
ON TRANSFERENCE OF MULTIPLIERS ON MATRIX WEIGHTED Lp-SPACES

MORTEN NIELSEN

ABSTRACT. We consider a periodic matrix weight W defined on Rd and taking values in the
N ×N positive-definite matrices. For such weights, we prove a transference results between
multiplier operators on Lp(Rd ;W ) and Lp(Td ;W ), 1 < p < ∞, respectively. As a specific ap-
plication, we study transference results for homogeneous multipliers of degree zero.

1. INTRODUCTION

A matrix weight is a locally integrable function W : Rd → CN×N taking values in the set of
positive definite Hermitian forms. The associated weighted space Lp(Rd;W ), 1 ≤ p < ∞, is
the set of measurable (vector-)functions f : Rd → CN satisfying

(1.1) � f�p
Lp(Rd ;W ) :=

�

Rd
|W 1/p f |p dx < ∞.

For periodic weights, i.e., W : Td →CN×N , we define the associated weighted space Lp(Td;W ),
1 ≤ p < ∞, as the set of measurable periodic (vector-)functions f : Td → CN satisfying

(1.2) � f�p
Lp(Td ;W ) :=

�

Td
|W 1/p f |p dx < ∞.

In this paper, we study transference results for multiplier operators on Lp(Rd;W ) and Lp(Td;W )
for periodic weights W . By a multiplier operator on a weighted vector-valued space, we mean
a scalar multiplier that acts coordinate-wise. More precisely, for a scalar multiplier operator
T on Rd (or Td), we lift T to an operator on functions f taking values in CN by letting it act
separately on each coordinate function,

(1.3) (T f ) j = T f j, j = 1,2, . . .N.

We mention that there are applications where multiplier operators on matrix weighted Lp-
spaces appear naturally. The present author used multiplier operators on Lp(T;W ) to study
stability and Schauder basis properties of finitely generated shift-invariant systems in [8].

It is well-known that in the scalar case, there is a close connection between bounded Lp
multipliers on the line and on the torus, and it turns out that such results can be considered in
the matrix weighted case as well. Transference can thus reduce the workload needed to prove
Lp-boundedness for multipliers on e.g. the torus; one only needs to consider the corresponding
multiplier on the line (or vice-versa).

Scalar transference results for scalar Lp-multipliers were first established by de Leeuw [4].
A systematic treatment of transference for multipliers and maximal multiplier operators was
given by Coifman and Weiss [3]. More recent developments can be found in [1, 2, 9].
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A number of authors have studied boundedness of multipliers on Lp(Rd;W ). In their semi-
nal papers [7, 11], Treı̆l� and Volberg proved that the Hilbert transform is bounded if and only
if the weight W belongs to an appropriate matrix Muckenhoupt Ap class. This result was ex-
tended by Goldberg [5] who proved that boundedness of standard multipliers on Lp(Rd;W )
are closely related to the matrix Muckenhoupt Ap condition on the weight W . The transfer-
ence results obtained here allow us to obtain similar conclusions for multiplier sequences on
Lp(Td;W ).

This paper is organized as follows. Section 2 contains the main results on transference for
multipliers between Lp(Rd;W ) and Lp(Td;W ). Our main application is presented in Section 3,
where we consider multipliers on Lp spaces with weights satisfying a matrix Muckenhoupt Ap
condition. Finally, in Section 4, we consider a family of examples provided by homogeneous
multipliers of degree zero. In particular, the discrete Riesz transform is considered.

2. MAIN TRANSFERENCE RESULTS

This section contains our main result. We give results in two directions. In Proposition 2.4,
we transfer boundedness for multipliers on Lp(Rd;W ) to boundedness for discrete multipliers
on Lp(Td;W ), while in Proposition 2.5 we transfer in the other direction from Lp(Td;W ) to
Lp(Rd;W ).

Before we state the transference results, we need to define the classes of bounded multipliers
on Lp(Rd;W ) and Lp(Td;W ) that will be considered.

