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Abstract. A series of recent results shows that if a signal admits a
sufficiently sparse representation (in terms of the number of nonzero co-
efficients) in an “incoherent” dictionary, this solution is unique and can
be recovered as the unique solution of a linear programming problem.
We generalize these results to a large class of sparsity measures which
includes the `p-sparsity measures for 0 ≤ p ≤ 1. We give sufficient condi-
tions on a signal such that the simple solution of a linear programming
problem simultaneously solves all the non-convex (and generally hard
combinatorial) problems of sparsest representation w.r.t. arbitrary ad-
missible sparsity measures. Our results should have a practical impact
on source separation methods based on sparse decompositions, since they
indicate that a large class of sparse priors can be efficiently replaced with
a Laplacian prior without changing the resulting solution.

1 Introduction

Sparse decompositions of signals in redundant dictionaries provide quite a suc-
cesfull practical tool for blind source separation (BSS), including the degenerate
case where there are more sources than sensors [18]. In this paper, we prove that
estimators based on sparse decompositions are relatively robust to the choice of
the sparse prior within a fairly large class. Our results directly apply to some
noise-free single sensor BSS problems [1], but further work is needed to extend
them to the case of multiple sensors and noisy measurements.

Given a redundant signal (or image) dictionary, every signal y has infinitely
many possible representations, and it is common to choose one according to
some sparsity measure. When the dictionary is indeed a basis, each signal has
a unique representation and it does not matter which sparsity measure is used.
However, in the redundant case, it is not clear when the sparsest representation
is unique and how it is influenced by the choice of the sparsity measure.
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A dictionary in a real or complex Hilbert space RN or CN is a family of
K ≥ N unit vectors {gk}k∈K which spans the entire space. One can think of gk

as the k-th column of a N ×K matrix D = [g1, . . . , gK ], and any vector y ∈ RN

(resp. CN ) has at least one representation y =
∑

k xkgk = Dx with coefficient
vector x ∈ RK (resp. x ∈ CK). When D is redundant (K > N), among the
infinite number of representations of a vector y, it is often desirable to choose a
sparse one. However, sparsity can be measured with diverse quantities such as the
`p measures ‖x‖p :=

∑
k |xk|p for 0 ≤ p ≤ 1 (with the convention t0 = 1 if t > 0

and 00 = 0). In this paper, we consider a large class M of admissible sparsity
measures ‖x‖f :=

∑
k f(|xk|) where f : [0,∞) → [0,∞) is non-decreasing, not

identically zero, f(0) = 0 and t 7→ f(t)/t is non-increasing on (0,∞). To each
sparsity measure corresponds the “f-sparsest representation” optimization
problem

minimize ‖x‖f subject to y =
∑

k

xkgk. (1)

We address two rather natural questions related to this class of problems:

1/ when is the f -sparsest representation of y unique?
2/ if it is unique, does it depend on the choice of the sparsity measure f?

Our main result3 is that when a signal y has a very sparse representation
(in terms of the total number ‖x‖0 of nonzero coefficients), this representation is
the simultaneous and unique sparsest representation with any admissible sparsity
measure. More precisely we have the following theorem.

Theorem 1. Let D be a dictionary. Assume m is an integer such that for any
x and y with y = Dx and ‖x‖0 ≤ m, x is the unique `1-sparsest representation
of y. Then, for any x and y such that y = Dx and ‖x‖0 ≤ m, x is indeed the
unique f-sparsest representation of y for any admissible sparsity measure. In
particular it is the `p-sparsest representation for 0 ≤ p ≤ 1.

The interesting consequence is that if y has a highly sparse representation x
(with at most m elements) from the dictionary, then the combinatorial/highly
nonlinear search for the f -sparsest representation of y can be replaced with a
polynomial time computation based on linear programming [2, 15], which solves
the `1-optimization problem.

This extends a series of recent results about recovery of sparse expansions
from dictionaries by Pursuit algorithms. In the early 1990’s, the Matching Pur-
suit and Basis Pursuit strategies were introduced with the purpose of getting
good representations of signals with redundant dictionaries. Soon, it was exper-
imentally noticed that, when y has a sufficiently sparse expansions (in the sense
of ‖x‖0) in the Dirac/Fourier dictionary, Basis Pursuit can exactly recover it.
The experimental observation was turned into a theorem and extended to unions
of “incoherent” bases as well as to more general “incoherent” dictionaries [8, 5–7,
13, 3, 11]. Theorems in the same spirit were also recently proved, under slightly
stronger assumptions, for exact recovery with Matching Pursuits [9, 10, 16, 14].
3 We refer the reader to our technical report [12] for the proofs.



