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We consider a family of basic non-stationary wavelet packets genarsitegithe

Haar filters except for a finite number of scales where we allow the uasbifary
filters. Such a system, which we call a system of Walsh type wavelet {sademn
be considered as a smooth generalization of the Walsh functions. Wetkhbw
the basic Walsh type wavelet packets share a number of metric propeittiethe
Walsh system. We prove that the system constitutes a Schauder bas oy,
1 < p < oo, and we construct an explicit function It (R) for which the expansion
fails. Then we prove that expansionsIdf(R)-functions,1 < p < oo, in the Walsh
type wavelet packets converge pointwise a.e. Finally, we prove thahtlegous
results are true for periodic Walsh type wavelet packefs”iji, 1).

Key Words: Wavelet analysis, non-stationary wavelet packets, Walsh functidhspnvergence,
convergence a.e.

1. INTRODUCTION

Wavelet analysis has provided a new class of orthogonalneskpas in L2(R) with
good time-frequency and regularity-approximation préipemwhich have been successfully
applied to signal processing, humerical analysis and guamiechanics. Wavelet packet
analysis extends such an orthogonal wavelet expansion tooéevibrary of orthogonal
expansions with different time-frequency properties wuhi@an be searched for the best
expansion with respect to some predetermined criteria.s 8diaptive approach have
advantages over both wavelet and short-time Fourier aisalygpplications where both
transient and stationary phenomena are present. Howewgte uhe wavelet case, the
properties of such orthonormal bases in other spacestRéR) have not been studied
extensively. The focus in this paper will be on basic wavpkstket expansions af?-
functions defined on the real line and on the unit intervalpeetively. The most elementary
example of a system of basic stationary wavelet packete MMish system which is known
to be a Schauder basis f@#[0,1), 1 < p < oo ([9]). An even stronger result proved
by Billard and Sglin is that the Walsh expansion of a givé#|0, 1)-function converges
pointwise a.e. ([1, 10]). However, it turns out that suchentmnvergence results can
fail for more complicated basic stationary wavelet packeihe author proves in [8]
that the stationary wavelet packets generated by the Daidsefilers of lengtht, 6, . . .,
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respectively, fail to be a Schauder basisE8(RR) for p large regardless of the ordering of the
functions. Thus, smooth basic stationary wavelet packetsat the “right” generalization
of the Walsh functions within the wavelet packet framewdriwé are interested id.”-
convergence.

Inthe present paper we introduce a family of smooth basiestationary wavelet packets
for which the same type df”-convergence results are true as for the Walsh system. Each
member of the family is generated using the Haar filters edfoeg finite number of steps
where we allow arbitrary filters.

The type of non-stationary wavelet packets we will use waoduced in [4]. The
structure in which non-stationary wavelet packets livéhat bf a multiresolution analysis
{V;}jez for L?(R) (for the definition and properties, see e.g. [2, 7]). To eveuytiresolu-
tion analysis we have an associated scaling funetiand a wavelet) with the properties
that

=spar(2//2¢(27 - —k)|k € Z},
and
{jp = 2072p(27 - —k)|j, k € Z}

is an orthonormal basis fdi?(R). We denotéV; = spar{(2//2y (27 - —k)|k € Z}.
We let(F®), F{*)), p € N, be a family of bounded operators 6H{Z) of the form

(F®Pg Zanhp (n — 2k), e=0,1
nez

with 2" (n) = (=1)"h{"’ (1 — n) a real-valued sequencedh(Z) such that

FO(P) Fl(p)* =0

We define the family of function$w,, }°2 , recursively by lettingwy = ¢, w; = 1 and
then forn € N

wan () =2 b wn (22 — q) ()
qEZ

wani1(x) =2 W (@)wa (22 — q), @
qEZ

where2? < n < 2Pt The family{w, }°°, is our basic non-stationary wavelet packets.
Itis proved in [4] that

{wn(- —k)|n >0,k € Z}

is an orthonormal basis fdr?(R). Moreover,
{wn(- —k)|29 <n <20t ke Z}

is an orthonormal basis fo#; = spar{2//%w; (27 - —k)|k € Z}.
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Each pair(Fép), Fl(p)) can be chosen as a pair of quadrature mirror filters assdciate
with a multiresolution analysis, but this is not necessdiye trigonometric polynomials
given by

1 , 1 .
mi’ () = Z h” (kje=*¢and - mi”(¢) = = Z B (k)e ¢

are called the symbols of the filters. The Fourier transfofifipis given by

ian(©) =P (§ )in (§):
Want1(€) = mP) (g)wn (g)

The Haar low-pass quadrature mirror fil{éi (k) } . is given byho (0) = ho(1) = 1/1/2,
ho(k) = 0 otherwise, and the associated high-pass filter(k)} is given byh, (k) =
(=1)*ho(1—Fk). We now give the definition of the family of non-stationarywetet packets
we will consider

and (2) becomes

DEFINITION 1.1. Let{w, },>0,,ez be afamily of non-stationary wavelet packets con-
structed by using afamil{/h(()”) (n)}p2, offinite filters for which there is a constafit € N

such thath"”’ (n) is the Haar filter for every > K. If w; € C'(R) and it has compact
support then we caflw, },>¢ a family of Walsh type wavelet packets.

