)s2

1k + (nk − 1)s2
2k

mk + nk − 2

because s1k ≈ s2k in the studies. (The case with differing sample sizes is
described briefly in [Kulinskaya et al., 2008, p. 32].) Thus spool,k can be seen
as an estimator of some common unknown standard deviation σ.

The two-sample pooled t-statistic tpool,k is defined as

tpool,k =
√

mknkθk√
Nkspool,k

such that tpool,k ∼ tνk(λ) with νk = Nk − 2 and the non-centrality parameter λ
as described in [Kulinskaya et al., 2008, p. 32] (where an explicit λ also can be
found).

The evidence Tk for a positive effect θk > 0 is found by

Tk =
√

Nk · K
(

tpool,k√
Nk

)
=
√

Nk · K


√

nk
Nk

(
1− nk

Nk

)
(yk − xk)

spool,k


where K(x) =

√
2 · sinh−1

(
x/
√

2
)

(refer to section 4.2, [Kulinskaya et al.,
2008, chap. 3], or [Kulinskaya et al., 2008, chap. 20] where the latter contains
an elaborate theoretical argument).

Hypothesis testing

A hypothesis tests of θk = 0 against θk > 0 at level α = 0.05 can be made using
tpool,k. Because large values of tpool,k favor the alternative, this is simply done by
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finding the quantiles tνk ,1−α corresponding to 1− 0.05 = 0.95, such that

tN1−2,0.95 = 1.677 > tpool,1 = −1.29

tN2−2,0.95 = 1.688 ≤ tpool,2 = 2.24

tN3−2,0.95 = 1.657 ≤ tpool,3 = 2.43

tN4−2,0.95 = 1.740 > tpool,4 = 1.05

tN5−2,0.95 = 1.678 > tpool,5 = −1.32

tN6−2,0.95 = 1.860 ≤ tpool,6 = 1.87

tN7−2,0.95 = 1.696 > tpool,7 = 1.16

This means that study 2, 3, and 6 reject the null hypothesis θk = 0 in favour of
θk > 0 at significance level α = 0.05.

Instead of using a hypothesis test, we can look at the evidence Tk. If we as usual let
T = 1.645 correspond to weak evidence, then study 2, 3, and 6 would have weak
evidence for the alternative because T2 = 2.22 ≥ 1.645, T3 = 2.42 ≥ 1.645, and
T6 = 1.82 ≥ 1.645. This is in correspondence with the previous result.

Assuming fixed effects model

If we assume a fixed effects model, i.e. θk = θ for all k, we can find a 95% confi-
dence interval for this common θ using the traditional meta-analysis with inverse
variance weights approach like described in section 3.1.2.

From [Kulinskaya et al., 2008, p. 83] we have that

ŵk =
mknk

Nks2
pool,k

resulting in

Ŵ =
7

∑
k=1

ŵk = 0.6556.

Note that the weights are slightly different than described in 3.1.1 because we now
have both a control and a treatment group.

The point estimate of θ is

θ̂ = ∑7
k=1 ŵk θ̂k

Ŵ
= 3.459.

We then have that an approximate 100(1− α)% = 95% confidence interval for θ
given by

[θ̂ − z1− α
2
Ŵ−

1
2 ; θ̂ + z1− α

2
Ŵ−

1
2 ] = [3.459− 2.420 ; 3.459 + 2.420] = [1.038 ; 5.879].

Assuming random effects model

With the weights just found we can compute Cochran’s Q as defined in section 3.1.3
and test at level 0.05 for heterogeneity of effects.
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We have that

Q =
7

∑
k=1

ŵk
(
θ̂k − θ̂

)2 = 12.450

and because
χ2

7−1,0.95 = 12.591,

hence at level 0.05, then because

12.450 = Q < χ2
7−1,0.95 = 12.591,

we cannot reject the null hypothesis of homogeneity. But the margin is very small.

Although Cochran’s Q doesn’t support it, assume a random effects model. Thus
θk ∼ AN(θ, γ2) and θi and θj are independent for i 6= j and θ̂k|θk ∼ AN(θk, w−1

k ).
Now it’s possible to find the DerSimonian and Laird estimate γ̂2

DL of γ2 as described
in section 3.1.3 and then afterwards a confidence interval for θ.

First

γ̂2
DL =

{Q− (K− 1)}+
a

=
6.450
0.524

= 12.297

with a = M1 − M2
M1

and Mr = ∑7
k=1 wr

k.

Now the new weights are found by

ŵ∗k =
(

γ̂2
DL + ŵ−1

k

)−1

resulting in

Ŵ∗ =
7

∑
k=1

ŵ∗k = 0.273.

The point estimate for θ is

θ̂∗ =
∑7

k=1 ŵ∗k θ̂k

Ŵ∗
= 3.026.

We then have that an approximate 100(1− α)% = 95% confidence interval for θ
given by

[θ̂∗− z1− α
2

(
Ŵ∗
)− 1

2 ; θ̂∗+ z1− α
2

(
Ŵ∗
)− 1

2 ] = [3.026− 3.746 ; 3.026 + 3.746] = [−0.720 ; 6.771].

This seems reasonable that the interval gets wider than when assuming fixed effects
model because study 1 and 5 has notable different values of θ̂k than the rest.

