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Outline

1. Short biological recap
2. Motivation and aims of using Y-STR
3. Frequency estimation

3.1 Methods and comments to the methods
3.2 Model control

4. Evidence calculation
5. Further work
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Biological framework

Example of (autosomal) STR DNA-type:

({14, 13}, {22}, {15, 16}, . . . , {22})

Example of Y-STR DNA-type:

(17, 14, 22, . . . , 15)

LHS image is from http://ghr.nlm.nih.gov and RHS image is from

http://history.earthsci.carleton.ca.

http://ghr.nlm.nih.gov/handbook/illustrations/chromosomes.jpg
http://history.earthsci.carleton.ca/harvey/genealogy/images/speedy/diagram_y.gif
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Motivation

� In some situations Y-STR is more sensible to use than
A-STR (autosomal STR), e.g. to avoid noise in the trace
from a rape victim

� Y-STR and A-STR differs in several areas, e.g. the number
of alleles at each locus and statistical dependence between
loci

� The statistical methods developed to handle A-STR cannot
be applied on Y-STR directly, so reformulation is required
(e.g. for calculating evidence) or new methods must be
developed (to estimate Y-STR haplotype frequencies)
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Aims

� Be able to calculate statistical evidence in trials
� Estimate frequencies for Y-STR haplotypes (also

unobserved ones) is required to do this

First, methods for estimating frequencies for Y-STR haplotypes
will be discussed and afterwards calculation of evidence will be
introduced.
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Estimating frequencies

Estimating frequencies
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Dimension reduction

Neither principal component analysis nor factor analysis yields
good results, so that path has not been followed any further.
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Existing methods

� Simple count estimates
I Not precise enough

� One published method (used at http://www.yhrd.org):
Frequency surveying introduced in ”A new method for the
evaluation of matches in non-recombining genomes:
application to Y-chromosomal short tandem repeat (STR)
haplotypes in European males.“ from 2000 by L. Roewer et
al.
I Several problems exist; some will be presented in this

presentation (some also presented in a talk at 7th
International Y Chromosome User Workshop in Berlin,
Germany, from April 22 to April 24, 2010)

http://www.yhrd.org
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New methods

� Graphical models would be an obvious choice
I Structure based learning (e.g. PC algorithm) or score

based learning (e.g. AIC and BIC)
I Standard tests for conditional independence (e.g.

G 2 = 2nCE (A,B | {Si}i∈I ), where n is the sample size and
CE is the cross entropy, which is χ2

ν distributed when A
and B are independent given {Si}i∈I ) do not exploit the
ordering in the data nor does it incorporate prior
knowledge such as the single step mutation model

I Better independence tests are required

� Ancestral awareness
� Classification models (e.g. classification trees, ordered

logistic regression, and support vector machines)
� Kernel smoothing and model-based clustering
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Frequency surveying

Frequency surveying
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The idea: Bayesian approach

Notation:
� N: number of observations
� M: number of haplotypes (i.e. unique observations)
� Ni : the number of times the i ’th haplotype has been

observed
� fi = Ni−1

N−M : the frequency for the i ’th haplotype
Model using Bayesian inference:
1. A priori: assume fi is Beta distributed with parameters

non-stochastic parameters ui and vi
2. Likelihood: Given fi , then Ni is Binomial distributed
3. Posterior: Given Ni , then fi is (still) Beta distributed (Beta

distribution is a conjugate prior for the Binomial
distribution)

Model expressed in densities using generic notation:

p (fi |Ni ) ∝ p (Ni |fi ) p (fi )
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Estimating ui and vi

1. Calculate Wi = 1
N−Ni

∑
i 6=j

Nj
dij

for i = 1, 2, . . . ,M, where
dij denotes the Manhattan distance/L1 norm

2. Order the Wi ’s by size and divide into 15 (?) groups and
calculate the mean and variance of the fi ’s in each group

3. Fit regression models µ(W ) = β1 + exp (β2W + β3) and
σ2(W ) = β4 + exp (β5W + β6) based on the 15 estimates

4. Calculate µi = µ(Wi ) and σ2
i = σ2(Wi ) and use these to

calculate the prior parameters ui and vi

5. Apply the Bayesian approach to obtain the posterier
distribution, e.g. to estimate fi using the posterior mean

Only dane could fit the full models – and the fit is not too
comforting – the others resulted in µi < 0 or σ2

i < 0 for some
i ’s
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Plot of the regression
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µ(W) = 0.002 + exp(81.389 * W − 21.454)
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Plot of the regression
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σ2(W) = 0 + exp(114.043 * W − 31.492)
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Modified regression models