Definition 2.1. Let W : Rd → CN×N be a matrix weight, and let 1 ≤ p < ∞. We denote by
Mp(Rd;W ) the set of all bounded functions b on Rd such that the operator

Tb( f ) :=
�
b f̂

�∨

extends to a bounded operator on Lp(Rd;W ). The norm �b�Mp(Rd ;W ) of an element b ∈
Mp(Rd;W ) is by definition the norm of the operator Tb on Lp(Rd;W ).

Similarly, for W : Rd → CN×N a periodic matrix weight, we denote by Mp(Td;W ) the set
of bounded sequences a = {ak}k∈Zd such that the operator

Ta( f )(x) := ∑
k∈Zd

ak f̂ (k)e2πik·x

extends to a bounded operator on Lp(Td;W ). The norm �{ak}�Mp(Rd ;W ) of an element a ∈
Mp(Rd;W ) is defined to be the norm of the operator Ta on Lp(Td;W ).

2.1. Multipliers in Mp(Rd;W ). We now focus on multipliers b in Mp(Rd;W ). The basic
idea of transference is to sample b on Zd and thereby obtain a multiplier in Mp(Td;W ). For
this to work, b must be well-behaved point-wise. A very useful notion in the theory of (scalar)
transference is that of a regulated function. Let us recall the definition of a regulated function.

Definition 2.2. Let t0 ∈Rd . A bounded measurable function b on Rd is called regulated at the
point t0 if

lim
ε→0

1
εd

�

|t|≤ε

�
b(t0− t)−b(t0)

�
dt = 0.

The function b is called regulated if it is regulated at every point t0 ∈ Rd .
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We now turn to vector-valued multipliers. Our idea is to use scalar transference combined
with a duality argument. The dual space of Lp(D;W ), for 1 < p < ∞, and D ∈ {Td,Rd}, can
be identified with, Lq(D;W−q/p), where q is the conjugate exponent to p given by 1

p + 1
q = 1,

see [11] for further details. The pairing of Lp(D;W ) and Lp(D;W )∗ = Lq(D;W−q/p) is given
by the integral

(2.1)
�

D
� f (x),g(x)��2(CN) dx =

N

∑
j=1

�

D
f j(x)g j(x)dx.

The integrals on the right-hand side of (2.1) are ordinary scalar integrals, and in the proof
of Proposition 2.4 below we use the following well-known lemma from (scalar) transference
repeatedly.

Lemma 2.3 ( [3, 6]). Let T be the operator on Rd whose multiplier is b(ξ ), and let S be the
operator on Td whose multiplier is the sequence {b(m)}m∈Zd . Assume that b(ξ ) is regulated at
every point m ∈ Zd. Let Lε(x) = e−πε|x|2 for x ∈Rd and ε > 0. For every pair of trigonometric
polynomials P and Q on Rd, and α,β > 0 with α +β = 1, we have the identity

(2.2) lim
ε→0+

εd/2
�

Rd
T (PLεα)(x)Q(x)Lεβ (x)dx =

�

Td
S(P)(x)Q(x)dx.

With the notation in place, we can now state the first part of our main result.

Proposition 2.4. Let 1 < p < ∞, and let W : Rd → CN×N be a periodic matrix weight with
W,W−q/p ∈ L1,loc, where 1

p + 1
q = 1. Suppose that b is a regulated function on Rd that is

contained in Mp(Rd;W ). Then {b(m)}m∈Zd is in Mp(Td;W ). Moreover,

�{b(m)}�Mp(Td ;W ) ≤ �b�Mp(Rd ;W ).