We call such functions (basic) Walsh type wavelet packetsesit turns out that they
share a number of metric properties with the Walsh systemtlaeyl can therefore be
considered a smooth generalization of the Walsh systeneditios 3 we prove that Walsh
type wavelet packets do form a Schauder basislft(iR) for 1 < p < co. Moreover,
we prove that the Walsh type wavelet packets are equivateht (R), 1 < p < oo, t0
the integer translates of the Walsh system. In section 4 weepthat the Schauder basis
property is no longer true fop = 1 by constructing an explicit counterexample. As
mentioned above, Billard and @in [1, 10] proved that the Walsh-Fourier expansion of
any f € L?[0,1),1 < p < oo, converges a.e. tf. In section 5 we prove that the same is
true for Walsh type wavelet packet expansionsfid(R)-functions. The final sections are
devoted to generalizing the results to periodic versiorth®iWalsh type wavelet packets.

Remark. One may wonder if it is possible to modify Definition 1.1 sliyhand use
only, say, the Daubechies filter of length 4 from sc&lén place of the Haar filter and still
obtain a Schauder basis féf(R). This is unfortunately not so which follows from the
results proved in [8]. Such functions are bound to fail assisfr L?(R) for p large.

2. WALSH FUNCTIONS. DEFINITION AND PROPERTIES
This section contains a brief review of the properties ofWash system we need. All
the results are well known and the proofs can be found in [3].
We need two equivalent definitions of the Walsh systenf0oh). The first one fits into
the wavelet packet scheme
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DEFINITION 2.1. The Walsh systeriiV,, }5°_, is defined recursively off), 1) by letting
Wy = X[0,1) and

Won(z) = W,,(2z) + W, (22 — 1)
Wont1(z) = W, (22) — W, (22 — 1).

We note that the Walsh system is the family of wavelet packbtained by letting
® = Xj0,1),» ¥ = X|0,1/2) — X[1/2,1)» @and using only the Haar filters in the definition.

It turns out that the Walsh system is closed under pointwigtiptication, but this is
hard to verify using Definition 2.1. An alternative definitiof the Walsh system can be
given in terms of the Rademacher functions. Consider thetim

(2) = 1 forz€][0,1/2),
YT S0 forzef1/2,1).

Extendr to the real line by periodizing with period 1 and defingz) = r¢(2"z). Then
the Walsh system can be obtained by taking all possible fimdducts of the Rademacher
functions. More precisely, fon = >~ n;2" € Ny the binary expansion of € Ny, we
define

oo

wa (@) = [ (ri(@)) ™ xj0,1) ().

=0
To see that the definitions agree, we just have to notewgat= x|o,;) and, using the
properties of the Rademacher functions,

wap (x) = w, (22) + w, (22 — 1)

Wapt1(2) = wy(22) — w, (22 — 1),

i.e W, = w, forn € Ny. Using the multiplicative definition, it follows easily ththe
Walsh system is closed under pointwise multiplication. dctf define the binary operator
+:N0XN0—>Noby

oo
m+tn= Z lmi — ni|2°,
1=0
wherem = "2 ym;2" andn = >~ n,;2". Then

Wm(x)Wn(x) =Wnin (x) (3)

Moreover, (3) shows that the Walsh functions are charaéterthe group of all binary
sequences (indexed BYy) under bitwise addition. We also note that the Walsh fumsio
W, with n < 27 are constant on intervals of the fofeR =", (k + 1)277),0 < k < 27.

The specific results we need for Section 4 are:

THEOREM 2.1. Let{L,},en be the Lebesgue constants for the Walsh system defined

by
1
Ln, = /
0

n—1

Z Wi (2)| dz.
k=0
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Defineny, k € N, bynos = >7_ 2%, andnos11 = »_;_, 2%, then for allk € N

1/k
Ln. al o 13
>5(5+1)

LEMMA 2.1. Let

n—1
Dy(z) = Wi(x)
k=0
Then
Dk (x) = Qkkﬂmsz)(x)7
and

LEmMA 2.2. Letf; € L%(R), and defing f,, }.,>2 recursively by

f2n+€(x) :fn(2x)+(_1)6fn(2m_1)7 e=0,1
Then forn, J € N, 27 < n < 271!, we have

271

falz) = Z Wn—2~’(327<])f1 (2J33 — ).
s=0

Proof. The proof is by induction om. First, note that for = 2, 3,

Jo@) = £1(22) + f1(20 — 1) = Wo(0) f1(22) + Wo(1/2) fo(2 — 1),
Ja(@) = Fu(22) — fi(22 — 1) = Wi(0) f1(22) + Wi (1/2) fu (22 — 1),

and for the inductive step observe that

f2[1€,],1-~~€1]2+5(x) = f[16~],1---€1]2(2m) + (_1)sf[16(],1~--61]2(2x - 1)

