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visual arts. In this paper we present a method for visual stylometry of
paintings from digital reproductions.
Our method is framed around modelling contourlet transforms of the dig-

ital reproductions with hidden Markov models. Using the contourlet trans-
form in the field of classification is a new approach motivated by the con-
tourlets’ e�ciency in representing piecewise smooth contours such as brush-
strokes.
To test our method we have used paintings related to the Danish painter

Asger Jorn and drawings related to the Flemish artist Pieter Bruegel the
Elder. The paintings related to Asger Jorn are recorded in multiple digital
images and by two di↵erent cameras. With multiple sources we are able
to get insight into the robustness of our method against di↵erent means of
acquisition.
Through a cross-validation of the Jorn images by one of the cameras we

are able to correctly classify 39 out of 44 images; based on this classifier we
can correctly classify 28 out of 36 images in the other data set.
A cross-validation of the Bruegel images correctly classifies 11 out of 13

images.
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1 Introduction

The aim of visual stylometry of paintings is to quantify the artistic style of a painter
and thus get an insight into the development of his style throughout his career. In the
present paper we study quantification for the purpose of authenticating paintings based
on digital reproductions: Is it possible to determine the authenticity of a painting based
on digital photos?
Traditionally the task of authenticating paintings has been performed by art experts

and connoisseurs with a profound and detailed knowledge of the artist and his contem-
poraries. However, this method will always involve some subjectivity and therefore the
experts do not always agree. So assisting the authentication by more unbiased automatic
methods may – besides being a topic of mathematical interest – also be valuable for the
art community.
All automatic authentication methods work on digital reproductions of the paintings

and the fundamental idea is to extract a number of features from the digitized paintings
that are su�ciently expressive to distinguish the styles of di↵erent artists. Previous
attempts have been made to perform automatic authentication of paintings by training
models to separate paintings that are known to be authentic (i.e., painted by the claimed
painter) from known forgeries.
The authentication task has been tried most thoroughly on paintings by Vincent van

Gogh [3, 4, 22, 26], Pieter Bruegel the Elder [20, 24] and Jackson Pollock [2, 21, 31,
32]. But authentication from digital reproductions have also been tested on Chinese ink
paintings by multiple artists [23] and unknown painters portraying the Austrian royal
family [29].
Our work in this area is motivated by the theory that a forger can reveal himself

by having brushstrokes that are di↵erent in style [22]. With this assumption it seems
attractive to explore the fine details in paintings for the authentication purpose.
Several of the above mentioned methods employ multiresolution analysis to extract

relevant features from the paintings. Both wavelets [22, 23, 24, 26] and curvelets [20]
have been applied for this task. The reason for applying these signal processing tools is
that they are (hopefully) able to detect subtle di↵erences in the details between authentic
paintings and forgeries at di↵erent scales in the paintings.
In this paper, we work with the contourlet transform [10] of the digital photographs.

The reason for this choice of multiresolution analysis is that the atoms of the contourlet
transform resemble contours well, making it likely to also represent the brushstrokes well
and thereby the (subtle) di↵erences between paintings made by di↵erent artists.
The contourlet transform of the paintings is modelled by a hidden Markov model [25]

and by exploiting the di↵erences between the hidden Markov models of di↵erent artists,
we are able to predict the a�liation of new images. Our method is inspired by the
Princeton approach in [22], where complex wavelets are modelled by hidden Markov
models instead of contourlets.
Modelling contourlet transforms is a new contribution to the field of visual stylometry,

as well as the subsequent processing of the fitted models. The main contribution of this
paper is our experiments indicating that multiresolution transforms are not too sensitive
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to di↵erent means of obtaining the digital reproductions.
The rest of the paper is organized as follows: In Section 2 we present the data used

in the experiments. Section 3 describes the tools we utilize for our classification task.
This includes the contourlet transform and how we model these with hidden Markov
models to distinguish between paintings by di↵erent artists. In Section 4 we present the
most important results of our experiments. Section 5 discusses the interpretation of the
presented results and Section 6 contains our conclusions.

2 Artists used in our experiments

We have worked with paintings related to three di↵erent artists, as described in the
subsections. The acquisition of the digital reproductions have varied depending on the
origin of the data.
Each colour image with Red, Green and Blue (RGB) components was converted to

grayscale (gray = 0.2989 R + 0.5870 G + 0.1140 B) as in [20, 24]; this preserves the
brushstrokes (lines) in the image and we do not have to worry about how to combine
edges from the color channels.
Each image was furthermore divided into square patches with a side length of 1024

pixels. We choose a fixed number of pixels that neighbouring patches are allowed to
overlap and the patches are chosen such that they span the largest possible area of the
image while not overlapping more than allowed.