� Set β1 = β4 = 0 in the regression models yielding

µ(W ) = exp (β2W + β3)

og
σ2(W ) = exp (β5W + β6)

� Now berlin makes the best fits, which seems quite
reasonable for µ(W ), but more doubtful for σ2(W )

� dane fits almost as before
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Plot of the regression
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Plot of the regression
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σ2(W) = 0 + exp(21.217 * W − 13.662)
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Plot of the regression
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Plot of the regression
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Changes made on http://www.yhrd.org

At the 7th International Y Chromosome User Workshop in
Berlin, 2010, Sascha Willuweit (one of the persons behind
http://www.yhrd.org) mentioned a couple of changes
between their implementation at http://www.yhrd.org and
the original article:
� Using the reduced regression models, i.e. without

intercepts β1 and β4

� The number of groups are determined by fitting several
regressions and choosing the best one (details for selecting
the minimum number of groups was not mentioned)

http://www.yhrd.org
http://www.yhrd.org
http://www.yhrd.org
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Comments and proposals for changes

� Not a statistical model, more an ad-hoc method
� µi = µ(Wi ) = exp(aWi + b) is not bounded above such

that µ(W ) ≥ 1 for W ≥ −b
a : for berlin a = 34.44 and

b = −12.97 so µi ≥ 1 for Wi ≥ 0.377 (0 ≤Wi ≤ 1 and
0 < µi < 1 by definition)

� Fitting ui and vi : only Wi to fit two exponential regression
models

� The model is not consistent: generalisation to a Dirichlet
prior and a multinomial likelihood might solve this
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Fitting two parameters (ui and vi) using only one
(Wi)
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Fitting two parameters (ui and vi) using only one
(Wi)
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Fitting two parameters (ui and vi) using only one
(Wi)
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Fitting two parameters (ui and vi) using only one
(Wi)
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Idea: use second moment

� Wi = 1
N−Ni

∑
i 6=j

Nj
dij

= 1
N−Ni

∑
i 6=j

Nj∑r
k=1 dijk

uses first
moment of the allele differences on each locus of r loci

� Maybe also use the second moment to introduce

Zi =
1

N − Ni

∑
i 6=j

Nj∑r
k=1

(
dijk −

dij
r

)2

� Fit µi ’s and σ2
i ’s by multiple regression using a grid of Wi

and Zi values
� 15 groups only correspond to a 4× 4-grid, which is way

too coarse – requiring 15 groups of Wi ’s and Zi ’s, the grid
would have size 15 · 15 = 225: requires a lot of
observations!

� Too few observations in berlin , dane , and somali , but
it would be interesting to see how it would perform
compared to just using the Wi ’s
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Generalised frequency surveying

� Assume a priori that f ∼ Dirichlet (α) where
f = (f1, f2, . . . , fK ) is the vector of frequencies for all
possible haplotypes

� Use the likelihood N |f ∼ Multinomial (N+, f )

� The posterior becomes
f |N ∼ Dirichlet (α1 + N1, . . . , αK + NK ) =
Dirichlet (α1 + N1, . . . , αn + Nn, αn+1, . . . , αK ) where
f1, f2, . . . , fn are the frequencies for the observed haplotypes
and fn+1, fn+2, . . . , fK are for the unobserved haplotypes
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Marginal distribution

� Let α+ =
∑K

i=1 αi

� The marginal posterior distribution for the i ’th haplotype is
fi |Ni ∼ Beta

(
αi + Ni ,

∑K
j=1 (αj + Nj)− (αi + Ni )

)
=

Beta (αi + Ni , α+ − αi + N+ − Ni )

� E [fi |Ni ] = αi+Ni∑K
j=1(αj+Nj)−(αi+Ni )+(αi+Ni )

= αi+Ni
α++N+

�
∑K

i=1 E [fi |Ni ] = (α+ + N+)−1∑K
i=1 (αi + Ni ) = 1

� Incorporate prior knowledge can be done by specifying the
prior parameter αi for all possible haplotypes, but with this
approach α+ might be problematic to calculate for large K
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Approximating α+