2/-1

= Z W[EJ—1"'81]2(827(J71))f1(2J1'7S)
s=0
27—t
+ (=1 D Wiy yeeo (27 (270 — 2771 — ),
s=0
and using (2),

27-1
=3 Wi, e (s27) (272 — 5).

s=0
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Remark. The matrixH € R2"*2” defined by
Hy; =27"?wW(j2~),  i,j=0,1,...27 —1,

is called the Hadamard Transform, and it follows from thesfmes lemma that the expan-
sion coefficients of wavelet packets generated by Haardittan be expressed in terms of
this transform.

For the pointwise convergence of Walsh type wavelet packpamsions we need a
theorem by Billard and $jin [1, 10]. We remind the reader that an operdtbdefined
on LP(R) is of strong type(p, p) if it is sublinear and there is a constafit such that
ITfll, < C|fllp forall f € LP(R). The result by Billard and 8jin is

THEOREM 2.2. Letf € L'[0,1) and define

n

S, f) :Z/O FOW(t) dt Wi (z).

k=0

Then the operato€; defined by
Gf(x) = sup [Sn(z, f)|

is of strong typdp, p) for 1 < p < oco.

Remark. The operatolG is often referred to as the Carleson operator for the Walsh
system.

3. WALSH TYPE WAVELET PACKETS
Let {w,} be a family of Walsh type wavelet packets. We would like toverdhat
{wn (- — k)|n > 0,k € Z} constitutes a Schauder basis f0t(R), 1 < p < oo, that is
equivalent to the Walsh bas{$V,,(- — k)|n > 0,k € Z}. To prove the equivalence with
the Walsh system we need to generalize the following welllkmtheorem [7]:

THEOREM 3.1. Lety € C'(R) be a compactly supported wavelet. Then there exists
an isomorphism oi.” (R) taking; x to h; », with h the Haar wavelet.
The generalization we need is the following

LEMMA 3.1. Let {wy,},>0 be a family of Walsh type wavelet packets withas
in Definition 1.1, and let{\,,} be the Walsh system. Lgf", = 2//%w, (27 - —k),
and g7, = 2//2W,(27 - —k). Then there is an isomorphis@ : L*(R) — LP(R) for
1 < p < oo such that

Q=90 G ke€Z,2% <n< 2Kt
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Proof. Let {W:},, be a family of non-stationary wavelet packets generatecking
any compactly supported! (R) scaling function and associated wavélgty), and letting
eachh(?) be the Haar filter in definition of the non-stationary wavelatkets. Lev!, =
21/12W3(27 - —k). Foreach > 1,27 < n < 27*! we have

Wn = Z Cn,shj,s

sEF

s _ E
Wn = Cn,swj,sa

sEF

with F a finite set of indices. Then, f@* < n < 2K+1,

n —
Ip,k = Z Cn,shp+K,2Kk+s
sEF

n §
Upk = Cn,swp—&-K,QKk-i-S'
sEF

Let P : LP(R) — LP(R) be the isomorphism defined d9h; , = ;. It follows that
Pgp, = v} .- Hence, it suffices to find an isomorphisgh: LP(R) — LP(R) such that
Qf}" = v};. Note that

{f]k}ox <n<ortr jrez, and {U?;k}2Kgn<2K+1,j,kez

are both orthonormal bases fbf(R) (easy consequence of the multiresolution structure).
Thus,Q defined byQf7, = v7;, 25 < n < 2K+ j k € Z, is unitary. The associated
(Schwartz) kernel is given by

2K+l
K(xy)= > > i@ )
n=2K j,kEZ

We claim thatK is a Caldedbn-Zygmund kernel. To verify this we chood& > 1 such that
supgW;), supw,) C [-N, N] for 25 < n < 2K+1, We have

oK+

K@yl< Y D P IWi e —k)llwa(2y — k).

n=2K j,k€EZ

Thus(z,y) € supg K) implies that2’z — k| < N and|2/y — k| < N. Hence2/|z —y| <
2N so

. 2N
j <log, e—gl

Let

. 2N
Jo = logzm .
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We have
oK+1_

K@yl< Y > 2 N+ 1) [Wlsllwallso

n=2K j<jo
2KFIN(2N +1)C
|z — '

<C2X(2N+1) ) 2 <
i<jo
Similar estimates give us

0 C

0 C
|87yK(I’y)| < m

It follows that(@ is a Caldedbn-Zygmund operator and thus bounded@R), 1 < p < co
(see [6]). The same type of argument applie§to' (the above estimates are symmetric
in f1, andv?,) and@ is therefore an isomorphism dif (R). |

We can now state and prove the main result of this sectionWhish type wavelet
packets do constitute a Schauder basidfiR) for 1 < p < co.