2.1 Asger Jorn

Our primary dataset is related to the Danish painter Asger Jorn (1914 - 1973) and
consists of paintings by Asger Jorn and his collaborators/apprentices. The images were
provided courtesy of Museum Jorn, Silkeborg, Denmark.
We photographed the paintings with two cameras with very di↵erent technical speci-

fications: A Canon Powershot G2 and a Nikon D90 with an AF-S Nikkor 50mm f/1.4G
lens. We used two di↵erent cameras to test the robustness of our classification procedure
to the means of acquisition and digital format. The Canon camera recorded images in
JPEG format and the Nikon camera in raw format which we then exported to a lossless
TIFF image.
The distance between the Canon camera and the paintings was consistent for all

photos, however, this was not the case as to the Nikon camera. The photos taken by the
Nikon camera were digitally corrected afterwards for the inconsistency in distance, i.e.,
for the inhomogeneous number of pixels per physical area – this was possible since the
camera recorded the distance to its focus point
The paintings were photographed in their display positions on the walls in the museum

where the lighting was homogeneous.
The paintings photographed are listed in Table 1.
Not all paintings could be captured in a single photograph of su�ciently high reso-

lution per physical area unit, so these were photographed in parts – leaving us with a
total of 44 digital images of the 15 paintings.
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Artist Title Year Catalog no.

Asger Jorn Automolok 1948 1986/0001
Asger Jorn Euphorisme 1970 1971/0274
Asger Jorn Hoved 1935 1958/0043
Asger Jorn Henning. Figurstudie 1933 1972/0205
Asger Jorn Portræt. Bodil 1961 –
Asger Jorn Grand ventre - incendie 1953 1958/0210
Asger Jorn Digteren Jens August Schade 1937-44 2008/0001
Asger Jorn Prete Alla Spiaggia 1957-59 1977/0001
Asger Jorn Trolden og fuglene 1944 1962/0183
Asger Jorn Le Vent Nous Emporte 1970 1988/0001
Asger Jorn Uden Titel. 1946 1946 1961/0116
Asger Jorn Uden Titel 1956-57 1961/0115

Jacqueline de Jong Admiration de la reine de vert 1961 1961/0119
Asger Jorn/Enrico Baj Uden titel 1958 1958/0290
Helmut Sturm Uden titel 1961 1961/0114

Table 1: The paintings related to Asger Jorn used in our experiments. The first col-
umn is the name of the artist, the second column is the original name of the painting,
the third column is the year(s) of production and the fourth column is the catalogue
number of the paintings at Museum Jorn. Additional information can be found at Art
Index Denmark, https://www.kulturarv.dk/kid/. The painting “Portræt. Bodil” is
displayed at Museum Jorn, but belongs to a private collector and therefore it has no
catalog number.
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Figure 1 presents an example of a painting by Asger Jorn and a painting by one of his
collaborators, Helmut Sturm.

(a) Asger Jorn, Hoved
[Head], 1958, oil on
canvas pasted on lam-
inate, 35.5 cm⇥26 cm.
c�Museum Jorn, Silke-
borg.

(b) Helmut Sturm, Uden
Titel [No Title], 1961,
oil on canvas, 75.5 cm ⇥
80.5 cm. c� Museum
Jorn, Silkeborg.

Figure 1: Examples of the paintings used in our experiments. Helmut Sturm was a
collaborator of Asger Jorn.

2.2 Pieter Bruegel the Elder

In [20, 24] the authors used images of drawings by Bruegel the Elder to test their
classification methods. By courtesy of Daniel Rockmore of Dartmouth College, we have
been able to test our methods on the same set of Bruegel drawings.
The original Bruegel drawings stem from the Metropolitan Museum of Art in New

York and in the following we refer to the drawings by their Metropolitan Museum of
Art catalogue number, as it is done in [24]. The image catalogue numbers and their
categories are summarized in Table 2.
The images consist of eight authenticated drawings by Bruegel and five acknowledged

Bruegel imitations.
All images are 16 bit RGB color images recorded in lossless PNG format [20, 24].

2.3 Charlotte Caspers

The authors of [22] concluded that they could decide on the authenticity as to a series of
van Gogh paintings of which some were known to be forgeries. However, as the results of
[22] were found to relate more to the cameras used for acquisition, the authors continued
their research [26], but this time they made sure that they had full control over the entire
process of acquiring the data: They asked the conservator Charlotte Caspers to paint
a series of small paintings and then to copy them herself, and afterwards the digital
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Catalog no. Title Artist

3 Pastoral Landscape Bruegel
4 Mountain Landscape with Ridge and Valley Bruegel
5 Path through a Village Bruegel
6 Mule Caravan on Hillside Bruegel
9 Mountain Landscape with Ridge and Travelers Bruegel
11 Landscape with Saint Jermove Bruegel
13 Italian Landscape Bruegel
20 Rest on the Flight into Egypt Bruegel

7 Mule Caravan on Hillside —
120 Mountain Landscape with a River, Village, and Castle —
121 Alpine Landscape —
125 Solicitudo Rustica —
127 Rocky Landscape with Castle and a River Savery

Table 2: References for the images used in our analysis and their category as authentic
Bruegel drawings or forgeries. A “—” means that the artist is unknown.

reproductions were obtained with the same scanner. The digitized versions of these
paintings can be found online [7].
The observation made by the authors of [22, 26] is important as an authentication

method with limitations as to the acquisition and digital format is not very useful.
Another complication when quantifying the artistic styles of painters is their use of dif-

ferent types of paint and canvas: We have not yet investigated the influence of materials
thoroughly.