Histogram of Wi for berlin
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Approximating α+

Histogram of Wi for dane
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W

D
en

si
ty

0.10 0.15 0.20

0
2

4
6

8
10

●

●

Gamma: s = 15.291, r = 100.14
Beta: s1 = 13.002, s2 = 72.151



Y-STR:
Haplotype
Frequency
Estimation

and Evidence
Calculation

by Mikkel
Meyer

Andersen

Introduction

Estimating
frequencies
Dimension
reduction
Existing
methods
New methods
Frequency
surveying
Ancestral
awareness
Classification
models
Kernel
smoothing

Comparing
models

Calculating
evidence

Further work

Questions

31/75

Approximating α+

Histogram of Wi for somali
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Approximating α+

� As earlier stated, 0 ≤Wi ≤ 1 so the Beta distribution is
the right choice theoretically

� Assume that αi = h(Wi ) for some function h such that
α+ =

∑K
i=1 h(Wi )

� Denote by fβ the density of a fitted Beta-distribution, then

α+ ≈ K
∫ 1

0
fβ (W ) h(W )dW
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Approximating α+

� To get equality between the first prior parameter in
surveying and the generalised surveying, let
αi = ui =

µ2
i (1−µi )

σ2
i

� Because µi = µ(Wi ) = exp(aWi + b) can result in µi ≥ 1
then 1− µi ≤ 0 such that αi ≤ 0 which is now allowed

� For berlin , µi ≥ 1 for Wi ≥ 0.377 so that all
contributions to the integral in the α+ approximation is
negative for Wi ≥ 0.377

� berlin : α+ = 50205.04 and the uncovered probability
mass is estimated to 0.986

� dane : −b/a = 0.271 and α+ = −7897176
� somali : −b/a = 0.648 and α+ = −1535169
� αi = ui and the exponential regression is unusable, but the

distribution of the Wi ’s might be helpful for other choices
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Problem

� Maybe getting too much attention because it is the only
published method for estimating haplotype frequencies

� At the 7th International Y Chromosome User Workshop in
Berlin, 2010, Michael Krawczak (one of the authors of the
original articles) gave a talk where the associated slides
included the statement ”[frequency surveying has] never
[been] thoroughly studied and validated“
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Ancestral awareness

Ancestral awareness
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The idea: approximate when identified a common
(partial) ancestor

The basic idea is to find I = {i1, i2, . . . , iq} ⊆ {1, 2, . . . , r} such
that

P

⋂
j 6∈I

Lj = aj

∣∣∣∣∣ ⋂
i∈I

Li = ai

 ≈∏
j 6∈I

P

(
Lj = aj

∣∣∣∣∣ ⋂
i∈I

Li = ai

)

is a good approximation.
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Example

� Assume that we have loci L1, L2, L3, L4 and I = {1, 2}
� Then

P (L1, L2, L3, L4) = P (L1)P (L2|L1)P (L3, L4|L1, L2) (1)

≈ P (L1)P (L2|L1)
4∏

j=3

P (Lj |L1, L2) (2)
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How to chose I

� I is called an ancestral set, because it can be interpreted as
a set of alleles that is common with one’s ancestors

� I can be found using a greedy approach adding the j to I
that maximises P (Lj = aj | ∩i∈ILi = ai )

� Stop adding elements to I , e.g. when only a percentage of
the observations is left to use for calculating the marginal
probabilities conditional on I
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Drawbacks

� The approach is simple, but like it is not a statistical model
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Classification models

Classification models
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The idea: alternately perceive different loci as a
response variable

Let L1, L2, . . . , Lr be the r different loci available in the
haplotype. Then fit

Li1 ∼
∑

k 6∈{i1}

Lk (3)

Li2 ∼
∑

k 6∈{i1,i2}

Lk (4)

... (5)

Lir−2 ∼
∑

k 6∈{i1,i2,...,ir−2}

Lk (6)

Lir−1 ∼
∑

k 6∈{i1,i2,...,ir−1}

Lk = Lir (7)

and use the empirical distribution for Lir .
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Properties

� A class of statistical models
� The classifications can be done with some of the several

available classifications methods such as classification trees,
ordered logistic regression, or support vector machines

� Selection of ij should be done using standard model
selection criteria depending on the classification model used

� Does not incorporate prior knowledge
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Kernel smoothing and model based clustering