Previous Basis Pursuit results stated that if y has an expansion x with ‖x‖0

sufficiently small, then x is simultaneously the unique `0-sparsest and `1-sparsest
representation of y [2, 15]. In between the `0 and the `1 sparsity measures lie the
`p ones, and it seemed only natural that by some sort of “interpolation”, the
Basis Pursuit results should extend to simultaneous uniqueness of the `p-sparsest
representations. It turns out that the interpolation can be done and our result
show that it extends to the much larger class of admissible sparsity measures.

The structure of the paper is as follows. In Section 2 we give general con-
ditions on an index set I ⊂ K such that any expansion y = DIx from the
sub-dictionary DI := {gk, k ∈ I} is the unique f -sparsest representation of y in
the whole dictionary. An example shows that the admissible sparsity measures
f for which the conditions are satisfied may depend on the considered index set
I. In Section 3 we give our main theorems and obtain necessary and sufficient
conditions card(I) ≤ mf (D) which ensure that for all admissible sparsity mea-
sures g ∈ M “between” a given f ∈ M and the `0 sparsity measure, the highly
sparse representation is unique and independent of g. To conclude this paper,
we briefly discuss how the numbers mf (D) which appear in the “highly sparse”
conditions can be estimated from the coherence of the dictionary.

2 Sufficient Uniqueness Conditions

In this section we provide sufficient conditions on a representation y = Dx which
ensure that x is the unique f -sparsest representation of y, where f is an arbitrary
admissible sparsity measure. A crucial property of f ∈ M is the quasi-triangle
inequality

f(|u + v|) ≤ f(|u|+ |v|) ≤ f(|u|) + f(|v|) (2)

which is an easy consequence of the fact that t 7→ f(t)/t is non-increasing, see
[12]. The sufficient uniqueness conditions are expressed in terms of the support
I(x) := {k, xk 6= 0} of the coefficient vector x = (xk) ∈ RK (resp. CK), i.e.
they depend on the set of elements of the dictionary which are used in the
representation. The kernel Ker(D) := {z,Dz = 0} of the dictionary will play a
special role. For f ∈M, D a dictionary and I ⊂ K a set of indices, we define

θf (I, z) :=
∑

k∈I f(|zk|)
‖z‖f

and Θf (I,D) := sup
z∈Ker(D),z 6=0

θf (I, z) (3)

The value of Θf (I,D) (almost) completely characterizes the uniqueness of f -
sparsest expansions from DI , as expressed in the following lemma.

Lemma 1. Let D be a dictionary, f an admissible sparsity measure, and I ⊂ K
an index set.

1. Assume that for all z ∈ Ker(D) (z 6= 0), θf (I, z) < 1/2, and let x, y such
that y = Dx. If I(x) ⊂ I, x is the unique f-sparsest representation of y.

2. Assume that for some z ∈ Ker(D), θf (I, z) ≥ 1/2. Then, there exists x 6= x′

such that Dx = Dx′, I(x) ⊂ I and ‖x′‖f ≤ ‖x‖f .



The proof is a slight refinement of ideas from [5, 13], see [12].
Even though the value of Θf (I,D) essentially characterizes the uniqueness

of the f -sparsest representation of expansions from the sub-dictionary DI =
{gk}k∈I , its evaluation for a given index set I is not trivial in general. In par-
ticular, it is not clear when the condition Θf (I,D) < 1/2 is simultaneously
satisfied for all f ∈ M, i.e., when the unique f -sparsest representation is the
same for all sparsity measures f . The following example shows that f -sparsest
representations do not necessarily coincide for different f , and that estimating
Θf (I,D) for some admissible sparsity measure f ∈M does not tell much about
Θg(I,D) for other ones g ∈M.

Example 1. Let B = [g1, . . . , gN ] be an orthonormal basis in dimension N ,
gN+1 :=

∑N
k=1

1√
N

gk and D = [B, gN+1]. Clearly, the kernel of D is the line

generated by the vector z = (1, . . . , 1,
√

N). Let us consider I = {1 ≤ k ≤ L}
an index set where L ≤ N and denote Θp for Θfp

where fp(t) = tp, 0 ≤ p ≤ 1.
Since

Θ1(I,D) =
L

N +
√

N
<

L

N + 1
= Θ0(I,D)

we have Θ1(I,D) < 1/2 < Θ0(I,D) whenever (N + 1)/2 < L < (N +
√

N)/2.
On the other hand, let us now consider J = {1 ≤ k ≤ L} ∪ {N + 1}. As

Θ1(J,D) =
L +

√
N

N +
√

N
and Θ0(I,D) =

L + 1
N + 1

we obtain Θ0(J,D) < 1/2 < Θ1(J,D) whenever (N −
√

N)/2 < L < (N − 1)/2.