Proof. The idea of proof is to use scalar transference together with the fact that the dual space
to Lp(Td;W ) is Lq(Td;W−q/p), with q the conjugate exponent to p, see [5]. Let Pd,N be the
family

�
P(x) = [P1(x), . . .PN(x)]T

�

of vectors of trigonometric polynomials on Rd . Take any P ∈ Pd,N . We now use (2.1) and
Lemma 2.3 to calculate the norm of S(P) in Lp(Td;W ). We notice that Pd,N is dense in
Lq(Td;W−q/p) since W−q/p ∈ L1,loc, which implies that

(2.3) �S(P)�Lp(Td ;W ) = sup
Q∈Pd,N :�Q�

Lq(Td ;W−q/p)
≤1

����
�

Td
�S(P)(x),Q(x)��2 dx

����.
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We now estimate the right hand side of (2.3). Define Lε(x) := e−πε|x|2 for x ∈Rd and ε > 0.
Using the scalar transference result (2.2) of Lemma 2.3, we obtain

�

Td
�S(P)(x),Q(x)��2 dx =

N

∑
i=1

�

Td
S(Pi)(x)Qi(x)dx

=
N

∑
i=1

lim
ε→0+

εd/2
�

Rd
T (PiLε/p)(x)Qi(x)Lε/q(x)dx

= lim
ε→0+

εd/2
�

Rd
�T (PLε/p)(x),Q(x)Lε/q(x)��2 dx

= lim
ε→0+

εd/2
�

Rd
�W 1/p(x)T (PLε/p)(x),W−1/p(x)Q(x)Lε/q(x)��2 dx

≤ limsup
ε→0+

��

Rd
εd/2|W 1/p(x)T (PLε/p)(x)|p dx

�1/p

× limsup
ε→0+

��

Rd
εd/2Lε(x)|W−1/p(x)Q(x)|q dx

�1/q

≤ �T�Lp(Rd ;W )→Lp(Rd ;W ) limsup
ε→0+

��

Rd
εd/2Lε(x)|W 1/p(x)P(x)|p dx

�1/p

× limsup
ε→0+

��

Rd
εd/2Lε(x)|W−1/p(x)Q(x)|q dx

�1/q

= �T�Lp(Rd ;W )→Lp(Rd ;W )

��

Td
|W 1/p(x)P(x)|p dx

�1/p

×
��

Td
|W−1/p(x)Q(x)|q dx

�1/q
.(2.4)

In the last step, we have used that for any periodic function f ∈ L1(Td), using Poisson’s sum-
mation formula,

εd/2
�

Rd
f (x)Lε(x)dx = εd/2 ∑

k∈Zd

�

Td
f (x− k)e−πε|x−k|2 dx

=
�

Td
f (x)εd/2 ∑

k∈Zd

e−πε|x−k|2 dx

=
�

Td
f (x) ∑

k∈Zd

e−π|k|2/εe2πix·k dx

=
�

Td
f (x)dx+Eε ,

where

|Eε |≤ � f�L1(Td) ∑
k �=0

e−π|k|2/ε → 0,
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as ε → 0. We can now complete the proof. Using the estimate (2.4) in (2.3), we immediately
see that

�S(P)�Lp(Td ;W )→Lp(Td ;W ) ≤ �T�Lp(Rd ;W )→Lp(Rd ;W )�P�Lp(Td ;W ).

Moreover, S can be extended to a bounded operator on Lp(Td;W ) with the required norm
estimate, since Pd,N is dense in Lp(Td;W ). Therefore, �{b(m)}�Mp(Td ;W ) ≤ �b�Mp(Rd ;W ).

�

2.2. Multipliers in Mp(Td;W ). We now turn to a converse result to Proposition 2.4. At a
first glance, the statement of Proposition 2.5 below may appear unnatural since it requires
information about dilated versions of the weight W . However, as will be demonstrated in
Section 4, the most interesting class of weights is the Muckenhoupt class Ap, which is actually
dilation invariant making the statement appear more natural.

Proposition 2.5. Let 1 < p < ∞, and let W : Rd → CN×N be a periodic matrix weight with
W,W−q/p ∈ L1,loc, where 1

p + 1
q = 1. Suppose that b is a bounded continuous function on

Rd with {b(m/M)}m∈Zd ∈ Mp(Td;W (M·)) uniformly in M ∈ N. Then b is in Mp(Rd;W ).
Moreover,

�b�Mp(Rd ;W ) ≤Cp := sup
M∈N

�{b(m/M)}m�Mp(Td ;W (M·)).