Kernel smoothing and model based
clustering
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The idea: create a density around each haplotype

� Put a scaled density/mass (called a kernel) around each
haplotype with mass equal to its relative frequency Ni

N+

� In this way unobserved haplotypes get probability mass
from the (near) neighbours
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Choice of kernel

� A straightforward approach is the Gaussian kernel
K (z |x i , λ) =(
2πλ2)− r

2 det (Σ)−
1
2 exp

(
− 1

2λ2 (x i − z)Σ−1(x i − z)>
)

where λ is called a smoothing parameter that has to be
chosen

� A frequency estimate for any given haplotype z is
g(z) = 1

N+

∑n
i=1 NiK (z |x i , λ)

� To incorporate prior knowledge, K (z |x i ,Ni , λ) =(
2π λ

2

Ni

)− r
2 det (Σ)−

1
2 exp

(
− 1

2λ
2

Ni

(x i − z)Σ−1(x i − z)>

)
could be used
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Problem

� The model can be inaccurate if the kernel has small
variance, because then the actual mass when evaluated
over the discrete grid can differ greatly from the relative
frequencies

� Discrete kernels could be tried instead, e.g. the multinomial
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Model based clustering

� Estimating a frequency for a haplotype using kernel
smoothing require evaluating as many densities as the
number of haplotypes in the database

� Model based clustering can be used to perform clustering
first to minimise the required number of density evaluations

� Same problem as with kernel smoothing if the variances are
too small
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Comparing models

Comparing models
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Comparing models

� Model verification is as always crucial
� One important feature of a model is to be able to

efficiently obtain further samples of haplotypes according
to their probability under a model
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Different ways of comparing models

� Estimated unobserved probability mass
� Marginal deviances (for a model’s single and pairwise

compared to observed)
� Several more should be definitely considered
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Unobserved probability mass: point estimate

� K0: the number of singletons
� N: the number of observations
� In 1968, Robbins showed that

V =
K0

N + 1

is an unbiased estimate of the unobserved probability mass.
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Unobserved probability mass: limiting consistent
variance estimate

� K1: the number of doubletons
� In 1986, Bickel and Yahav showed that under some

regularity conditions,

σ̂2 =
K0

N2 −
(K0 − 2K1)2

N3

is limiting consistent estimate of the variance of the
unobserved probability mass

� Both V and the variance estimate can be verified by
simulation
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Unobserved probability mass: simulation study

0 200 400 600 800
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Confidence interval coverage for true population size Q = 10000

Based on 10000 simulations and 10−90 probabilities. Line at 0.95.
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Symmetric standard confidence interval
logit−transformed confidence interval

10 110 210 310 410 510 610 710 810 910

S 0.012 S 0.842 S 0.956 S 0.966 S 0.973 S 0.973 S 0.971 S 0.968 S 0.967 S 0.966

T 0.000 T 0.812 T 0.970 T 0.973 T 0.975 T 0.976 T 0.972 T 0.972 T 0.968 T 0.967

C 0.004 C 0.027 C 0.029 C 0.029 C 0.029 C 0.029 C 0.028 C 0.028 C 0.028 C 0.028

S 0.010 S 0.099 S 0.106 S 0.103 S 0.100 S 0.096 S 0.093 S 0.090 S 0.087 S 0.084

T 0.008 T 0.101 T 0.106 T 0.103 T 0.100 T 0.096 T 0.093 T 0.090 T 0.086 T 0.084
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Unobserved probability mass

� The estimate seems like a good and simply way of perform
model verification, but it cannot stand alone as we shall
soon see

� It can also be used to fit model parameters, e.g. the
smoothing parameter in the kernel smoothing model
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Unobserved probability mass: approximate
confidence intervals

berlin dane somali
V 0.364 0.602 0.277
σ̂
V 0.061 0.078 0.120
95% conf. int. [0.321; 0.408] [0.510; 0.694] [0.212; 0.342]
S: β1/β4 6= 0 NA 0.643 NA
S: β1/β4 = 0 0.479 0.703 0.335
rpart 0.478 0.71 0.42
svm 0.526 0.792 0.43
polr 0.639 0.886 NA
Ancestor: 10% 0.39 0.589 0.182
Ancestor: 15% 0.454 0.668 0.22
Ancestor: 20% 0.466 0.713 0.246
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Marginal deviances