THEOREM 3.2. Let{w,},>o be a family of Walsh type wavelet packets wiftas in
Definition 1.1. TheHw, (- — k) }»>0,kez IS @ Schauder basis fai?(R), 1 < p < .

Proof. Itis clear that the system

{wn (- = k) }nzokez

is dense inL?(R) for 1 < p < oo since the associated wavel@ed?y)(27x — k), j > 0,
and the translates of the scaling function are all finitedin@ombinations of the wavelet
packets. Hence, it suffices to prove that there exists a finitstant (depending qg#) such
that for any sequende,, ) C CandM, N > 1 we have

Z Cn,kwn(' - k) Z C"*kwn(. o k)

0<n<N,|k|<N 0<n<N+M,|k|<M+N

<C

p

(4)

p

We split the proof of (4) into several cases. We need to praeeintermediary results.
First, we claim that the systems

{wn (- — k)}n22K+1,keZ and {W,( - k)}n22K+1,keZ )

are equivalent in.?(R) in the sense that there is an isomorphignon L?(R) mapping
one system onto the other. Let> 25€+1. Note that

K
W (€) = H me, (2779¢) - n (2756),

for some2X < 7 < 2K+ gandK > 1. Thus

wa(z —k) = cnofic (x— k), (6)

seF
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with f7, = 21/2w;(27 - —k) and F a finite set (depending om). The coefficients:,
depend only om and the Haar filter. Thud},, has the same expansion:

= Z Cn,sQ?(,s('x — k), (7

seF

with g7, = 29/2W;(27 - —k). LetQ : LP(R) — LP(R) be the isomorphism defined by
Qf'x = gjy.- Itfollows from (6) and (7) that

Qun (- — k) = Wy (- — k), n>2K+ Lk ez,
which proves (5). Secondly, let us check that

{wn (- — k)}ogn<2k+1,kez

is a Schauder basis for its closed linear spab#i(R). The kernel for the projectio®y as,
onto

{wn (- = k) YocnaNeartt kj<m

is given by
Knm(z,y) = Z Z Wy (= k)w,(y — k).

Fix K such that supfaw,,) C [-K, K] for 0 < n < 25+1 Then

2K+1 1
Kya(@o)l < 0 > lwale = B)lfwnly = k)|
n=0 keZ
<K K +1)  max  {lwal%} Xp2m (7 — ).

0<n<2K+1

Hence, using Blder’s inequality and Fubini’s Theorem, witht! + ¢~ ! =1,

| Py e I = / | / Knar(z,y) f(y) dy” da
< / ( / FONE .t (0|77 - Koy ar ()PP dy)? d
Z//|f(y)\p|KN,M($7y)\dy(/|KN,M(337y)|dy)p/qd$

< cvla / FaP / Kyt ()] dee dy
< e/ f|p,

which proves the claim.

We now use the above results to show that (4) holds. We haeadyirproved that
wheneverM + N < 2K+1 then (4) holds. Suppos¥ < 2K+l andM + N > 2K+1,
The projectionP; onto V; is bounded orL?(R), 1 < p < oo, provided that the scaling
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function has some decay at infinity, ég(x)| < C(1 + |z|)~2 (see [7]), so it is certainly
true for our compactly supported scaling functiog. So

Z kawn(' —k) Z Cn,kwn(' —k)

0<n<N,|k|<N 0<n<2K+1 |k|<M+N

Z Cn kWn (- — k)

0<n<N+M,|k|<M+N

<C

p

p

<CC

P

Finally, supposéV > 2X+1. Then, using (5), the result foy¥ + M < 25+, the Schauder
basis properties of the Walsh system, &itfd],, ~ {||Pv,_, fllp + [[(1 = Pvie,) fllp}

Z Cn kWn (- — k)

0<n<N,|k|<N

< { Z Cn kW (- — k)

0<n<2K+1 |k|<N
<cf

p

+
p

Z Cn kW (- — k)

2K+1<n< N, [k|<N

J

Z Cn,kwn(' - k')

0<n<2K+1 |k|<M+N

+
p

Z Cn kWn (- — k)

2K+F1<n<N, [k|<N

J

+
p

el

Z cn,kwn(’ - k')

0<n<2K+1 |k|[<M+N

> Cn kWi (- — k)

2K+1<n< N, k| <N

J

+
P

SC{

Z Cn kW (- — k)

0<n<2K+1 |k|<M+N

Z kaWn(- — k)

2K+1<n<N+M,|k|<M+N

J

Z Cn kW (- — k)

0<n<2K+1 |k|<M+N

+
P

<C{

Z Cn,kwn(' - k)

2K+1<n< N+ M, |k|<M+N

J

<C Z Cnxwn (- — k)|
0<n<N+M,|k|<N+M P
We conclude that (4) holds in general, and we are done. |

We extract the following corollary from the above proof.