Proof. Let F(x) = [F1(x), . . . ,FN(x)]T and G(x) = [G1(x), . . . ,GN(x)]T be vectors of compactly
supported smooth functions. There is an M0 ≥ 1 such that M ≥ M0 implies that F(Mx) and
G(Mx) are supported in [−1/2,1/2)d . Let M ∈ N with M ≥ M0, and define

FM(x) = ∑
k∈Zd

F(M(x− k)), GM(x) = ∑
k∈Zd

G(M(x− k)).

A straightforward calculation shows that the Fourier coefficients of FM and GM satisfy �FM(m)=
M−d�F(m/M) and �GM(m) = M−d �G(m/M). We use these facts to obtain,

����
N

∑
i=1

∑
m∈Zd

b(m/M)F̂i(m/M)Ĝi(m/M)Vol
�� m

M , m+1
M

�d�
����

(2.5)

=
����M

d
N

∑
i=1

∑
m∈Zd

b(m/M)�Fi,M(m) �Gi,M(m)
����

=
����M

d
�

Td

N

∑
i=1

�
∑

m∈Zd

b(m/M)�Fi,M(m)e2πim·x
�

Gi,M(x)dx
����
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= Md
�

Td
�T{b(m/M)}FM(x),GM(x)��2 dx

= Md
�

Td
�W 1/p(Mx)T{b(m/M)}FM(x),W−1/p(Mx)GM(x)��2 dx

≤ Md
��

Td
|W 1/p(Mx)T{b(m/M)}FM(x)|p dx

�1/p

×
��

Td
|W−1/p(Mx)GM(x)|q dx

�1/q

≤ Md�{b(m/M)}m�Mp(Td ;W (M·))�FM�Lp(Td ;W (M·))� ·�GM�Lq(Td ;W−q/p(M·))

≤Cp�F�Lp(Rd ;W )�G�Lq(Rd ;W−q/p).

The functions b(ξ )�Fi(ξ ) �Gi(ξ ) are Riemann integrable on Rd , so letting the integer M → ∞ in
(2.5), we obtain using Parseval’s relation,
����

N

∑
i=1

�

Rd
b(ξ )F̂i(ξ )Ĝi(ξ )dξ

���� =
����
�

Rd
�TbF(x),G(x)��2 dx

����≤Cp�F�Lp(Rd ;W )�G�Lq(Rd ;W−q/p).

Notice that the family of vectors of compactly smooth functions are dense in both Lp(Rd;W )
and Lq(Rd;W−q/p), respectively, since W,W−q/p ∈ L1,loc. Therefore, it follows that b ∈
Mp(Rd;W ) with �b�Mp(Rd ;W ) ≤Cp. �

3. MUCKENHOUPT MATRIX WEIGHTS

So far we have proved two transference results, Proposition 2.4 and Proposition 2.5. How-
ever, for these results to be useful we need to have interesting examples of bounded multipliers
on Lp(Rd;W ) and/or Lp(Td;W ) that can be used for the transfer process. This section contains
an application of Proposition 2.4 to the case of a matrix weight W that satisfies the so-called
Ap condition for matrices.

The Muckenhoupt Ap-condition for matrix weights was introduced by Nazarov, Treı̆l� and
Volberg in [7, 11] to study boundedness properties of the vector-valued Hilbert transform.
Here we follow Roudenko [10] and give an equivalent and more direct definition of matrix
Ap weights. It is proved in [10] that the following definition is equivalent to the Ap condition
considered in [7, 11]. We let B(d) denote the family of all Euclidean balls in Rd .

Definition 3.1. Let W : Rd → CN×N be a matrix weight. For 1 < p < ∞, let q denote the
conjugate exponent to p, i.e., 1

p + 1
q = 1. We say that W belongs to the matrix Muckenhoupt

class Ap provided

(3.1) A(p,W ) := sup
B∈B(d)

�

B

��

B

��W 1/p(x)W−1/p(t)
��q dt

|B|

�p/q dx
|B| < ∞.