Using transformed effects

First define the standardized effect

δk =
√

qk(1− qk)θk

σk
for qk =

nk

Nk

estimated by substituting in the usual estimates and note that

tpool,k =
√

Nk δ̂k (because mk
Nk

= Nk−nk
Nk

= 1− q).
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Because we have already calculated tpool,k, it’s easily found that

δ̂1 = −0.181

δ̂2 = 0.364

δ̂3 = 0.213

δ̂4 = 0.241

δ̂5 = −0.189

δ̂6 = 0.590

δ̂7 = 0.203.

Assuming that

Var [xik] = Var
[
yjk
]

= σ2
k for all i = 1, 2, . . . , mk and j = 1, 2, . . . , nk

such that

Var [xk] = m−2
k

mk

∑
i=1

σ2
k =

σ2
k

mk
and Var [yk] =

σ2
k

nk

because of independence, we also note that

Var
[
θ̂k
]

= Var [yk − xk]
= Var [yk] + Var [xk] (because of independence)

=
σ2

k
mk

+
σ2

k
nk

=
nkσ2

k + mkσ2
k

mknk

=
σ2

k (nk + mk)
mknk

=
σ2

k Nk

mknk

= σ2
k

(
mknk

Nk

)−1

= σ2
k

(
Nk

mknk

NkNk

)−1

= σ2
k (Nkq (1− q))−1 (because mk/Nk = 1− q and nk/Nk = q)

=
σ2

k
Nkq (1− q)

.

Now we can find the transformed (standardized) effects, again with

K(δ) =
√

2 · sinh−1
(

δ√
2

)
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as the Key Inferential Function yielding

κ̂1 = K
(
δ̂1
)

= −0.180

κ̂2 = K
(
δ̂2
)

= 0.360

κ̂3 = K
(
δ̂3
)

= 0.212

κ̂4 = K
(
δ̂4
)

= 0.240

κ̂5 = K
(
δ̂5
)

= −0.188

κ̂6 = K
(
δ̂6
)

= 0.575

κ̂7 = K
(
δ̂7
)

= 0.202.

We can now obtain a 100(1− α)% = 95% confidence interval for κ using the com-
bined evidence because

Tk =
√

NkK
(
δ̂k
)

=
√

Nkκ̂k,

which has already been calculated earlier. The combined evidence assuming equal
effect size model is defined in section 3.2.4 yielding

T1:K = ∑K
k=1
√

NkTk√
∑K

k=1 Nk

= 2.192

such that an approximate 100(1− α)% = 95% confidence interval for κ isT1:K − z1− α
2√

∑K
k=1 Nk

;
T1:K + z1− α

2√
∑K

k=1 Nk

 = [0.013 ; 0.229].

To obtain a approximate 100(1− α)% = 95% confidence interval for δ, we apply
the inverse transformation

δ = K−1 (κ) =
√

2 · sinh
(

κ√
2

)
on the endpoints, such that

[K−1 (0.013) ; K−1 (0.229)] = [0.013 ; 0.230]

is a approximate 100(1− α)% = 95% confidence interval for δ. This is almost the
same as for κ, because K−1(·) behaves almost like the identity near origin, see e.g.
[Kulinskaya et al., 2008, fig. 3.1, p. 25].

We can now compute Cochrans Q∗ for the transformed effects. This is simply done
using [Kulinskaya et al., 2008, p. 213] stating that

Q∗ =
7

∑
k=1

Nk
(
κ̂k − κ̂

)2 = 16.067 for κ̂ = ∑7
k=1 Nkκ̂k

∑7
k=1 Nk

.

It further states that the evidence in Q∗ for heterogeneity of the κk’s is

TQ∗ = hK−1 (Q∗)
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with hν (S) defined in [Kulinskaya et al., 2008, (22.1), p. 185] as

Tν = hν(S) =

{
+
√

S−mν/2−
√

mν/2 for S ≥ mν

−
√

S∗ −mν/2 +
√

mν/2 for S < mν

for S∗ = F−1
ν (1− Fν(S)) where Fν is the cdf of the central χ2 distribution with ν

degrees of freedom and mν is the median of this distribution.

To find the this, we evaluate the value for the specific case. First notice that the
median of the central χ2

K−1 = χ2
6 distribution is estimated to be

mK−1 = m6 = 5.347

found by the R-script

median(rchisq(100000000, 6))

Then because 16.067 = Q∗ ≥ m6 = 5.347, we have that

TQ∗ = h6(Q∗) =
√

Q∗ −m6/2−
√

m6/2 = 5.964.

In other words, the evidence for heterogeneity of the κk’s is 5.964± 1, which can
be interpreted as at least strong evidence using the scale proposed by [Kulinskaya
et al., 2008].

Now we assume a random transformed effects model. Notice that

2s1/Nk = 0.062,

so even though γ is unknown, by [Kulinskaya et al., 2008, p. 226] we can proceed
as if Ni = Nj for all i, j = 1, 2, . . . , 7, that is by using a Student’s t-interval and
thus avoiding estimating γ. This means that an approximate 100(1− α)% = 95%
confidence interval for κ is[

κ̂ − tK−1,1− α
2

ŝκ√
K

; κ̂ + tK−1,1− α
2

ŝκ√
K

]
= [0.174− 0.255 ; 0.174 + 0.255] = [−0.081 ; 0.430]

where ŝ2
κ are the usual sample variance estimate of the κ̂’s. To obtain an interval for

δ, this is transformed with

δ = K−1 (κ) =
√

2 · sinh
(

κ√
2

)
like in part h), such that an approximate 100(1− α)% = 95% confidence interval
for δ is [

K−1(−0.081) ; K−1(0.430)
]

= [−0.081 ; 0.437]

which again is almost the same because the interval is near origin.