CoroLLARY 3.1. Let{w,},>0 be a family of Walsh type wavelet packets wiftas
in Definition 1.1. Ifw; € C*(R) then there exists an isomorphisgn: L?(R) — LP(R),
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1 < p < o0, such that

Qun(-— k) =Wyo(-— k), n>0keZ.

Remark. The corollary shows that there exist positive constapt§’, such that
cp < Nwnllp < Cp, n €N,

so it follows from Orlicz's Theorem ([12, p. 60]) that the gnL?(R)-space where the
Walsh type wavelet packets form an unconditional basig'(R).

4. A COUNTEREXAMPLE IN L*(R)

It is interesting to know what happens in the “limit case*(R) of Theorem 3.2. It
is well known that the exponentialg?™***1, ., and the Walsh system fail to be a basis
for L1[0,1) whereas the periodic wavelets do form a Schauder basi&ffor, 1) so it
can go both ways. The next theorem provides an explicit fandh L!(R) for which
the expansion in the Walsh type wavelet packets fail. Thetrtoation is adapted from a
counterexample for the Walsh system in [3].

THEOREM 4.1. Let{w,}, be afamily of Walsh type wavelet packet system, antl let
be defined as in Definition 1.1. Choases N such that supfw,x ) C [-L +1,L — 1]
and choosé\/ € N such that™ > 2L. Let N(k) = k3 + M + 1, and definek : N — N
recursively by lettingk (1) = 25X + 1, K(2n) = 2K (n), and K (2n + 1) = 2K (n) + 1.
Definef by

x4 oN (k) 4 ok®+1_g
fla) = Z k2< Z wK(n)(:c)>.
k=1 n=2N (k) £ 2k3

Thenf € LY(R), but the wavelet packet expansionfadiverges inL! (R)-norm.

Proof. Same as for the periodic case (Theorem 7.1). |

5. POINTWISE CONVERGENCE FOR WALSH TYPE WAVELET PACKET
EXPANSIONS

In this section, we prove that Walsh type wavelet packetesijas forL? (R)-functions,
1 < p < o0, converge pointwise almost everywhere. Ket, },, be a family of Walsh type
wavelet packets. We let

(Lf)(x) = sup
N>1

S (fowal = R)wa(z— k)|,  fELP(R),1<p< .

n<N,|k|<N

We call L the Carleson operator for the Walsh type wavelet packeesysThe following
result shows that the Carleson operator is well-behaved.

THEOREM 5.1. The Carleson operator for any Walsh type wavelet packeésyst of
strong type(p, p), 1 < p < 0.
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Proof. Let us start by simplifying the problem. Chooage N such that supfu,,) C
[-N, N]forn > 0. Fix p € (1,00) and take any

f(l') = Z Cn,kwn(x - k) S LP(R)

n>0,k€Z

Define
r) = Z Cn kWi (z — k), gi(z) = Z e xWh(x — k).
n>0 n>0
We have|| f|l, =~ ||gx|lp. With bounds independent &fby Corollary 3.1. Note that for
leZ
l+1+N

o e+ 1): L@l > a) < o > [ILa@Pds
k=l-N
so (using the Marcinkiewicz interpolation theorem) it stéf to prove thafi L fx|, <
C|| fxllp» whereC is a constant independent bfsince

I+1+N

Yo IflE <2+ DY allp < 20N +1) Y gelly < ClIFIE-

I€EZ k=I-N kEZ kEZ

We can, w.l.o.g., assume thiat= 0. Let K € N be the scale from which only the Haar
filter is used to generate the wavelet packgis, },,~ox+1. Letm € N and suppose
27 <m < 27%! for someJ > K + 1. Clearly, for each: € R,

oK+1l_ 271
chown Z cnOwn Z cnOu]n chown
n=2K+1 n=2J
so we have
m
sup Cn.oW sup Cn,0Wn (T
sup z @] < s |3 enaun(e)
27 -1
sup Z CnOwn sup (MJfU)(x)7
J>K+1 iy J>K+1
(8)
where
m
(Myfo)(xz) =  sup > cnown(x)
27 <m<2/+1 Ry

We use brute force to estimated the first term of (8)

m 2K+1—1
sup ch Own Z (:E)HOOX[—N,N](I)
0<m<2K+1 | #= o
2K+

<lolle Y lwallglwn(@)llooxi—n,m ().

n=0
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The second term of (8) satisfies

271
sup Z Cn,Own(x) < CHfOHP
J>E+L] L ok p

since the dyadic partial sums for the wavelet packet expanfsir f, agree everywhere
with the partial sums for the wavelet expansion fgrand the Carleson operator for the
wavelet expansion is of strong tyfe p) (see [11]). The challenge is to prove that the third
term is of type(p, p). Fix z € R — D, whereD is the family of dyadic rationals. Note that