We notice that a simple change of variable in (3.1) reveals that Ap is dilation invariant. More
precisely, for a matrix weight W ∈ Ap, and any M > 0, the dilated weight W (M·) is also in Ap
with the same bound A(p,W (M·)) = A(p,W ). This fact will be used in Section 4.
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The importance of the Muckenhoupt Ap class is already apparent from the study of the
Hilbert transform in [7, 11]. Later Goldberg [5] demonstrated that the Muckenhoupt Ap class
is also useful for the study of general vector-valued multipliers.

Our main result Theorem 3.3 will rely on Goldberg’s result, which we will state in detail.
The setup is the following. We consider a singular integral operator T of convolution type
associated with a kernel K : Rd\{0}→ C. That is, for a compactly supported test function f ,

T f (x) =
�

Rd
K(x− y) f (y)dy,

for almost all x outside supp( f ). The following is a standard regularity hypothesis for K that
we will need below: there exists a constant C such that

(3.2) |K(x)|≤C|x|−d and |∇K(x)|≤C|x|−d−1, x ∈ Rd\{0}.

For this type of operators, Goldberg proved the following general result.

Theorem 3.2 (Goldberg [5]). Let W : Rd → CN×N be a matrix weight.
(i) Suppose W ∈ Ap for some 1 < p < ∞. Assume that T : Lr(Rd)→ Lr(Rd) is a bounded

convolution operator for some 1 < r < ∞, with associated convolution kernel K sat-
isfying (3.2). Then T extends to a bounded operator on Lp(Rd;W ) with an operator
norm that only depends on C and on the Ap constant of W.

(ii) Conversely, suppose T is a convolution operator with kernel K that is bounded on
Lp(Rd;W ) for some 1 < p < ∞. If the kernel K satisfies

|∇K(x)|≤C|x|−d−1, x ∈ Rd,

for some C > 0, and there is a unit vector u ∈ Sd−1 and a constant a > 0, such that

(3.3) |K(ru)|≥ a|r|−d, r ∈ R\{0},

then W is in Ap.

We mention that proving Lp(Rd) boundedness for a scalar multiplier operator with an as-
sociated integrable convolution kernel reduces to a simple application of Young’s inequality.
However, in the matrix weighted setting such a simplified appoach fails, and more sophisti-
cated results like Theorem 3.2 are needed to obtain Lp(Rd;W )-boundedness, even for multi-
pliers associated with nice smooth localized convolution kernels.

We now combine Theorem 3.2 with Propositions 2.4 and 2.5 to obtain the main application
of our transference results.

Theorem 3.3. Let W : Rd → CN×N be a periodic matrix weight.
(i) Let W ∈ Ap for some 1 < p < ∞, and suppose that for some 1 < r < ∞, Tb : Lr(Rd)→

Lr(Rd) is a bounded multiplier operator induced by a regulated multiplier b : Rd →R.
If the associated convolution kernel K satisfies (3.2), then for M ∈ N: {b(m/M)}m ∈
Mp(Td;W (M·)), and b(·/M) ∈Mp(Rd;W (M·)), with

(3.4) �{b(m/M)}�Mp(Td ;W (M·)) ≤ �b(·/M)�Mp(Rd ;W (M·)).

Moreover, the bound on �b(·/M)�Mp(Rd ;W (M·)) depends only on C in (3.2) and on the
Ap constant of W.
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(ii) Conversely, suppose that b is a bounded continuous function on Rd with

{b(m/M)}m∈Zd ∈Mp(Td;W (M·)), uniformly in M ∈ N,

for some 1 < p < ∞, and suppose W−p/q ∈ L1,loc, 1
p + 1

q = 1. If the multiplier Tb is
associated with a kernel K that satisfies |∇K(x)| ≤ C|x|−d−1, x ∈ Rd\{0}, and the
kernel also satisfies (3.3), then W ∈ Ap.

Proof. First we prove (i). Let M ∈ N and notice that W ∈ Ap implies W (M·) ∈ Ap with
A(p,W (M·))= A(p,W ). Moreover, the multiplier b(·/M) is associated with the kernel MdK(M·)
that satisfies (3.2) with the same constant as for K.