4.4.2 Meta-regression: Vaccination for the prevention of tuberculosis

If the data consists of explanatory covariates besides the actual effects, it’s possible
to make a meta-regression. When the theory of transforming effects is introduced,
it’s quite straight forward to take the step and make a meta-regression.
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The data

This example based on a tutorial and a lecture in STA4AMD. It illustrates both
how meta-analysis works and what to watch out for when performing a meta-
regression. Refer to appendix B for the R-script used for this example.

The data is from 13 randomized controlled trials reported in [Colditz et al., 1994]
and is shown in table 4.3. Each trial compares a group vaccinated by Bacillus
Calmette-Guerin (BCG) vaccine for the prevention of tuberculosis against a non-
vaccinated group, i.e. a control and a treatment group just like in the example in
section 4.4.1.

The efficacy of the vaccine was suspected to depend on the distance from the equa-
tor, hence the distance was included in the data set. This example illustrates how
the relationship between the efficacy of the vaccine and the distance from the equa-
tor can be modelled with a meta-regression.

Study 9 was carried out on the opposite side of the equator than the other studies,
but because it’s only the distance from the equator and not the sign of it that is of
our interest, the sign in study 9 has been dropped.

The distance from the equator is provided through the latitude, which was centered
by subtracting its mean, which was 33.46.
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Vaccinated (T) Not vaccinated (C)
k Lk DT,k NDT,k DC,k NDC,k rk mk nk p̃k qk Tcond,k κk
1 44 4 119 11 128 139 15 262 0.722 0.531 1.547 0.399
2 55 6 300 29 274 303 35 609 0.822 0.498 4.164 0.704
3 42 3 228 11 209 220 14 451 0.771 0.488 2.236 0.598
4 52 62 13536 248 12619 12867 310 26465 0.799 0.486 11.785 0.669
5 13 33 5036 47 5761 5808 80 10877 0.587 0.534 0.950 0.106
6 44 180 1361 372 1079 1451 552 2992 0.674 0.485 9.042 0.385
7 19 8 2537 10 619 629 18 3174 0.553 0.198 3.203 0.755
8 13 505 87886 499 87892 88391 1004 176782 0.497 0.500 -0.189 -0.006
9 27 29 7470 45 7232 7277 74 14776 0.607 0.492 1.985 0.231

10 42 17 1699 65 1600 1665 82 3381 0.790 0.492 5.740 0.634
11 18 186 50448 141 27197 27338 327 77972 0.431 0.351 2.996 0.166
12 33 5 2493 3 2338 2341 8 4839 0.386 0.484 -0.560 -0.198
13 33 27 16886 29 17825 17854 56 34767 0.518 0.514 0.061 0.008

Table 4.3: DT,k is the number of vaccinated people who caught the disease and NDT,k is the number of vaccinated people who caught the disease. The
capital T in subscript stands for treatment, i.e. the vaccinated. Similarly, the capital C in subscript stands for control, i.e. the not vaccinated. The number of
people in the control group is rk = DC,k + NDC,k. The number of people getting the disease is mk = DT,k + DC,k. The total number of people in study k is

nk = DT,k + NDT,k + DC,k + NDC,k. The proportion of people getting the disease that were not vaccinated is estimated by p̃k = DC,k+ 3
8

mk+ 3
4

. Refer to section 2.2.1

for details about this ad-hoc correction of the proportion estimate. The proportion of people in study k who were not vaccinated is qk = rk
nk

. The conditional
evidence for the alternative p̃k > qk in study k, is denoted Tcond,k. The corresponding transformed effect is κk.
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Note that the relative risk for getting the disease when being unvaccinated is

DC,k/NDC,k

DT,k/NDT,k
.

Conditional approach to make inference about risk ratio

Before continuing with the actual analysis, a small digression will be made. If we
have two binomial samples with rates p1 and p2, then ∆ = p2 − p1 is called the
risk difference and ρ = p2/p1 is called the risk ratio or the relative risk. These are
not easily analysed (at least not yielding satisfying results because of complicated
distributions or slow convergence), as oppose to the example with drop in systolic
blood pressure in section 4.4.1 that also compared two samples (control and treat-
ment). This is due the distribution of the data.

One way of making inference of the risk difference and ratio is to use the fact that
it can be shown that the Poisson(np) approximates Binomial (n, p) well for large n
and small p.

Applying variance stabilizing transformation to the individual samples for suffi-
ciently large samples and the risks not too small will make it possible to calculate
evidence for δ > 0, where δ is the standardized effect. The problem is that this
standardized effect cannot be rewritten as a function of the relative difference or
risk alone. This means that the calculated measure of evidence is not particularly
useful for constructing confidence intervals.

In order to make inference about the risk ratio, which is what we need here, we
condition on the observed total – in this case mk = DT,k + DC,k. Because of this, the
name of this method is refered to as the conditional approach.