2K 1
(M fo)(x) < > (M fo)(x),
j=0
where
(Mﬂfo)(x) = sup Z Cn,Own(x) ,
274520~ K<m <2 (j41)27 K

n:2J+j2J—K

so it suffices to prove that

I sup (M7 fo)llp < Cllfolly
J>K+1

forj=0,1,..28 —1.Fix J > K+1,0< j <25 —1,and2’ + 2/ K <m <
27 4+ (j +1)2/~K. We have, using Lemma 2.2,

= Z { Z Cn70Wn_2J_j2JK(S2J+K)}UJ2K+]'(2JKIE — S) .
s=0 n=27 427K
Define
Fu(t)= > cnoWyopijos—x(t), and F(t)= sup | (2)].
n=274;2J-K m<2/4+(j+1)27 - K
Then
m 2/ K _q
Z CnoWn ()] < Z F(s27 Y g (27 Kz - 5),

n:2J+j2J—K s=0

and using the compact support of the wavelet packets,

- N+1
Y cnown(@)] < lumwagllee 3 PN a] +027K),
n=27+45277 I=—N
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Note thatF is constant on dyadic intervals of typle=/+% (I + 1)2=7/*K) so by letting
A= (127 Kz + 02775 (277K z] + 1+ 1)2777K) we obtain

lids NA+1

> engun(@)| < sl D2 F(12 0] +0274)
n=27J 452/ -K =N
N+1

= wspilloe S A / F(t) dr.
I=—N A

We need an estimate @ that does not depend oh Note that fork, 0 < k < 277K,
using (3),

Wosyjos—r ()Wi(t) = Wy jor—x 41 (t)
since the binary expansions ®f + j2/~% and ofk have nol’s in common. Hence,

m

> cn,OWn(t)‘

n=274j27 K

| Fm ()] = [Was g jor—x (t) F(t)] =

S0 F'(t) < 2(Ggo)(t) with G the Carleson operator for the Walsh system. Thus,

m

Z Cn,0Wn ()

n=2J4j27/—K

N+1

<2zl S I [ (Goo)(0) .

I=—N A

We let A} be the smallest dyadic interval containidg andz, and note thatAf| <
(N 4+ 1)|A] sincex € Aq (here we use ¢ D). We have

m N+1

S cnown(@)] < 2war il 3 1A / (Ggo) (1) dt
n=27 427 -K I=—N AF
< Aflwgic e (V + 1)2(MGgo)(x), ©)

whereM is the maximal operator of Hardy and Littlewood. The rigmitiaide of (9) does
not depend omn nor J so we may conclude that

sup (M fo)(@) < 4flwarcyl|oo(N +1)*(MGgo) (), ae.,
J>K+1

and thus, sincd/ andG are both of strong typép, p) (see [10]),

I sup (M7 fo)lly < Clligolly < Cullfollp, 5 =0,1,...2% —1,
J>K+1

and we are done. [ ]

The pointwise convergence result now follows by a standaydraent (see [3])

THEOREM 5.2. The Walsh type wavelet packet expansion of fiyLP(R), 1 < p <
oo, converges a.e.
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6. PERIODIC WALSH TYPE WAVELET PACKETS
Y. Meyer proves in [7] that by periodizing any (reasonablghonormal wavelet basis
associated with a multiresolution analysis one obtainsrd#ronormal basis foZ.%[0, 1).
The periodization works equally well with non-stationargivelet packets,

DEeFINITION 6.1. Let {w,}22, be a family of non-stationary basic wavelet packets
satisfying|w, (z)| < C,,(1 + |z|)~1~*» for somes,, > 0, n € Ny. Forn € Ny we define
the corresponding periodic wavelet packefsby

Wp(x) = an(x — k).

keZ

Note that the hypothesis about the pointwise decay of theeletipacketsv,, ensures
that the associated periodic wavelet packets are well defimestions contained if?[0, 1)
for everyp € [1, oc]. Moreover, the family{w,, }°, is an orthonormal basis fdt?[0, 1)
(5.

We can apply the periodization to any family of Walsh type elavpackets. The next
theorem shows that the periodic Walsh type wavelet packetedstitute a Schauder basis
for L?[0,1), 1 < p < oo. Such functions can also be considered a generalizatidmeof t
Walsh functions.

THEOREM 6.1. Let {w,}, be a family of Walsh type wavelet packets. Then the
associated periodic systefw,, }, is a Schauder basis fat?[0,1), 1 < p < co.