We now use Theorem 3.3 to deduce that Tb(·/M) is a bounded operator on Lp(Rd;W (M·)),
i.e., b(·/M) ∈ Mp(Rd;W (M·)) with a norm that depends only the constant for K in (3.2)
and on the Ap constant of W . The fact that W (M·) ∈ Ap implies that W−q/p(M·) ∈ L1,loc,
where q is the conjugate exponent to p, see [10]. Hence, Proposition 2.4 applies to b(·/M) in
Mp(Rd;W (M·)), and we immediately obtain the norm estimate (3.4).

We turn to the proof of (ii). By Proposition 2.5, Tb is bounded on Lp(Rd;W ). We can now
use Theorem 3.2.(ii) to conclude that W ∈ Ap. �

We conclude this paper by presenting some applications of Theorem 3.3.

4. EXAMPLES

Here we consider a fairly general setup that will provide a number of examples, including
multipliers related to the Riesz transform.

We consider a C∞ function Ω0 on Rd\{0} that is homogeneous of degree zero, i.e., Ω0(λx)=
Ω0(x) for all λ > 0, x ∈ Rd\{0}. Then it is well-known that the induced multiplier operator
TΩ0 is associated with a convolution kernel of the type

(4.1) K(x) =
Ω(x/|x|)

|x|d
, x ∈ Rd\{0},

with Ω a C∞ function on the unit sphere Sd−1 with mean value zero, see e.g. [6, Prop. 2.4.7].
Since Ω0 is bounded on Rd\{0}, TΩ0 clearly extends to a bounded operator on L2(Rd). By
(re)defining the value of Ω0 at zero appropriately, we can also think of Ω0 as a regulated
multiplier. Notice that K is smooth away from the origin, and it is homogeneous of degree −d,
so it is straightforward to verify that the conditions given by (3.2) hold.

Hence, Theorem 3.3 applies to this setup. We summarize our findings in the following
Corollary.

Corollary 4.1. Let W : Rd →CN×N be a periodic matrix weight, and let Ω0 : Rd\{0}→C be
C∞ and homogeneous of degree zero. We suppose that Ω0 has been regularized at zero.

• Suppose W ∈ Ap for some 1 < p < ∞, then

(4.2) sup
M∈N

�{Ω0(m)}m∈Zd�Mp(Td ;W (M·)) < ∞.

• Conversely, suppose W−q/p ∈ L1,loc, for some 1 < p < ∞ with 1
p + 1

q = 1. If (4.2)
holds, and there exists a direction u ∈ Sd−1 such that Ω(u)Ω(−u) �= 0, with Ω defined
by (4.1), then W ∈ Ap.
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Proof. First notice that {Ω0(m)}m∈Zd = {Ω0(m/M)}m∈Zd for any M ∈ N by the homogeneity
of Ω0. The first part of the corollary now follows directly from Theorem 3.3.(i) since the
conditions given by (3.2) hold for the kernel (4.1). For the second part, we notice that whenever
u ∈ Sd−1 is such that Ω(u)Ω(−u) �= 0, then

|r|d|K(ru)|≥ min{|Ω(−u)|, |Ω(u)|} > 0,

for r ∈ R\{0}. Hence, the second claim follows directly from Theorem 3.3.(ii). �
In particular, Corollary 4.1 applies to each of the Riesz multipliers

m j(x) =−i
x j

|x| , j = 1,2, . . . ,d, x ∈ Rd\{0}.

It follows that for a periodic matrix weight W : Rd →CN×N with W−q/p ∈ L1,loc, for 1 < p < ∞
where 1

p + 1
q = 1, W ∈ Ap if and only if

sup
M∈N

�{m j(k)}k∈Zd�Mp(Td ;W (M·)) < ∞.

Another, more general, example where Corollary 4.1 applies is given by the multiplier

m(x) =
P(x)
|x|k

, x ∈ Rd\{0},

with P a non-trivial homogeneous polynomial of degree k ∈ N.
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