Assume that we have two-sample data modelled by Poisson distributions with un-
known rates p1 and p2 denoted

Xt1 ∼ Poisson (p1t1) and Yt2 ∼ Poisson (p2t2)

and let
ρ =

p2

p1
.

In particular we want to be able to find the evidence for the alternative ρ > 1
against the null ρ = 1 and also a confidence interval for ρ.

It can be shown that the conditional distribution of Yt2 given Xt1 + Yt2 = m is bino-
mial with parameters m and

p =
t2 p2

t1 p1 + t2 p2
=
(

1 +
(

q−1 − 1
)

ρ−1
)−1

for q =
t2

t1 + t2

and ρ defined as earlier. In other words, with p defined as above, we have that

Yt2|m ∼ Binomial (m, p) .

If we look at p as a function of ρ, then p is monotone increasing with inverse func-
tion

ρ =
q−1 − 1
p−1 − 1

. (4.1)
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Now the hypothesis of ρ = 1 against ρ > 1 is equivalent to one of p = q against
p > q.

Large values of Yt2|m is supporting the alternative p > q, so the traditional condi-
tional test is carried out for an observed y = Yt2|m by computing and evaluating the
p-value

P
(
Yt2|m ≥ y|p = q

)
.

The conditional evidence Tcond for the alternative p > q (and equivalent ρ > 1) is
obtained by applying the standard vst for binomial distributed variables, such that

Tcond = 2
√

m
(

sin−1
(√

p̃
)
− sin−1 (

√
q)
)

for p̃ =
Yt2|m + 3

8

m + 3
4

.

It follows that Tcond is approximately normal with variance 1 and mean

E [Tcond] ≈
√

mK (p) for K (p) = 2
(

sin−1 (
√

p)− sin−1 (
√

q)
)

Because p(ρ) is monotone increasing in the risk ratio ρ we can interpret Tcond as
the conditional evidence for the alternative ρ > 1 against the null ρ = 1. Thus a
nominal 95% confidence interval for a transformed effect κ = K(p) is given by

[L ; U] = m−
1
2 [Tcond − z0.975 ; Tcond + z0.975]

where zα is defined such that P (Z ≤ zα) = α for Z ∼ N(0, 1). So if h denotes the
inverse of K (p (ρ)), then a nominal 95% confidence interval for ρ is given by

[h(L) ; h(U)] .

Using the theory on the data

The conditional evidence for the alternative p̃k > qk in study k, denoted Tcond,k, has
to be calculated. This hypothesis reflects what is interesting in this case, namely
whether the proportion of people getting the disease that were not vaccinated of
all diseased, i.e.

DC,k

DT,k + DC,k

estimated by p̃k, equals the proportion of people in study k who were not vacci-
nated, i.e.

DC,k + NDC,k

DT,k + NDT,k + DC,k + NDC,k
= qk.

Then the conditional evidence for the alternative p̃k > qk in study k is given by

Tcond,k = 2
√

mk

(
sin−1

(√
p̃k

)
− sin−1 (

√
qk)
)

.

We then also have the transformed effects immidiately, because

κk =
Tcond,k√

mk
.
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These transformed effects have mean κ = 0.342 and standard deviation sκ = 0.315.
Further, the weighted mean κw = 0.232. Using these we can calculate Q∗ just like
in the example with the drop in systolic blood pressure in section 4.4.1, such that

Q∗ =
13

∑
k=1

mk (κk − κw)2 = 164.28.

Now because
χ2

12,0.95 = 21.03 < Q∗,

we adopt a random transformed effects model.

As described in section 3.2.5, the combined evidence for κ > 0 is

T∗1:K =
√

2Ksinh−1
(

κ√
2sκ

)
= 3.61,

which is moderate using the scale proposed by [Kulinskaya et al., 2008].

A 95% Student’s t confidence interval for κ is

κ ± t12,0.975
sκ√
13

= [0.152 ; 0.532] .

Using the inverse of the transformation Kq(p) = 2
(
sin−1 (√p

)
− sin−1 (√q

))
as-

suming q = 0.5, the above interval for κ can be transformed into a 95% confidence
interval for p. First we find the inverse, that is for κ = Kq(p), we have

κ = 2

(
sin−1 (

√
p)− sin−1

(√
1
2

))
= 2

(
sin−1 (

√
p)− π

4

)
m

sin−1 (
√

p) =
κ

2
+

π

4
m

p = sin2
(κ

2
+

π

4

)
.

By using this inverse, found to be

p(κ) = sin2
(κ

2
+

π

4

)
, (4.2)

the 95% confidence interval for p is

[0.576 ; 0.754] .

The q = 0.5 is fixed to that value for all the studies is a requirement for this back-
transformation to work, although it might not be the best choice, in this case it is
convenient and seems representative as well.

This confidence interval for p can now be transformed to one for ρ using (4.1). In
this case a 95% confidence interval for the relative risk ρ is

[1.358 ; 3.062] .