� Depending on the model, exact marginals can be difficult
to obtain

� If haplotypes can be sampled according to their probability
under a model, then marginals can be approximated by
simulating a huge number of haplotypes under that model

� Using only the observed marginals should correspond to
this, but – at least for small databases – this is not the
case according to simulations studies performed with the
classification models
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Deviance for pairwise marginals

� Let {u}ij be the two-way table with the observation counts,
{p̃}ij the table of predicted probabilities under a model
M0, {p̂}ij the relative probabilities such that p̂ij =

uij
u++

� For the pairwise marginal tables, the deviance is

d = −2 log
(

L({p̃}ij)
L({p̂}ij)

)
where L ({p}ij) =

∏
i ,j p

uij
ij is

proportional to the likelihood (the constant u++!∏
i,j uij

is

cancelled out in the fraction)

� Then d = −2
∑

i ,j uij log
(

p̃ij
p̂ij

)
∼ χ2

ν
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Comparing models

� A deviance is calculated for each pair of loci
� To compare models these deviances can summed and used

for relative comparisons (the sum is not χ2 distributed)
� The deviance is calculated similar for single marginals
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Deviance sums for single marginals

berlin dane somali
rpart 1.236 1.449 0.268
svm 13434.632 2363.861 5664.264
polr 3.114 4.623 NA

Sum of deviances for observed single marginals vs. simulated
single marginals for the classification method specified in each
row.
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Deviance sums for pairwise marginals

berlin dane somali
rpart Inf 768.444 772.936
svm Inf 24971.264 53797.852
polr 1761.153 Inf NA

Sum of deviances for observed pairwise marginals vs. simulated
pairwise marginals for the classification method specified in
each row.
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Calculating evidence

Calculating evidence
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Evidence: motivation of usage

� The purpose is to get an unbiased opinion in a trial
� Often formulated as the hypothesis

Hp : The suspect left the crime stain
together with n additional contributors.

Hd : Some other person left the crime stain
together with n additional contributors.

� Then the likelihood ratio given by LR =
P(E |Hp)
P(E |Hd )

is
calculated

� In a courtroom it can then be stated that the evidence E is
LR times more likely to have arisen under Hp than under
Hd (formulation is from ”Interpreting DNA Mixtures“ by
Weir et al., 1997)
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Computational challenge

� The actual evaluation of LR can be a computation heavy
task: the number of combinations giving rise to the same
trace grows with the number of contributors
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Two contributors

Assume

Hp : The suspect left the crime stain
together with one additional contributors.

Hd : Some other person left the crime stain
together with one additional contributors.
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Two contributors: notation

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) and define

T = a ⊕ b = ({a1, b1}, {a2, b2}, . . . , {a1, bn}) (8)
T 	 a = ({b1}, {b2}, . . . , {bn}) (9)

where the sets are multisets.
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Two contributors

Let T be the trace, hs the suspect’s haplotype, and h1 the
additional contributor’s haplotype. Then T = hs ⊕ h1 and
h1 = T 	 hs . Say that (h1,h2) is consistent with the trace T if
h1 ⊕ h2 = T , which is denoted (h1,h2) ≡ T . This makes

LR =
P (E |Hp)

P (E |Hd )
(10)

=
P (hs ,T 	 hs)∑

(h1,h2)≡T P (hs ,h1,h2)
(11)

=
P (hs)P (T 	 hs)

P (hs)
∑

(h1,h2)≡T P (h1)P (h2)
(12)

=
P (T 	 hs)∑

(h1,h2)≡T P (h1)P (h2)
(13)

by assuming that haplotypes are independent.
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Two contributors: number of terms in the
denominator

� Let T = (T1,T2, . . . ,Tr ), Ti is a set of alleles such that
|Ti | ∈ {1, 2}

� Let HT = T1 × T2 × · · · × Tr

� In the non-trivial case a j ∈ {1, 2, . . . , r} exists such that
Tj = {a1, a2} with a1 6= a2

� Let T ′j = {a1} (such that one of the alleles is removed) and

H′T = T1 × · · · × Tj−1 × T ′j × Tj+1 × · · · × Tr
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Two contributors: number of terms in the
denominator

� Now the denominator of LR can be written as
2
∑

h1∈H′T
P (h1)P (T 	 h1)

� If k denotes the number of loci in the trace with only one
allele, and we assume that we have the non-trivial case
with 0 ≤ k < r , we have that |HT | =