3 Methods

In the first part of this section we explain our choice of model and how we fit the models
to our painting data, i.e., training a classifier. The last part of the section is concerned
with how we utilize our models in detecting forgeries.
The training part of our authentication method works in basically three steps:

1. Make a contourlet transform of patches from the digital images, Section 3.1.

2. Model the contourlet coe�cients by a hidden Markov model. Hidden Markov models
are very rich models that have proved to be useful for classification tasks, see e.g. [8,
25, 27], Section 3.2.

3. Construct a classifier from the hidden Markov models, Section 3.3.

The contourlet transform and hidden Markov models are both well-known tools; we
include brief introductions to make the paper more self contained and to justify our
choices. Furthermore, we set the notation used in later sections.
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3.1 The contourlet transform

In this section we briefly introduce the ideas of the contourlet transform and our moti-
vation for using it in the present work. The reader is referred to the original article [10]
for a more thorough exposition.
The contourlet transform o↵ers a multiresolution decomposition of digital images with

a user specified number of directional highpass subbands.
The multiresolution decomposition is obtained by successively computing coarser ver-

sions of the given image by applying a lowpass filter in the form of a Laplacian pyramid.
The highpass part that is filtered out at each level of the multiresolution is divided into
directional subbands, i.e., subbands that contains high frequency content in a limited
band of directions.
The contourlet transform is constructed using a multiresolution analysis and therefore,

after each application of the lowpass filter, we downsample the obtained lowpass image
by a factor of two in each direction. This implies that at each level of the decomposition
the number of pixels in the image is a quarter of that at the former level.
The contourlet transform has a number of attractive features that have served as a

motivation for using it in the present work. The individual features are not unique to the
contourlet transform, but the fact that they are all present is what makes the contourlet
transform appealing.

Directionality As stated in the beginning of the section, the highpass subband from each
level is divided into directional subbands. Here the point is that the number of directional
subbands is specified by the user. Having this choice is di↵erent from e.g. wavelets, where
the high frequency content is distributed between a fixed set of directional subbands
(vertical, horizontal and diagonal in the case of ordinary wavelets).

The directionality can also be obtained by other transforms, e.g. by Gabor wavelets or
curvelets [5].

Optimal representation An alternative view on the contourlet transform is that it pro-
vides a frame {�i}i2J that allows us to represent an image I as

I =
X

i2J
ci�i. (1)

When quantifying how well a transform performs at representing images, we measure
how well I can be represented using only a subset of the functions in (1). More formally,
we let

IM =
X

i2JM

ci�i,

where JM ✓ J is the set of indices of the M numerically largest coe�cients from (1).
If the representation (1) is e�cient, I’s behavior is captured by a few �’s and IM ⇡ I,
quantified by a suitable norm kI � IMk.
In [11] it was established, that in a continuous setting and if I is su�ciently smooth,
kI� IMk2 cannot decay faster than M�2. The curvelet and contourlet transform almost
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obtain this bound [6, 10], as

kI � IMk2  constant ·M�2(logM)3, (2)

provided that the number of highpass directions double at every other scale. This re-
quirement is known as parabolic scaling and implies that the �i’s in (1) have elongated
supports that make them excel at capturing the edges (or contours) in images.

To the best of our knowledge, no transform has been found that outperforms the con-
tourlet (and curvelet) transform in this respect.

Discrete construction The contourlet transform is designed to work on discrete data
and hence the implementation for digital images is seamless.

This is the major di↵erence between the curvelet and the contourlet transform; the
curvelet transform is designed to work on continuous data and is adapted to discrete
data via a sampling grid.

By using a directional multiresolution transform it is our hope that we get a good
representation of the brushstrokes captured in a digital image at di↵erent resolutions.
An example of a possible contourlet transformation of an image is seen in Figure 2 –

along with a wavelet transformation for comparison.

(a) A two level wavelet decomposi-
tion of image.

(b) A two level contourlet decomposition of image.

Figure 2: Comparison of wavelet and contourlet transformation by a two level decompo-
sition of the grayscale version of the painting in Figure 1b. In the highpass subbands of
the contourlet transformation we capture details at a variety of orientations, as opposed
to the three fixed orientations of the wavelet transform.

3.2 Hidden Markov modelling of contourlet transforms

Figure 3 illustrates the situation we want to model, i.e., how the coe�cients evolve
through the levels of the multiresolution decomposition. The coe�cients that are con-
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nected in Figure 3 are at the same spatial locations in the image, but at di↵erent levels
of resolution.

(a) Coe�cients in a two level
wavelet transform of an image.

(b) Coe�cients in a possible two level contourlet
transform of an image.

Figure 3: Parent-children relationship for wavelets and contourlets. The black coe�cients
are parents of the white coe�cients. The parents reside at the same same spatial location
as their children, but at a coarser resolution.