To perform the actual meta regression, we use R with κk as a response and the
latitude Lk as the covariate. Consider the following R-output:

51



> summary(lm(kappa~Lat,weights=m)))

Call:
lm(formula = kappa ~ Lat, weights = m)

Residuals:
Min 1Q Median 3Q Max

-2.2449 -0.7463 0.4495 1.3643 2.7585

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.171305 0.062863 -2.725 0.0198 *
Lat 0.014530 0.001967 7.387 1.38e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.583 on 11 degrees of freedom
Multiple R-squared: 0.8322,Adjusted R-squared: 0.817
F-statistic: 54.57 on 1 and 11 DF, p-value: 1.382e-05

This gives the relationship

κk(Lk) = −0.1713 + 0.0145Lk.

This can be used to estimate the relative risk using Lk instead of κk.

Using (4.1) and (4.2) we have the relative risk ρ as a function of a transformed effect
κ given by

ρ(κ) =
q−1 − 1

(p(κ))−1 − 1

∣∣∣∣∣
q= 1

2

=
1

(p(κ))−1 − 1

=
p(κ)

1− p(κ)

=
sin2 ( κ

2 + π
4

)
1− sin2 ( κ

2 + π
4

)
= tan2

(κ

2
+

π

4

)

It is obviuos that ρ(κ) is not linear over the range of κk’s, but log ρ(κ) is nearly linear
for κ ∈ [−1, 1] as seen in figure 4.3.

Using Lk, we can then estimate the log relative risk using the regression model from
earlier, such that

log ρ = log (ρ (κk(Lk))) ,

which is plotted in figure 4.4.

As a final remark, a few things have to be mentioned. First of all, the issue with
selecting a representing a common q should not be neglected. Although q = 1

2 is
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Figure 4.3: log(ρ(κ)) is linear for κ between −1 and 1.

convenient, this is it necessarily the best choice. Second of all, instead of just using

p̃k =
DC,k + 3

8

mk + 3
4

it might be relevant to try with other constants in the corrections, e.g.

p̃k =
DC,k + 1

2
mk + 1

.

Refer to section 2.2.1 for details about this ad-hoc correction by Agresti and Coull
of the proportion estimate.
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Figure 4.4: The log relative risk as a function of the latitude. The coefficients to the straight
line is found using the R-command lm. Refer to appendix B for the R-script used for this
example.
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Chapter 5

Topics studied besides the course
material

In this chapter a few topics are described on a very introductionary level. Some
details are not included and the arguments might not be rigorous. This chapter is
included as a suggestion to which topics one might look at as an extension to the
topics went through in the course material. These topics have not been taught in
the course, but have been suggested by lectures as follow-up topics for interested
students.

5.1 Kernel principal component analysis

This section is based on [Schölkopf et al., 1996] and [Schölkopf et al., 1997]. Prior
knowledge of traditional PCA (principal component analysis) is assumed. KPCA
(kernel principal component analysis) is a way of tweaking PCA in the sense that
it’s often possible to reduce the required number of dimensions to separate the data
even further than possible with PCA.

But by increasing the dimensionality we increase the calculations exponentially.
This is called the curse of dimensionality, and is by [Wikipedia, 2009] which is
adapted from an example by R. E. Bellman, explained to be

For example, 100 evenly-spaced sample points suffice to sample a unit interval
with no more than 0.01 distance between points; an equivalent sampling of a
10-dimensional unit hypercube with a lattice with a spacing of 0.01 between
adjacent points would require 1020 sample points: thus, in some sense, the 10-
dimensional hypercube can be said to be a factor of 1018 ”larger“ than the unit
interval.

[Wikipedia, 2009]

This is of course really bad, which is why it might be worth the effort to reduce the
number of required dimensions as much as possible.

The use of KPCA will be motivated through an example. Consider figure 5.1. Sup-
pose that it’s the first two SPC (sample principal components). The coloring de-
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notes group membership. As seen it’s impossible to reduce to fewer dimensions
without being unable to separate the groups.

Figure 5.1: Lineary inseparable groups. The groupings are marked with different color.

If we transform the data from R2 to R3 with the transformation

Φ (x1, x2) =
(
x1, x2, x2

1 + x2
2
)

we get figure 5.2. As we can see it is now possible to separate the data with a plane.

The idea with KPCA is to map the points into a feature space in a possibly non-
linear way (or at least it’s not required to be linear) in order to reduce the required
number of dimensions. In the previous example the feature space was R3.

It luckily turns out that for certain transformations, it’s actually not required to
perform calculations in the feature space as long as the transformation can be ex-
pression solely by dot products. Refer to [Schölkopf et al., 1996] and [Schölkopf
et al., 1997] for details.

5.2 Sliced inverse regression

The sliced inverse regression (SIR) part is based on [Gentle et al., 2004].

PCA is a dimension reduction method for multidimensional data where the vari-
ables are all of the same type. It might however be necessary to reduce the number
of dimensions of multidimensional data where one of the variables is a response
and the others are explanatory variables. Sliced inverse regression (SIR) is a method
for reducing the dimensions of the explanatory variables.
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Figure 5.2: Points in figure 5.1 mapped to R3 in order to make them lineary separable.

There are several ways to try to reduce the number of explanatory variables. One
conceptually simple approach is to make variable selection. Another is to project
the explanatory variables on a lower dimensional space that estimates the responce
variable well. SIR is a way of doing the latter with a linear projection. This means
that SIR actually finds linear combinations of the explanatory variables.

Let
y = f

(
β>1 x, β>2 x, . . . , β>K x

)
+ ε

where x ∈ Rp is the vector of explanatory variables; β1, β2, . . . , βK ∈ Rp are un-
known vectors; ε is independent of x; and f is an arbitrary unknown function on
RK. Note that f is not necessarily a linear function and that K < p for the problem
to make sense.