∏r
i=1 |Ti | = 2r−k

such that |H′T | = |HT |
2 = 2r−k−1 ≤ 2r−1

� This means that for r loci, a maximum of 2 · 2r−1 = 2r

haplotype frequencies have to be calculated, e.g.
210 = 1024

� If a trace has two contributors with no known suspects, the
two most likely contributors can be chosen to be
argmaxh1∈H′T

P (h1)P (T 	 h1)
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n contributors: formulation of the LR for one locus

� LR defined generally in ”Forensic interpretation of
Y-chromosomal DNA mixtures“ by Wolf et al., 2005

� At a given locus, let Et , Es , and Ek be the set of alleles
from the trace, the suspect, and the known contributors,
respectively

� Assume n unknown contributors and let An denote the set
of alleles carried by the these n unknown contributors

� Let Pn (V ;W ) = P (W ⊆ An ⊆ V )

� Then

LR =
Pn (Et ;Et \ (Es ∪ Ek))

Pn+1 (Et ;Et \ Ek)
(14)

=
P (Et \ (Es ∪ Ek) ⊆ An ⊆ Et)

P (Et \ Ek ⊆ An+1 ⊆ Et)
(15)
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n contributors: formulation of the LR for m loci

For m loci we have

LR =

Pn

(
m⋂

i=1

{Et,i ;Et,i \
(
Es,i ∪ Ek,i

)
}

)

Pn+1

(
m⋂

i=1

{Et,i ;Et,i \ Ek,i}

)



Y-STR:
Haplotype
Frequency
Estimation

and Evidence
Calculation

by Mikkel
Meyer

Andersen

Introduction

Estimating
frequencies

Comparing
models

Calculating
evidence
Two
contributors
n contributors

Further work

Questions

71/75

n contributors: example from thesis, page 18

Let Et,1 = {1, 2}, Et,2 = {2}, Es,1 = {1}, Es,2 = {2},
Ek,1 = Ek,2 = ∅. Then

LR =
P1

(⋂2
i=1{Et,i ;Et,i \

(
Es,i ∪ Ek,i

)
}
)

P2

(⋂2
i=1{Et,i ;Et,i \ Ek,i}

)
=

P
(⋂2

i=1{Et,i \
(
Es,i ∪ Ek,i

)
⊆ Ai

1 ⊆ Et,i

)
P
(⋂2

i=1{Et,i \ Ek,i ⊆ Ai
2 ⊆ Et,i}

)
=

P
(
{Et,1 \ Es,1 ⊆ A1

1 ⊆ Et,1} ∩ {Et,2 \ Es,2 ⊆ A2
1 ⊆ Et,2

)
P
(
{Et,1 \ Ek,1 ⊆ A1

2 ⊆ Et,1} ∩ {Et,2 \ Ek,2 ⊆ A2
2 ⊆ Et,2}

)
=

P
(
{{2}1 ⊆ A1

1 ⊆ {1, 2}1} ∩ {A2
1 ⊆ {2}2}

)
P
(
{{1, 2}1 ⊆ A1

2 ⊆ {1, 2}1} ∩ {{2}2 ⊆ A2
2 ⊆ {2}2}

)
=

P
(
{2}1 ∩ {2}2

)
P ({1, 2}1 ∩ {2, 2}2)

=
P (h1 = (2, 2))

P (h1 = (1, 2), h2 = (2, 2)) + P (h1 = (2, 2), h2 = (1, 2))
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n contributors: challenges

� It is complicated
� One key ingredient in calculating the LR is to be able to

estimate frequencies for unobserved haplotypes
� The next step is to be able to calculate the LR efficiently

even for a large number of contributors
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Further work

Further work
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Further work

� Estimating Y-STR haplotype frequencies
I Better incorporation of prior knowledge in a statistical

model, e.g. graphical models with other test statistics
(ordinal data and incorporating prior knowledge such as
the single step mutation model)

I More and better ways to verify models
I Larger datasets (http://www.yhrd.org has gathered a

lot of data, both publicly available in journals and directly
from laboratories, but none is available for others, yet)

� Y-STR Mixtures
I Efficient calculation of LR
I Use quantitative information (the amount of DNA material

which can be seen in the EPG) instead of only the
qualitative

� Model the signal in the EPG (electropherogram)

http://www.yhrd.org
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Questions?

Questions?
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