3 Uniqueness of highly sparse expansions

In the previous section, Example 1 illustrated the fact that, for arbitrary index
sets I, not much can be said about the simultaneity of the f -sparsest represen-
tation for different admissible sparsity measures. In this section, we will show
that the picture completely changes when we look for conditions on the cardinal
of I so that Θf (I,D) < 1/2. Let us immediately state the main results of this
section. The first result gives the theorem advertised in the introduction, which
is the natural generalization to a series of recent results [8, 5–7, 13, 3, 11].

Theorem 2. Let D be a dictionary, and f an admissible sparsity measure. Let
m be an integer and assume that whenever y = Dx with ‖x‖0 ≤ m, x is the
`1-sparsest representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is
the simultaneous unique f-sparsest representation of y for any f ∈M.

Theorem 2 is indeed only a special case of the following more general result.

Theorem 3. Let D be a dictionary, and f an admissible sparsity measure. Let
m be an integer and assume that whenever y = Dx with ‖x‖0 ≤ m, x is the
f-sparsest representation of y. Then, whenever y = Dx with ‖x‖0 ≤ m, x is the
simultaneous unique (g ◦ f)-sparsest representation of y for any g ∈M.

Note that one can easily check that if f, g ∈M then g ◦ f ∈M.



3.1 Sketch of the proof of Theorem 3

We will study in more details in the next section which integers m satisfy the
assumptions of Theorem 3, but let us first sketch the proof. For any sequence
z = {zk}k∈K , denote |z|? a decreasing rearrangement of |z|, i.e., |z|?k = |zφ(k)|
where φ is one to one and |z|?k ≥ |z|?k+1. With a slight abuse of notation, consider
the “growth function”

θf (m, z) := max
card(I)≤m

θf (I, z) =
∑m

k=1 f(|z|?k)
‖z‖f

= θf (m, |z|?) (4)

defined for any f ∈M, m ≥ 0 and z 6= 0. We have the following lemma [12].

Lemma 2. For any f, g ∈M, m ≥ 0 and z 6= 0 we have

θ0(m, z) ≤ θg◦f (m, z) ≤ θf (m, z) ≤ θ1(m, z). (5)

Let us just mention that the result relies crucially on the property that t 7→ f(t)/t
is non-increasing, since the fact that θf (m, z) ≤ θ1(m, z) for all m and z implies
in particular that for any a < b we must have f(b)/(f(a) + f(b)) ≤ b/(a + b),
i.e., 1 + f(a)/f(b) ≥ 1 + a/b.

Theorem 3 is proved as follows: from Lemma 1, the assumption on m implies
that, for all I with card(I) ≤ m and z ∈ Ker(D) (z 6= 0), θf (m, z) < 1/2. It
follows from Lemma 2 that for all such I and z, and any g ∈M, θg◦f (m, z) < 1/2,
which gives the desired result using again Lemma 1.

3.2 Explicit sparsity conditions

For any dictionary D and sparsity measure f , one can consider the largest integer
mf (D) that satisfies the assumption of Theorem 3, i.e., such that for any x
and y such that y = Dx and ‖x‖0 ≤ m, x is indeed the unique f -sparsest
representation of y. Another formulation of Theorem 3 is simply that for any
f, g ∈M, mg◦f (D) ≥ mf (D). Indeed, it follows from Lemma 2 that

m0(D) ≥ mg◦f (D) ≥ mf (D) ≥ m1(D) (6)

where mp, 0 ≤ p ≤ 1 is a shorthand for mfp
with fp(t) := tp.

It is a challenge to compute the numbers mf (D) for an arbitrary dictionary
(the computation of m0(D) is generally NP-hard). Let us however give a few
examples of dictionaries where it is possible to get some non trivial bounds on
the strong sparsity number m1(D) and the weak sparsity number m0(D)
based on easily computable characteristics of the dictionary. Denoting btc the
largest integer such that btc < t ≤ btc+ 1, we have the following lemma [12].

Lemma 3. For any admissible sparsity measure f ∈M and any dictionary D,

mf (D) ≥ m1(D) ≥ bZ1(D)/2c and m0(D) =
⌊
Z0(D)/2

⌋
(7)



where

Z0(D) := inf
z∈Ker(D),z 6=0

‖z‖0 and Z1(D) := inf
z∈Ker(D),‖z‖∞=1

‖z‖1. (8)

are respectively called the spark and the spread of the dictionary.

The spark was introduced in [3] and its numerical computation is generally
combinatorial. The spread was introduced by the authors in [11]. The above
estimates are not quite explicit, but the next one is easily computable.

Lemma 4. The coherence of a dictionary D = {gk} is defined [5] as

M(D) := sup
k 6=k′

|〈gk, gk′〉| . (9)

For any admissible sparseness measure f ∈M we have the lower estimate

mf (D) ≥ m1(D) ≥ b(1 + 1/M(D)) /2c . (10)

Proof. Consider x ∈ Ker(D). For every k we have xkgk = −
∑

k′ 6=k xk′gk′ hence,
taking the inner product of both hand sides with gk, |xk| ≤ M(D) ·

∑
k′ 6=k |xk′ |.