What SIR does is to estimate β1, β2, . . . , βK such that the model holds. If this is
succesful, then we have β>1 x, . . . , β>K x as explanatory variables, i.e. K variables
instead of p.

In [Gentle et al., 2004] several algorithms to estimate the βk can be found. One of
the algorithms, SIR1, is based on using E [x|y]. Another of the algorithms, SIR2, is
instead based on using E [Cov[x|y]].
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James E. Gentle, Wolfgang Härdle, and Yuichi Mori. Handbook of Computational
Statistics: Concepts and Methods. Springer, 2004. ISBN 3540404643. 56, 57

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall, 5 edition, 2001. 7, 8

Paul Kabaila. Computation of exact confidence intervals from discrete data using
studentized test statistics. Statisticsand Computing, 15:71–78, 2005. URL http:
//portal.acm.org/citation.cfm?id=1050643. 17

Paul Kabaila. Statistical properties of exact confidence intervals from discrete data
using studentized test statistics. Statistics & Probability Letters, 78:720–727, 2008.
URL http://linkinghub.elsevier.com/retrieve/pii/S0167715207003239. 17

Elena Kulinskaya, Stephan Morgenthaler, and Robert G. Staudte. Meta Analysis – A
Guide to Calibrating and Combining Statistical Evidence. Wiley Series in Probability

59

http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf
http://www-stat.wharton.upenn.edu/~tcai/paper/Binomial-StatSci.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0167715207003793
http://linkinghub.elsevier.com/retrieve/pii/S0167715207003793
http://doi.wiley.com/10.1002/sim.4780081202
http://doi.wiley.com/10.1002/sim.4780081202
http://portal.acm.org/citation.cfm?id=1050643
http://portal.acm.org/citation.cfm?id=1050643
http://linkinghub.elsevier.com/retrieve/pii/S0167715207003239


and Statistics, 2008. ISBN 9780470028643. 7, 17, 23, 26, 27, 28, 29, 30, 32, 37, 39,
40, 41, 42, 45, 46, 51

C. Mulrow, E. Chiquette, L. Angel, J. Cornell., C. Summerbell, B. Anagnosetelis,
M. Brand, and R. Grimm. Dieting to reduce body weight for controlling hyper-
tension in adults. The Cochran Library, 2004. 40, 41

R. G. Newcombe. Interval estimation for the difference between independent pro-
portions: comparison of eleven methods. Statistics in Medicine, 17:873–890, 1998.
11

J.W. Pratt. Length of confidence intervals. Journal of the American Statistical Associa-
tion, 56:549–567, 1961. URL http://www.jstor.org/stable/2282079. 17, 20

Luke Prendergast and Paul Kabaila. STA3AS Unit Text. La Trobe University, 2009.
7

J. A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 3 edition, 2006.
7

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Technical Report 44, Max
Planck Institut fur biologische Kybernetik, 1996. URL http://www.face-rec.org/
algorithms/Kernel/kernelPCA scholkopf.pdf. 55, 56

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. In ICANN, pages 583–588, 1997.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.7613. 55,
56

La Trobe University. Maths and Stats: Student Handbook 2009. Internet: http:
//www.latrobe.edu.au/mathstats/current-students/download-documents/
StudentHandbook2009.pdf, 2009a. 7

La Trobe University. Maths and Stats: STA3AS Unit Guide. Inter-
net: http://www.latrobe.edu.au/mathstats/undergraduates/unit-outlines-qa/
unit-outlines-2009/Unit-Outline-STA3AS-2009.pdf, 2009b. 7

Wikipedia. Curse of dimensionality. Internet: http://en.wikipedia.org/wiki/
Curse of dimensionality, 2009. 55

60

http://www.jstor.org/stable/2282079
http://www.face-rec.org/algorithms/Kernel/kernelPCA_scholkopf.pdf
http://www.face-rec.org/algorithms/Kernel/kernelPCA_scholkopf.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.7613
http://www.latrobe.edu.au/mathstats/current-students/download-documents/StudentHandbook2009.pdf
http://www.latrobe.edu.au/mathstats/current-students/download-documents/StudentHandbook2009.pdf
http://www.latrobe.edu.au/mathstats/current-students/download-documents/StudentHandbook2009.pdf
http://www.latrobe.edu.au/mathstats/undergraduates/unit-outlines-qa/unit-outlines-2009/Unit-Outline-STA3AS-2009.pdf
http://www.latrobe.edu.au/mathstats/undergraduates/unit-outlines-qa/unit-outlines-2009/Unit-Outline-STA3AS-2009.pdf
http://en.wikipedia.org/wiki/Curse_of_dimensionality
http://en.wikipedia.org/wiki/Curse_of_dimensionality


Appendix A

R-code to example with drop in
systolic blood pressure

The following R-code has been used to produce the results in section 4.4.1 regarding
the example with drop in systolic blood pressure.�

1 KeyFunction <− function(x)
2 return(sqrt(2) ∗ asinh(x / sqrt(2)))
3

4 KeyFunctionInv <− function(y)
5 return(sqrt(2) ∗ sinh(y / sqrt(2)))
6

7 data <− matrix(c(24, 0.2, 13.8, 27, -4.8, 13.8), ncol=6)
8 data <− rbind(data, c(18, 7.4, 8.1, 20, 13.3, 8.1))