Referring to Figure 4, they share the same major direction, as the children levels
together span the same direction as their parents level.
With these common characteristics it seems plausible that the coe�cients are related;

if the parent coe�cient is large, indicating the presence of an edge, it is likely that (at
least) one of the children coe�cients is large as well – and vice versa. This relationship
is local, since we only need to know if the parent is related to an edge and not the grand
parents.
From (2) we have that the contourlet transform captures an image with few large

coe�cients, while the majority of coe�cients are insignificantly small. So the distribution
of coe�cients at a particular subband is highly peaked around zero and has heavy tails.
As it has been demonstrated in [25], such a distribution is well approximated by a

mixture of normal distributions.
The hidden Markov model we utilize in our modelling was introduced for contourlets

in [25] and captures the essential properties mentioned above in the following manner:

• An individual coe�cient oi is a realisation of a stochastic variableOi whose distribution
is a mixture of normal distributions. For each coe�cient we also introduce a discrete
hidden state Si indicating which normal distribution in the mixture the observation
stems from.

• To model the relation between a coe�cient oi and its parent o⇢(i), we model the relation
between the associated hidden variables Si and S⇢(i), and this relation is Markovian,
i.e., Si depends on the rest of the hidden variables only through its parent.

Each coe�cient on the coarsest highpass subbands is the root of a tree and each tree
is modelled by a hidden Markov model – as illustrated in Figure 5.
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(�⇡,�⇡)

(⇡,⇡)

Figure 4: Ideal partitioning of the frequency plane of a contourlet transform as in Fig-
ure 2b. The outer square is the frequency plane. Each level of the contourlet transform
keeps the center square of the former level. The black center region is contained in the
lowpass subband and we refer to the gray shaded region as a major direction of the
contourlet transform, as these are the directional frequencies covered by the coarsest
highpass subband.

S1

S⇢(n)

O⇢(n)

Sn

On

O1

Figure 5: Illustration of a graph and the parent-children relations of a hidden Markov
model. The black nodes are hidden state variables and the white nodes are observations.
Index 1 is the root of the tree, n is an arbitrary node with parent ⇢(n).
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Let T be such a tree. If each hidden state take on values {1, . . . ,M} (unrelated to
the M in (2)), we parameterize it as follows:

• The distribution of the hidden state at the root, P (S
1

= m), m = 1, . . . ,M .

• The transition probabilities between each hidden state and its parent, ✏n,mi,⇢(i) = P (Si =

n|S⇢(i) = m), m,n = 1, . . . ,M .

• The mean µi,m and standard deviation �i,m of each of the normal distributed variables
Oi|Si = m, m = 1, . . . ,M .

The free parameters of the tree, which we use later in the classification, remove the
redundant probabilities from the list above.
To obtain robust estimates of the parameters in the model, we model the trees rooted

in the same major direction (ref. Figures 3b and 4) as independent and identically
distributed – this is also known as tying [8, 27].
As mentioned in Section 3.1, the number of coe�cients quadruple at every level, so if

for example we apply a three level contourlet transform to a square image with a side
length of 1024 pixels there are 10242/43 = 1282 trees.
We fit hidden Markov models to each of the major directions independently.
In our application, the hidden states can each take two values since this provides an

adequate description of our data with the minimum number of parameters. Furthermore,
we set µi,m = 0 for all i and m, since this choice also fits data.
To verify that the hidden Markov model is indeed applicable for the images we want

to model, we compare the empirical distribution of contourlet coe�cients in a subband
with coe�cients simulated from the fitted hidden Markov model. As a by-product of
the maximum-likelihood estimation we get the distribution of the hidden states in the
hidden Markov model, and therefore simulation from the mixture model in a subband
is straightforward. The validity of the model is verified by making a QQ-plot of the
observed and simulated coe�cients.
Hidden Markov modelling of contourlet transforms was introduced in [25], which was

motivated by similar modelling of wavelet transforms from [8].
Hidden Markov modelling of wavelet transforms have only limited directional separa-

tion and each direction is modelled separately as illustrated in Figure 3a. The modelling
of the contourlet transform o↵ers some modelling of inter-directional dependencies, since
the major directions of the contourlet transform can spilt into several minor directions
as seen in Figure 3b.

3.2.1 Parameter estimation

We estimate parameters in the hidden Markov models by maximizing the corresponding
likelihood function using an Expectation Maximization (EM) algorithm; the appropriate
algorithm for this type of model is described in [8]; see also [27] for precautions related
to the implementation.
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The EM algorithm is an iterative procedure and requires an initial estimate of the
parameters as input. We initialize by simply choosing a random model obtained by
simulating random values for each of the parameters.
To reduce the final model’s dependency on the initial estimates, we run the EM al-

gorithm a number of times with random initial values and choose the final model that
yields the highest likelihood.
During a maximization step of the EM algorithm, it may happen that some parameters

are updated to values that are approaching the computers numerical precision, which is
not desirable. We therefore restrict the permissible values of the parameters to avoid
numerical underflow. This probably also makes the EM algorithm less sensitive to the
initial estimates [19].