It follows that (1 + M) · |xk| ≤ M · ‖x‖1. Taking the supremum over k we get
(1 + M)‖x‖∞ ≤ M · ‖x‖1 or equivalently Z1(D) ≥ 1 + 1/M , and the result
follows using Lemma 3.

When D contains an orthonormal basis B in dimension N , the coherence satisfies
M(D) ≥ 1/

√
N , and it is possible to find up to N +1 orthonormal bases {Bj}N

j=1

such that their union D := [B1 . . .BN+1] is a dictionary of coherence m(D) =
1/
√

N . For such highly redundant dictionaries, the lemma shows that m1(D) ≥
b(1 +

√
N)/2c. Lemma 4 was in germ in Donoho and Huo’s early paper [5] on

exact recovery of sparse expansion through Basis Pursuit, where it was only used
for D a union of two orthonormal bases and f(t) = tp, p ∈ {0, 1}. In [13] and [3]
it was extended to arbitrary dictionaries, and in [11] to f(t) = tp, p ∈ [0, 1]. Finer
estimates of m1(D) can be obtained from the properties of the Gram matrix of
D, see [12].

4 Conclusion and statistical perspectives

We have studied sparse representation of signals using an arbitrary dictionary
and a very general admissible sparsity measure ‖ · ‖f . Given a dictionary and a
signal y, we provided sufficient conditions for the minimization problem

minimize ‖x‖f subject to y =
∑

k

xkgk, (11)

to have the same unique solution as the problem

minimize ‖x‖1 subject to y =
∑

k

xkgk, (12)



and the conditions are independent of the particular admissible sparsity measure
f . The latter minimization problem (12) can be solved using a linear program-
ming technique, i.e., by a polynomial time algorithm. For a dictionary in a
Hilbert space we proved that the condition ‖x‖0 ≤ b1/2(1 + 1/M)c, where M is
the coherence of the dictionary, is sufficient for (11) to have the same solution
as (12) for any sparsity measure f . The results generalize previous results by
Donoho and Elad [3] and by the authors [13], where only two types of sparsity
measures were considered: the `0-norm and the `1-norm.

The f -sparsest representation problems (11) that we have considered in this
paper are related to the statistical problem of Bayesian estimation of unknown
parameters (xk) given the noise-free observation y = Dx and the prior proba-
bility density function Pf,h(x) = 1

Zf,h
exp (−h(‖x‖f )), where h : [0,∞) → [0,∞)

is an increasing function and Zf,h a normalizing constant such that Pf,h(x) is a
probability density on RK (resp. CK).

In this Bayesian estimation setting, our results have an interpretation in
terms of the robust estimation with respect to modeling error. Assume that
the prior on x has the above structure, where ‖ · ‖f is an admissible sparsity
measure. Then, for any noise-free observation y that admits a sufficiently sparse
representation (with ‖x‖0 ≤ m1(D)), it does not matter which admissible sparse
prior we use to model the data and search for the sparsest representation: each
admissible sparse model yields the same estimate, which is indeed the MAP
estimate under the true prior. In particular, we can as well model the parameters
with a Laplacian prior P1(x) ∝ exp (−‖x‖1), and this relaxed model will recover
the “good” parameters (xk).

To see how strong is the robustness to modeling error, let us simply give an
example. First, notice that the Laplacian prior is a model where we assume the
independence of the xk, since P1(x) =

∏
k P1(xk). However, as shown in [12],

since the class M of admissible sparsity measures is stable by min(·) and max(·),
it contains some nontrivial measures such as ‖ · ‖f with

f(t) := max(t/2,min(t1/2, t0)) =


√

t, 0 ≤ t ≤ 1
1, 1 ≤ t ≤ 2

t/2, 2 ≤ t < ∞
. (13)

Moreover, the use of a “sufficiently increasing” function h to define Pf,h can
introduce a dependence between the coefficients xk, since Pf,h will no longer be
the product of its marginals. Yet, if the solution to the true Bayesian estimation
problem is sparse enough, it will be recovered with the Laplacian model, where
the parameters are assumed independent!

The main limitation to the theory developed in this paper is certainly that
the sparsity condition ‖x‖0 ≤ m1(D) is quite restrictive, since the set of obser-
vations y that admits such a sparse representation is of Lebesgue measure zero
in RK and probability zero under the sparse prior. A second limitation comes
from the fact that the results do not apply to noisy data y = Dx + n. Recen-
t results [17, 4] indicate that similar robustness properties can be proved even
with approximate and noisy sparse representations, and the authors are also



investigating the problem of simultaneous sparse representation/approximation
of several observations in a single dictionary, which is a widely-spread tool to
perform blind source separation [18].
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