Proof. We claim that the periodized systefw,, },, is dense inL?[0,1). To verify
the claim we letPy be the projection onto the closed linear span{@f,}_,. By the
construction of the periodic wavelet packets we h#e , = Py , whereVy is the
periodized version of the multiresolution spdce. But P; f — ffor f € Lr[0,1) and
the claim follows. So it suffices to prove thatp v || P || zr[0,1)—Lr[0,1) < 00. Suppose
not. Note that eact?, is bounded orL?[0, 1) since its kernel is bounded ¢, 1)2, so by

the Banach-Steinhaus Theorem there exfists L?[0, 1) such that
Sll\lfp ”PNf”LF[O,l) = o0. (10)

According to the proof of Theorem 3.2 there exists a congigrguch that

N
Z<g’ wn (- = k)wn(- = k)| < Cpllgllp (11)
n=0 p

foreveryN > 1,k € Z, and everyy € LP(R). Fix K such that supfu,,) C [ K, K| for
n > 0. Then, forz € [0,1)

K+1

Wn(x) = > wn(z— k). (12)

k=—K
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ChooseN such that

N

> {f W),

n=0

> (2K + 2)2Cp||f||m[o,1)7 (13)
LP[0,1)

which is possible by (10). We substitute (12) into (13);

K+1 K+1 {

PN

ki=—K ko=—K

Z/f Jwn(z — k1) dawn (y — kz)}

n=0

Lr([0,1),dy)

> (2K +2)°Cp| fllLopon)-
By Minkowski’s inequality

K+1 K+1

> {Z/f Yarm(@ — 1) d wn(y — kz)}

ki=—K ka=—K
K+1  K+1

SN

Lr([0,1),dy)

x)wp (x — wn(x — k1) dow, (y — k2)

ki=—K ko=—K Lr([0,1),dy)
so we can finde; andk, such that
Coll fllzeio,1) = Cpllxio,1) fllr w)
N 1

< Z/ f@wn(x — k) dewy,(y — k)
Lr([0,1), dy)

< Z/ f@)wn (& — ky) dz wn (y — ko)
Lr(R,dy)

= /{X01) ) Ywn (z — k) dzw, (y — k1) ,

Lr(R,dy)

which contradicts (11). Hence, our assumption thaty ||Px | rr[0,1)—rr0,1) = 00 IS
wrong and we are done. |

7. A COUNTEREXAMPLE IN L0, 1)

This section contains the analog to the counterexample ebE#m 4.1, the expansion
in the periodic Walsh type wavelet packets failgih0, 1).

THEOREM 7.1. Let{w,}, be a family of Walsh type wavelet packets andHebe
defined as in Definition 1.1. Choodee N such that supfwsx 1) C [-L + 1,L — 1]
and choosé\/ € N such tha™ > 2L. Let N(k) = k* + M + 1, and definel : N — N
recursively by lettingk (1) = 2% + 1, K(2n) = 2K (n), and K (2n + 1) = 2K (n) + 1.
Definef by

2N(k)+2k3+1 1

Su( X wm@).

k=1 n=2N (k) { ok3
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Thenf € L'[0,1), but the periodic wavelet packet expansionfafiverges inL'[0, 1)-
norm.

Proof. Let1 < 27 < n < 2711, Itis clear from the construction df and the recursive
definition of the wavelet packets tha(,,) € spaf{wx(1)(2z — k)} and the expansion
coefficients are given by the expansion coefficientd4fis the Haar wavelets(27x — k).
From this observation and Lemma 2.2

291
Wiciny () = Y Wiy (8277 wge(r) (272 — )
s=0

SO

J

no

1

W, _2i(s277) Z wK(l)(2j:v — 21 —5)
TEZL

WK (n) ((E)

o

S=
71

W2 (s277)g; ().

(V)

o

s=

Lemma 2.1 shows that far € [0, 1)

2N(k)+2k3+171 ok3+1_q
3
Yo Waavw@) = Y Walw) = Wy (2)25 x5, (@)
n=2N(k) 4 2k? n=2k3

from which we obtain

2N(k)+2k3+171

Y k(@)

n=2N(k) 4 2k3

1

dz
0

2N(k)+2k3+171 oN (k) _q

Z { Z W, _on (sQN(k))gN(k),s($)}‘ dx
s=0

n=2N(k) k3
1 QN () —k3 _q
3 —
_py /0 S W (527 V) g (a)
s=0

2N(k)—k3 _1

1
3 .
< 2k E ‘W2k3(SZ_N(k))gN(k)’S(x)’ dx
0

s=0

1

0

dx

< 2K QN () =k 9 =N (k) lwg |21 m)
= HwK(l)HLl(]R)-
It follows that

2N(k)+2k3+1_1

> WK

n=2N(k) 4 2k3

— 1 — 1
IS 72 < Nwrlloim Y 7z <
k=1 k=1

L'[0,1)
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sof € L'[0,1). We now have to show that the basic Walsh type wavelet packetreion
of f diverges inL![0, 1)-norm. Define the sequenag by

,712 for 2V 1 9k° <y < 2N() 4 o+ e N
Ay =
0 otherwise

Thenf = 3> ) anWg (n). Definen; by
n2; = E 222 andn2j+1 = E 22Z+1,

=0 =0

and note that,s_5 < 2k° for k € N. Let us estimate the difference between the following
two partial sums off