3.3 Classification

Hidden Markov models describe our data adequately and are also widely used for clas-
sification purposes, e.g. speech recognition [27] and texture retrieval [8, 22, 25].
Classification is typically performed by computing a sensible distance between the

fitted models, e.g. the Kullback-Leibler divergence. For our data this did not give
satisfactory results, so we have used the fitted models in a di↵erent way.
Using the parameters of the hidden Markov models directly with a support vector

machine classifier (SVM; see e.g. [18] for a good exposition) was not successful either.
A likely explanation to the failure of the SVMs is that many of the parameters in the

hidden Markov models are highly correlated; we circumvent this issue by performing a
feature selection prior to the classification.
We have tried two kinds of feature selection that both increased the success of the

classifier. SVM can be used to perform recursive feature selection as described in [17]
by recursively filtering out the features with the smallest weights (as assigned from the
SVM).
However, the recursive feature selection was not as successful as using the lasso for

logistic regression1 on an embedding found by a multidimensional scaling (MDS) algo-
rithm, see Section 3.3.1. The individual steps will be described in more details after-
wards, but the workflow of our classification is as follows:

model parameters

lasso���! select & weigh parameters

�! weighted distances between images

MDS���! embedding in 2

SVM���! classification

1Independently of our work, it was proposed in [16] that logistic regression could be used to weigh
parameters.
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3.3.1 Parameter selection

In the following we let ✓n = (✓n,1, . . . , ✓n,K) denote the free parameters of the hidden

Markov model fitted to an image n. Furthermore, we let e✓n = (1, ✓n,1, . . . , ✓n,K).
We are interested in modelling the paintings as being either authentic or forgeries,

i.e., as having two possible states. When using logistic regression to select and rank the
parameters, we model this as the probabilities

pn = P (image n is authentic|✓n)

using the logistic transformation, x 7! log x
1�x . The simplest type of regression is when

we assume a linear relationship

log
pn

1� pn
= �

0

+
K
X

`=1

�`✓n,` = �>
e✓n. (3)

There is no a priori justification for using a linear model, except that it is the simplest
model and it gives satisfactory results.

Furthermore, the model (3) has the advantage that it does not depend on the range
of the pixel values of the images we classify. We typically represent the grayscale values
of the pixels in a digital image either as floating point numbers in the unit interval or
as 8 or 16 bit integers, i.e., integers between 0 and 28 � 1 or 216 � 1, respectively. The
representation range should be consistent in our dataset, but the classification method
should not depend on the specific choice. That (3) ensures this will be elaborated on
after the definition of the metric we introduce to measure the distance between the
hidden Markov models.

Under the assumptions of a two class model and (3), the log-likelihood for N images
under the Bernoulli model is

l(�) =
N
X

i=1

�

yi log pi + (1� yi) log(1� pi)
 

=
N
X

i=1

n

yi�
>
e✓i � log

�

1 + exp(�>
e✓i)
�

o

. (4)

It is well known how to maximize this log-likelihood function, see e.g. [18].
However, using the regular logistic regression for feature selection gives rise to some

problems 1) it is di�cult (and sometimes impossible with the working precision) to
estimate the �’s in high dimensional problems 2) many of the �’s have small numerical
values, but few are exactly zero, i.e., we do not perform a good selection.

To circumvent this problem, we use the lasso logistic regression [18] instead, where we
maximize (4) subject to the constraint

K
X

`=1

|�`|  t. (5)
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Equivalently, we can solve the optimization problem in the Lagrangian form

max
�

⇢ N
X

i=1

h

yi�
>
e✓i � log

�

1 + exp(�>
e✓i)
�

i

� �
K
X

`=1

|�`|
�

. (6)

In [13] the authors present a fast iterative algorithm for solving (6) and we have used
the implementation [14]. When using the software from [14] we get solutions to (6)
for finite, decreasing sequence of �’s. The optimal � is then chosen by leave-one-out
cross-validation, as illustrated in Algorithm 1.

Algorithm 1: Cross-validation
Input: patches from N images, where the i’th image consists of Ni patches:

P = {pi,j | 1  i  N, 1  j  Ni}
Input: decreasing, positive sequence ⇤ = {�k}Kk=1

Output: cross-validation error for each � 2 ⇤
Initialization:
ek = 0, 1  k  K
for i 2 {1, . . . , N} do

patch set = P \ {pi,j | 1  j  Ni}
for � 2 ⇤ do

train model from (6) with patch set and �
classify {pi,j | 1  j  Ni} with model
if classification is correct then

ek := ek + 1/N

return e
1

, . . . , eK

Note in the algorithm that when classifying a patch from an image we leave out out
all other patches from that image; otherwise our classifier has an unrealistic prior.
With a set of estimated �’s we define the associated weights as

wi = |�i|, 1  i  K. (7)

Using these weights we define the distance between two hidden Markov models with
parameters ✓i and ✓j , respectively, as

d(✓i,✓j) :=
K
X

`=1

w`|✓i,` � ✓j,`|. (8)