9 data <− rbind(data, c(64, 4.0, 15.7, 66, 11.0, 17.1))

10 data <− rbind(data, c(9, -3.0, 13.5, 10, 4.0, 15.3))

11 data <− rbind(data, c(25, 15.0, 16.5, 24, 8.0, 20.4))

12 data <− rbind(data, c(5,2.5, 5.1, 5, 9.8, 7.1))

13 data <− rbind(data, c(14, 9.9, 6.4, 19, 12.5, 6.3))

14

15 K <− nrow(data)

16

17 data <− cbind(data, NA, NA, NA, NA, NA)

18

19 # 1 2 3 4 5

20 colnames(data) <− c("m.k", "x.mean.k", "s.1k", "n.k", "y.mean.k",

21 "s.2k", "N.k", "theta.k", "s.pool.k", "t.pool.k", "T.k")

22 # 6 7 8 9 10 11

23

24 # N.k

25 data[, 7] <− data[, 1] + data[, 4]

26

27 # theta.k

28 data[, 8] <− data[, 5] - data[, 2]

29

30 # s.pool.k

31 data[, 9] <− ((data[, 1] - 1) ∗ data[, 3]^2 + (data[, 4] - 1) ∗ data[, 6]^2) /
32 (data[, 1] + data[, 4] - 2)

33 data[, 9] <− sqrt(data[, 9])

34

35 # t.pool.k

36 data[, 10] <− (sqrt(data[, 1] ∗ data[, 4]) ∗ data[, 8]) /
37 (sqrt(data[, 1] + data[, 4]) ∗ data[, 9])

38 # T.k

39 q <− data[, 4] / data[, 7]
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40 data[, 11] <− sqrt(data[, 7]) ∗
41 KeyFunction(data[, 9]^(-1) ∗ sqrt(q ∗ (1 - q)) ∗ data[, 8])

42

43 rownames(data) <− 1:nrow(data)

44

45 # part b)

46 cat("--------- part b) ---------\n")

47 qt(0.95, data[, 7] - 2)

48

49 # part d)

50 cat("--------- part d) ---------\n")

51 w.k <− (data[, 1] ∗ data[, 4]) / (data[, 7] ∗ data[, 9]^2)

52 W <− sum(w.k)

53 theta <− sum(w.k ∗ data[, 8]) / W

54 c <− qnorm(0.975) ∗ W^(-1/2)
55 cat("W =", W, "\n")

56 cat("theta =", theta, "\n")

57 cat("c =", c, "\n")

58 cat("[", theta - c, ",", theta + c, "]\n")

59 rm(c)

60

61 # part e)

62 cat("--------- part e) ---------\n")

63 Q <− sum(w.k ∗ (data[, 8] - theta)^2)

64 cat("Q =", Q, "\n")

65 cat("chi^2 {K-1,0.95} = chi^2 {", K, "-1,0.95} = ",

66 qchisq(0.95, K-1), "\n", sep="")

67

68 # part f)

69 cat("--------- part f) ---------\n")

70 M1 <− sum(w.k)

71 M2 <− sum(w.k^2)

72 a <− M1 - M2/M1
73 b <− Q - (K - 1)

74 gamma.sq.DL <− ifelse(b < 0, 0, b) / a

75

76 w.k.star <− (gamma.sq.DL + w.k^(-1))^(-1)

77 W.star <− sum(w.k.star)

78 theta.star <− sum(w.k.star ∗ data[, 8]) / W.star

79 c <− qnorm(0.975) ∗ W.star^(-1/2)
80 cat("Q - (K - 1) =", Q - (K - 1), "\n")

81 cat("a =", a, "\n")

82 cat("gamma^2 {DL} =", gamma.sq.DL, "\n")

83 cat("W∗ =", W.star, "\n")

84 cat("theta∗ =", theta.star, "\n")

85 cat("c =", c, "\n")

86 cat("[", theta.star - c, ",", theta.star + c, "]\n")

87 rm(c)

88

89 # part g)

90 cat("--------- part g) ---------\n")

91 delta <− sqrt(q∗(1-q)) ∗ data[, 8] / data[, 9]

92 cat("delta:\n")
93 print(delta)
94 cat("\n")
95

96 # part h)

97 cat("--------- part h) ---------\n")

98 kappa <− KeyFunction(delta)

99 cat("kappa:\n")
100 print(kappa)
101 cat("\n")
102
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103 N <− sum(data[, 7])

104 T.comb <− sum(sqrt(data[, 7]) ∗ data[, 11]) / sqrt(N)
105 cat("T {1:K} =", T.comb, "\n")

106 cat("kappa in [", (T.comb - qnorm(0.975)) / sqrt(N) , ",",

107 (T.comb + qnorm(0.975)) / sqrt(N), "]\n")

108 cat("delta in [", KeyFunctionInv((T.comb - qnorm(0.975)) / sqrt(N)) , ",",

109 KeyFunctionInv((T.comb + qnorm(0.975)) / sqrt(N)), "]\n")

110

111 # part i)

112 cat("--------- part i) ---------\n")