1 2N<k)+2k3+nk372—1 oN (k) yok®
; Z an WK (m)(T) — Z an WK (m(2)| dx
n=0 n=0
1 /! N 12V 425 4y 1
- ﬁ/ > 2. W awa (27N g o (2) | dx
0 s=0 n:2N(k)+2k3
1 1 oN(k) _1 n3_o—1
T2 Z W2k3(527N(k)) Z Wn(527N(k))gN(;€)7s(x) dz,
0 s=0 n=0

where we used (3) to get the last equality. Using the fact hatis constant on
[p2=F°+D (p 4 1)2-**+D) for n < 2+°,

1 1 2’“3'*'171 N3 _p—1
LS W) S wr e
0 _ —
p=0 n=0

Q(N(R)—k3—1) _4

Z IN () p2v -k -1 4 (T) | d
s=0

- o341
Define{l,},_, C [0,1) by
I, = {z[2"®z € [p2((N(k)—k3—1)) + L, (p+ 1)2WN®R—K=1) _ L]}
= [p2FHD p 2= NI L (p 4 1)2-*+D _g-N L],

Supposer € I;. Consider

o(N(k)—k3-1) _4
— 37
Z Z wK(l)(QN(k)x — N _ o (N(R) =R 1) _ gy, (14)
Note that
oN(k) . _ oN(k),. _ p2(N(k)—k3—1) — s

e —p)2(N(k)_k3_1) +L—r2N® g (141 —p)Q(N(k)_kB_l) —L—r2N®) g
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Using thatp € [0, 2% 1 — 1] ands € [0,2V(®)~+*~1 _ 1] we get the bounds

(1 _p)Q(N(k)*]&,l) S L 2N _ g > _oN(k) _oN() ] 4
(I+1 —p)Q(N(k)*kyf’,l) ~ L — 2Nk _ g < oN(K) _ [ oN(k)

from which we deduce that it is only the terms with= 0 that contribute to (14) since
supfwg (1)) C [=L +1,L — 1]. A similar argument using the definition &f, the fact
that2(N()=k°~1) — oM - o7, and the compact support afi;), shows that for: € I,

(N()—k3-1) _4

Z Z wK(l)(ZN(k)I — Ny p2N(k)7k:371 — )

rEL
S wky @ Pa—r) forp=1
= rEZ
0 forp # 1.
Hence,
ok +1_4
ST Wy (p2 D)
ol 55
n.3_o,—1 2(N<,c)_k3_1)71
(1.3
Z W, (p2 (k +1)) Z gN(k)7p2(N(k)fk3—1)+S(nT) de
n=0 s=0
ng3_o—1 ‘
- ¥ Wn(ZQ*(kwl))/ S wicy @YWz — 1) do
n=0 reZ
N3 _2—

= W, (12~ (k*+1) 2—N(k)/ ol
Z ) 2N<k>1l’§wK(l)(x T)| z

nk3—2_1 s (l+1)2M7L
= D W™ 2_N(k)/ 1> wky(@—r)|d

n=0 12M 1, eZ
N3 _p—1 '
o AR PR CTE R / 1> wiy (e — )| d
n=0 rez

Finally, we use the following fact about the Lebesgue cantstéor the Walsh system (see
Theorem 2.1)

: 1(k3—2
Wn(lQ(k3+1))‘ > 2( ) —|—1)

n=0
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to obtain the estimate we want

1 2N(k>+2k3+”k372—1 2N(k)+2k3_1
Z avzm(x) - Z Clnm(ﬂf) dx
0 n=0 n=0
1 21‘-,3-*—171 2k3+171 , n.3_o—1 \
20 2 [ Wae2 W) 30 W@z Y).
1=0 Yl p=o n=0

Q(N(k)—k3—1) g

Z QN(k),p2<N<k>—k3—1>+s(93) dx
s=0
1 2k3+1_1 nk372—1 1
7 2 | X Wn<l2“"‘3+l>>'2‘NW(2M ~2) [ |3 wqylae - )| do
=0 n=0 0 reL
1 1 1) ™32 1
reZ n=0
1 ! 1K =2
> ﬁ(zM - 2L)/0 > wi (@ =) dz2 M2< —+ 1>
re’
> Ck
for someC > 0. We conclude that the sequence of partial sums
PK(2N(k>+2k3+nk3_f1)f - PK(QN("')+2’9371)f
diverges inL!'[0, 1) ask — oo. This proves the Theorem. |

8. POINTWISE CONVERGENCE FOR PERIODIC WALSH TYPE WAVELET
PACKET EXPANSIONS

We have the following consequence of the proof of Theorem 5.1

THEOREM 8.1. The periodic Walsh type wavelet packet expansion offagy’.?[0, 1),
1 < p < oo, converges a.e.

Proof. Let f € L?[0, 1), and defineV as in the proof of Theorem 5.1. Note that

m N+l N+l m 1
LI W ) { > [ 1= R dyu e - k2>},

so it follows at once from the proof of Theorem 5.1 that thel€smn operator associated
with the periodic Walsh type wavelet packets is of strongtiypp) forl <p <occ. N
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