Since many of the weights are zero, the number of non-zero terms in the sum (8) is
usually much smaller than K. The reason for using a weighted `1-norm (as opposed to
an `p-norm with p > 1) is that the `1-norm penalize small di↵erences better than `p-
norms with larger p, which is necessary for the probability parameters. The classification
is significantly better when using the `1-norm instead of the `2-norm. Using `⌧ pseudo-
norms with 0 < ⌧ < 1 does not further improve the classification.
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The metric (8) is between the hidden Markov models fitted to the individual patches
in an image; we combine the distances between patches into a distance between images
by means of the Hausdor↵ distance: Let NI denote the number of patches in picture I
and let ✓I,1, . . . ,✓I,NI be parameters of the hidden Markov models fitted to the patches
in I. Then the Hausdor↵ distance from image I to image J is

dH(I, J) := max
1kNI

�

min
1`NJ

{d(✓I,k,✓J,`)}
 

, (9)

and the Hausdor↵ distance between image I and J is

max{dH(I, J), dH(J, I)}. (10)

Before elaborating on how we use these distances for classification, we shall prove the
claim from the beginning of the section, i.e., that these distances do not depend on the
range of the pixel values in the images.
The probability parameters in the hidden Markov models do not depend on the range

of the pixel values; hence we need only pay attention to the standard deviations. Both the
contourlet transform and the standard deviations are positively homogeneous of degree
1 (when scaling the pixel values, the contourlet coe�cients scale similarly; the same goes
for the deviances of the fitted hidden Markov model) and the �’s in the regression are
homogeneous of degree �1 (if a parameter ✓n,` in (3) scales with a factor k > 0, the
corresponding weight �` scales with 1/k). This implies that the scaling factor cancel in
the expression (8): Let ✓i and ✓0

i be the parameters of two hidden Markov models fitted
to the same image, but with pixel values scaled di↵erently. If �i,` and �0

i,` are standard
deviations in ✓i and ✓0

i, respectively, then �i,` = k�0
i,` for some constant k > 0 and the

corresponding regression weights are w` =
1

kw
0
`. Thus the contribution of these standard

deviations to the distance (8) is

w`|�i,` � �j,`| =
w`

k
|k�i,` � k�j,`| = w0

`|�0
i,` � �0

j,`|,

independent of k.
Returning to the use of (10), we use (8)–(10) and compute pairwise distances be-

tween all the images. Using a multidimensional scaling (MDS) algorithm (see [30] for a
thorough exposition on the so-called classical MDS and e.g. [12, 18] about non-classical
MDS), we find a configuration of points in 2 whose pairwise distances are as close as
possible to those computed by (10).
From the points computed by the MDS we construct a classifier based on a simple

SVM with linear decision boundary.
The important part of this procedure is that we arrive at a configuration of points

where the images of authentic paintings and forgeries are indeed separable – the sub-
sequent classification by linear SVM might not be optimal, but it serves the point of
illustrating the potential of our method.
It is worth making a couple of remarks.
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• In plots where the training is based on di↵erent images, the weights from (7) are di↵er-
ent and hence the pairwise distances between the hidden Markov models in (8) change
as well. This means that it does not make sense to make a direct comparison of the
subsequent plots in Figures 7, 8, 11 and 12. Consider Figures 11 and 12 as an illus-
tration: Here the pairwise distances between the Caspers images change as di↵erent
weights are used, whereas their spatial distribution does not change significantly.

• For the purpose of visualizing the pairwise distances between the models, the units in
the MDS plot are not important – in this regard only the relative distances matters.

When computing a classification rule with SVM, the points are normalized to have
zero mean and unit standard deviation, as there are indications that this ensures a
more robust rule [1, 15]. Hence the units are not important for the SVM classification
either.

In conclusion, we do not need units for the classification nor the display of points, but
we have included the units to illustrate how the weights influence the distances.

4 Results

We now present the results of our experiments with the paintings related to Asger Jorn,
Pieter Bruegel and Charlotte Caspers.
All numerical experiments were carried out in Matlab and the source code is dis-

tributed2.
We used the Contourlet Toolbox by Minh Do [9]. The contourlet transform in [9] is

implemented with a double filter bank, one that implements a Laplacian pyramid for
separating lowpass and highpass subbands, and one that implements the partitioning
into directional subbands. We therefore need to specify filters for the two filter banks,
the number of levels in the Laplacian pyramid, and the number of directional subbands
on each level of the Laplacian pyramid.
The classification results with the di↵erent filters were comparable and the number of

levels and directions had only a small influence. The results presented here are based on
the 9-7 pyramidal filter, the pkva12 directional filter and a four level contourlet transform
with 8, 8, 16 and 16 directions from coarsest to finest pyramidal level.
A topic, which is not related to the transforms used, is the options considering down-

sampling of the images. Obviously we cannot use images of arbitrary resolution; if the
resolution is too coarse the level of details is not su�cient; if the resolution is too high we
may be modelling insignificant details in the canvas or paint because the brushstrokes
are not part of high frequency content.
The e↵ect of downsampling – and other preprocessing of the images – will not be

investigated thoroughly here; these issues need further investigation and will be dealt
with in our subsequent work. In the present experiments we have fitted hidden Markov