113 kappa.mean <− sum(data[, 7] ∗ kappa) / N

114 Q.star <− sum(data[, 7] ∗ (kappa - kappa.mean)^2)

115 cat("Q∗ =", Q.star, "\n")

116 m6 <− 5.347

117 T.Q.star <− sqrt(Q.star + m6/2) + sqrt(m6/2)
118 cat("T {Q∗} =", T.Q.star, "\n")

119

120 cat("2∗s {1/n k} =", 2∗sd(1/data[, 7]), "\n")

121

122 kappa.sd <− sd(kappa)
123 c <− qt(0.975, K-1) ∗ (kappa.sd / sqrt(K))
124 cat("kappa.mean =", kappa.mean, "\n")

125 cat("qt(0.975, K-1) ∗ (kappa.sd / sqrt(K)) =", c, "\n")

126 cat("kappa in [", kappa.mean - c, ",", kappa.mean + c, "]\n")

127 cat("delta in [", KeyFunctionInv(kappa.mean - c), ",",

128 KeyFunctionInv(kappa.mean + c), "]\n")� �
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Appendix B

R-code to meta-regression example

The following R-code has been used to produce the results in section 4.4.2 regarding
the example with meta-regression.�

1 Lat <− c(44,55,42,52,13,44,19,13,27,42,18,33,33)

2 vacD <− c(4,6,3,62,33,180,8, 505, 29, 17, 186, 5, 27)

3 vacND <− c(119,300,228,13536, 5036, 1361,2537,87886,7470,1699,50448,2493,16886)

4 notvacD <− c(11,29,11,248,47,372,10,499,45,65,141,3,29)

5 notvacND <− c(128,274,209,12619,5761,1079,619,87892,7232,1600,27197,2338,17825)

6 vac <− vacD+vacND

7 notvac <− notvacD+notvacND

8 n <− notvac+vac

9 m <− vacD+notvacD

10 ptilde <− (notvacD+3/8)/(m+3/4)
11 q <− notvac/n
12 Tcond<− 2∗sqrt(m)∗(asin(sqrt(ptilde))-asin(sqrt(q)))
13 round(cbind(vacD,vacND,vac,notvacD,notvacND,notvac,m,n,ptilde,q,Tcond),digits=3)
14

15 K <− length(m)
16

17 # Transformed effects

18 kappa <− Tcond / sqrt(m)
19 cat("kappa: ")

20 print(round(kappa, 3))

21

22 kappa.mean <− mean(kappa)
23 kappa.sd <− sd(kappa)
24 kappa.w <− sum(m ∗ kappa) / sum(m)

25 cat("kappa.mean =", kappa.mean, "\n")

26 cat("kappa.sd =", kappa.sd, "\n")

27 cat("kappa.w =", kappa.w, "\n")

28

29 Qstar <− sum(m ∗ (kappa - kappa.w)^2)

30 cat("Qstar =", Qstar, "\n")

31 cat("chi^2 {K-1,0.95} =", qchisq(0.95, K-1), "\n")

32

33 Tstar <− sqrt(2∗K) ∗ asinh(kappa.mean / (sqrt(2) ∗ sd(kappa)))
34 cat("Tstar =", Tstar, "\n")

35

36 L <− kappa.mean - qt(0.975, K-1) ∗ sd(kappa) / sqrt(K)
37 U <− kappa.mean + qt(0.975, K-1) ∗ sd(kappa) / sqrt(K)
38 int <− c(L, U)

39 cat("95% t confidence interval for kappa: ")

40 print(int)
41

42 # K q(p) = 2 ∗ (asin(sqrt(p)) - asin(sqrt(q)))
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43 # Finding the inverse yields:

44 K.q.p.inv <− function(x) (sin(0.5∗x + asin(sqrt(0.5))))^2
45 int.p <− K.q.p.inv(int)

46 cat("95% t confidence interval for p: ")

47 print(int.p)
48

49 p.inv <− function(p) (0.5^(-1) - 1) / (p^(-1) - 1)

50 int.rho <− p.inv(int.p)

51 cat("95% t confidence interval for rho, the relative risk: ")

52 print(int.rho)
53

54 print(summary(lm(kappa˜Lat,weights=m)))
55

56

57 rho <− function(k) (tan(k/2 + pi/4))^2
58 kappa.vec <− seq(-1, 1, 0.01)

59 png(file="meta-regression-linear.png", bg="white", width = 500, height = 500)

60 plot(kappa.vec, log(rho(kappa.vec)), type="l", xlab="kappa", ylab="log(rho(kappa))")

61 abline(a=0, b=2, lty=’dashed’)

62 dev.off()

63

64 # We want to estimate rho based on the kappas,

65 # but using the latitude as a covariate. So

66 # instead of using kappa, we use

67 # kappa = -0.1718 + 0.014528 ∗ latitude

68 kappa.lin <− function(lat) -0.1718 + 0.014528 ∗ lat

69 log.rho <− log(rho(kappa.lin(Lat)))
70

71 print(summary(lm(log.rho ˜ Lat)))

72

73 png(file="meta-regression.png", bg="white", width = 500, height = 500)

74 plot(Lat, log.rho, xlab="L k (latitude)", ylab="log(rho(kappa(L t)))")

75 abline(a=-0.3796731, b=0.0308677, lty=’dashed’)

76 dev.off()� �
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