2Available online at http://www.mathworks.com/matlabcentral/fileexchange/35322
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models and estimated the prediction error of the corresponding classifiers through cross-
validation for a variety of downsampling factors and used the downsampling factor that
yields the best result.
Our experiments showed that using an inappropriate amount of downsampling is not

only visible in the final classification; it may entail that the optimization algorithm used
to solve (6) is not converging and hence fitting the Bernoulli model is not feasible.
As described in Section 3.2, we verify that the HMT model is appropriate for our

data by making a QQ-plot of the observed coe�cients versus coe�cients simulated by
the fitted HMT model. An illustration of a QQ-plot for the coe�cients is presented in
Figure 6.
For some subbands the tails of the coe�cient distributions are heavier than the fitted

mixture distribution – however, the model is acceptable.
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Figure 6: QQ-plot of coe�cients from subband versus simulated coe�cients from the
fitted HMT model. The coe�cients are from a patch of an Asger Jorn picture recorded
with the Nikon D90 camera.

4.1 Results for Asger Jorn

As mentioned in Section 2.1 some of the paintings from Museum Jorn were photographed
in multiple images and we divided our data into two groups, one for classification based
on the digital images, and one for classification based on the paintings, i.e., by concate-
nating the images of the same painting. This means that when classifying the digital
images we used (9) as it stands, but when classifying paintings we calculated the pairwise
distances between the paintings P and P 0 as

dH(P, P 0) := max
1kNP

�

min
1`NP 0

{d(✓P,k,✓P 0,`)}
 

, (11)

where NP is the number of hidden Markov models fitted to the patches in all images
from P .
The result of the multidimensional scaling and the following classification with a linear

SVM is seen in Figure 7 and summarized in Table 3.
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(a) Classification of the Asger Jorn images.
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(b) Classification of the Asger Jorn paintings.
The pairwise distances are smaller than in Fig-
ure 7a due to the second application of the Haus-
dor↵ distance (9).

Figure 7: Classification of Asger Jorn’s images using a linear SVM on the embedding in
2 computed with a multidimensional scaling algorithm. In Figure 7b the classification

is based on the paintings – each of which is captured in several images. Figure 7a shows
the classification of the individual images.

AJ not AJ total

images 28/31 11/13 39/44
paintings 9/12 2/3 11/15

Table 3: Classification results of the images related to Asger Jorn. As discussed in the
paper some paintings are captured in multiple images. The first number in a category
is the number of correctly classified images/paintings; the second number is the total
number of images/paintings in that category.
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The �’s in the regression model (6) that give the best classification results rely on
between 10 and 30 parameters from the HMTs – which is a considerable reduction from
the full parameter set of 184 parameters.
Furthermore, it is notably di�cult to classify the images of the painting in Figure 1b

by Helmut Sturm; when performing cross-validation, the painting by Helmut Sturm is
misclassified for all � values.
As mentioned in Section 2.3 other researchers have reported di�culties with classifica-

tion independent of the camera, i.e., classifying digital reproductions of paintings related
to the same artist, but acquired by di↵erent cameras/scanners [26].
It is of interest to see how our method performs in such a situation and as mentioned

in Section 2.1 we photographed the paintings at Museum Jorn with two di↵erent cam-
eras. Comparing the two sets of images should yield good results since they are digital
reproductions of the same paintings. However, since the two cameras produce digital
reproductions that di↵er significantly in resolution and DPI, we need to downsample3

the high resolution images to a level where the details are of the same size as in the low
resolution images. If the high resolution images are not downsampled, the objects in the
two sets of images are not comparable in any way. In our situation we can determine the
appropriate level of downsampling by comparing the size of a painting’s characteristic
elements in di↵erent images of that painting.
As it is seen in Figure 8 our method can perform cross-camera classification if we

choose the right level of downsampling; it is also evident that a comparison of images
from the two cameras is meaningless if the level of downsampling is inappropriate.
With Figure 8b we correctly classified 28 out of 36 images from the Canon camera.
We mentioned in the introduction that our original inspiration was hidden Markov

modelling of complex wavelets. To support our theoretical motivation for using con-
tourlets instead of wavelets, we have performed our experiments with complex wavelets
instead of contourlets, i.e., the only thing changed is the multiresolution transform.
Hidden Markov modelling of complex wavelets was introduced in [28] and the code for
computing the complex wavelet transforms and fitting hidden Markov models was kindly
provided by Justin Romberg.
This is of course not a precise replication of the experiments with complex wavelets

in [22] as we have di↵erent data sets and code, but it serves to illustrate our point with
contourlets.
The complex wavelet counterpart to Figure 7 is seen in Figure 9 where there is a more

significant overlap between the two classes.

4.2 Results for Pieter Bruegel

When performing cross-validation on the images related to Pieter Bruegel the Elder, we
can correctly classify 11 out of 13 drawings; the two drawings that are not correctly
classified are 13 and 125 from Table 2.
When computing the embedding, it appears as in Figure 10.

3Performed with standard tools and settings in Matlab
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(a) The zoom level of the training and test images
are very di↵erent.
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(b) The zoom level of the training and test images
are comparable.

Figure 8: Comparison of the e↵ect of zooming the images. In both cases we have tried to
classify the images from the Canon camera (with low resolution) from a Support Vector
Machine decision rule calculated from images obtained with the Nikon camera (with
di↵erent resolutions). In Figure 8a we used the original images for the training and in
Figure 8b we scaled the training images. The right zoom level was determined manually
by comparing fixed objects in images of the same painting with di↵erent zoom levels.
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(a) Classification of the Asger Jorn images.
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(b) Classification of the Asger Jorn paintings.

Figure 9: Counterpart to Figure 7: Here complex wavelets are used instead of contourlets
as basis for the classification; notice that the separation is worse than in the contourlet
case.
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Figure 10: Classification of images related to Pieter Bruegel the Elder with a linear SVM
on an embedding in 2 found with an MDS.

4.3 Results for Charlotte Caspers

Our results regarding the images by Charlotte Caspers are far from satisfactory in terms
of the number of correct classifications, but they are nonetheless interesting.
In Figure 11 is the result of a MDS for all images by Caspers and here it is worth

noticing that the copies and originals are clustered pairwise and separated from the other
pairs.
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Figure 11: Embedding in 2 of the models fitted to paintings by Charlotte Caspers from
a multidimensional scaling algorithm, as described in Section 3.3. The originals and
copies are denoted by O# and C#, respectively, with # = 1, . . . , 7.

Also, for many �’s in (6), the regression algorithm did not converge and in all cases
the number of non-zero parameters were very high compared to the experiments with
Asger Jorn. This indicates that the Bernoulli model is not suitable, as more than two
classes are needed.
It is interesting to study the behaviour of our method when classifying paintings that

are totally unrelated to the training material, e.g. the paintings by Charlotte Caspers
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using a classification rule obtained from the paintings related to Asger Jorn. The result
is presented in Figure 12; as expected the results related to Charlotte Caspers’ paintings
do not overlap with those of Asger Jorn.
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Figure 12: Classification of the paintings by Charlotte Caspers using the paintings related
to Asger Jorn. As can be seen, the paintings by Charlotte Caspers do not overlap the
paintings related to Asger Jorn.

5 Discussion

The classification method presented yields good results when separating paintings by
Asger Jorn from those of his collaborators; however, there are at least two issues that
are worth mentioning 1) our method does contain black-box elements 2) the poor clas-
sification of the paintings by Charlotte Caspers in Figure 11.
Regarding 1) it would of course be desirable to know exactly what we are capturing

in the paintings using the hidden Markov models – is it indeed the brushstrokes? On the
other hand, all present methods for digital authentication contain some kind of black-box
element; there is no guarantee that our interpretation of the features is exhaustive.
Regarding 2) it is disappointing that the method cannot handle this data set. On the

other hand, the “copies” of Charlotte Caspers’ paintings are made by herself and thus
the styles can be expected to have a high degree of similarity – as can be seen online
[7]. Hence it may be that the reason that our method indicates the pairwise cohesion is
because it is in fact so. This conjecture is supported by the observation from Section 4.3
of the Bernoulli model being inappropriate for modelling the hidden Markov models:
The originals and copies are not two homogeneous classes.
This can also be considered part of a more general problem. When training a classifier

to distinguish between the works of a given artist and “the rest”, it is not realistic to
model all of “the rest”, since “the rest” potentially contains every image not made by
the given artist, which is definitely not homogeneous.
In the situation where we have multiple imitations that could not be modelled as

representations of the same class, one could imagine training multiple classification rules
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– one for each of the homogeneous subclasses – and deem a painting authentic if it passed
all/a majority of these classification rules.
Finally it is interesting that our classification methods depend on the zoom level of

the images. The e↵ect of data collection and preprocessing of the digital images is an
issue that will be addressed further in later work.

6 Conclusion

In this paper, we have constructed methods for classifying paintings. The contourlet
transform of digital images of paintings is able to e�ciently capture the contours of the
image – including the brushstrokes of a painter, which is believed to be characteristic.
The contourlet transform is well described by a hidden Markov model, which captures
both the coe�cient distribution on the individual resolutions and the dependency struc-
ture between the resolutions.
By applying a lasso regression we perform variable selection and weighing among the

features of the hidden Markov models. Using such a selection to define a metric between
the trained hidden Markov models, we find an embedding of points in 2 that resembles
the pairwise distances. Once this embedding is found, we train a classifier to distinguish
between the classes of paintings.
With this procedure we have performed a leave-one-out cross-validation where we have

successfully classified 39 out of 44 images related to Asger Jorn and 11 out of 15 images
related to Pieter Bruegel.
A promising aspect of our method is that we can determine the authenticity of images

digitized di↵erently than the training data – from the model found through the cross-
validation mentioned above, 28 out of 36 images from the other test set was classified
correctly.
To experimentially motivate contourlets over other multiresolution transforms we have

also performed our experiments with complex wavelets, that have been used in similar
experiments [22, 26]. The results with contourlets are better than those with complex
wavelets.
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