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NONSEPARABLE WALSH-TYPE FUNCTIONS ON Rd

MORTEN NIELSEN

ABSTRACT. We study wavelet packets in the setting of a multiresolution analysis of
L2(Rd) generated by an arbitrary dilation matrix A satisfying |det A| = 2. In particular,
we consider the wavelet packets associated with a multiresolution analysis with a scal-
ing function given by the characteristic function of some set (called a tile) in Rd. The
functions in this class of wavelet packets are called generalized Walsh functions, and
it is proved that the new functions share two major convergence properties with the
Walsh system defined on [0, 1). The functions constitute a Schauder basis for Lp(Rd),
1 < p < ∞, and the expansion of Lp-functions converge pointwise almost everywhere.
Finally, we introduce a family of compactly supported wavelet packets in R2 of class
Cr(R2), 1 ≤ r < ∞, modeled after the generalized Walsh function. It is proved that this
class of smooth wavelet packets has the same convergence properties as the generalized
Walsh functions.

INTRODUCTION

Wavelet analysis was originally introduced in order to improve seismic signal pro-
cessing by switching from short-time Fourier analysis to new algorithms better suited
to detect and analyze abrupt changes in signals. It corresponds to a decomposition
of phase space in which the trade-off between time and frequency localization has
been chosen to provide better and better time localization at high frequencies in return
for poor frequency localization. This makes the analysis well adapted to the study
of transient phenomena and has proven a very successful approach to many prob-
lems in signal processing, numerical analysis, and quantum mechanics. Nevertheless,
for stationary signals wavelet analysis is outperformed by short-time Fourier analysis.
Wavelet packets were introduced by Coifman et al. [5] to improve the poor frequency
localization of wavelet bases at high frequencies and thereby provide a more efficient
decomposition of signals containing both transient and stationary components.

So far most work on wavelet packets has been done in one dimension or using sepa-
rable wavelet packets in higher dimensions (i.e., tensor products of one dimensional
wavelet packets). However, separable wavelet and wavelet packet bases both have
several drawbacks for the application to fields like image analysis since they impose
an unavoidable line structure on the plane. For example, the zero set of a separable
wavelet packet at high frequencies will contain a large number (same order of mag-
nitude as the frequency) of horizontal and vertical lines that may create artifacts in
the reconstructed image. Another potential problem is in the Fourier domain where
separable two-dimensional wavelet packets have four characteristic peaks making it
hard to selectively localize a unique frequency. Coifman and Meyer introduced the so-
called Brushlets in [11] to remove the “uncertainty” in frequency localization, however

1



NONSEPARABLE WALSH-TYPE FUNCTIONS ON Rd 2

the Brushlets are essentially Fourier transforms of smooth local trigonometric bases
and are therefore no longer functions associated with a multiresolution structure. An-
other example of nonseparable orthonormal bases with good frequency resolution is
Donoho’s Ridgelets [7].
The aim of the present paper is to construct nonseparable wavelet packet bases for
L2(Rd) with nice convergence properties. In section 1 we introduce wavelet packets
associated with the class of multiresolution analyses of L2(Rd) for which there are as-
sociated wavelet bases generated by only one wavelet. Section 1 is rather brief due
to the fact that the construction is similar to the well known one dimensional theory
of wavelet packets. The wavelet packets constructed provide the same large number
of orthonormal bases as wavelet packets in one-dimension, and they provide a good
platform for doing image analysis using the well known “best basis” algorithm of Coif-
man and Wickerhauser. The paper [3] contains several numerical experiments with the
wavelet packets of Section 1.
In Section 2 we study a special type of multiresolution analysis that generalizes the
well known Haar multiresolution analysis from L2(R). Section 3 contains results on
a special wavelet packets construction that can be considered the multidimensional
generalization of the Walsh system on [0, 1). We prove that this multidimensional gen-
eralization share the two most important convergence properties of the classical Walsh
system: the new system is a Schauder basis for Lp(Rd), 1 < p < ∞, and the expansion
of every Lp-function in the system converges pointwise a.e.
Section 4 contains the main result of the present paper. There we consider a class of
smooth wavelet packets, called Walsh-type wavelet packets, which shares a number
of properties with the Walsh functions from Section 3. In Theorem 4.10 (and Corol-
lary 4.11) it is proved that the Walsh-type wavelet packet expansion of a function from
Lp, 1 < p < ∞, converges pointwise a.e. More restricted results in the one dimensional
setting were considered by the author in [15].
Periodic versions of the smooth wavelet packets of Section 4 are considered in Section
5, and finally Section 6 contains some explicit examples of filters that can be used to
generate Ck(R2) wavelet packets for any k ≥ 1.

1. NONSTATIONARY WAVELET PACKETS

We begin by recalling some facts about multiresolution analyses associated with a gen-
eral dilation matrix that we will use later in this section to define the wavelet packets
we have in mind. The reader can find a more extensive discussion of the topic in [21].

Let A be a d× d-matrix such that A : Zd → Zd. If the eigenvalues of A all have absolute
value strictly greater than 1 then we call A a dilation matrix.

Example 1.1. The 2 × 2 matrices
[

1 −1
1 1

]

and
[

0 2
1 0

]

are examples of dilation matrices with determinant ±2. The first matrix is known as
the quincunx dilation matrix.
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We can define a multiresolution analysis associated with a dilation matrix A.

Definition 1.2. A multiresolution analysis associated with a dilation matrix A is a se-
quence of closed subspaces (Vj)j∈Z of L2(Rd) satisfying

(i) Vj ⊂ Vj+1, ∀j ∈ Z,
(ii)

⋃

j∈Z
Vj = L2(R

d) and
⋂

j∈Z
Vj = {0},

(iii) f ∈ Vj ⇔ f (Ax) ∈ Vj+1, ∀j ∈ Z,
(iv) there exists a function φ ∈ V0 called a scaling function such that the system

{φ(· − γ)}γ∈Zd is an orthonormal basis for V0.

The wavelet spaces Wj associated with such a multiresolution analysis are given by
Wj = Vj+1 ∩ V⊥

j , and one can easily check that f ∈ Wj ⇔ f (A·) ∈ Wj+1 and L2(Rd) =
⊕

j∈Z
Wj. A family of wavelets associated with the multiresolution analysis is a collec-

tion of s functions {Ψr}s
r=1 for which {Ψr(· − γ)|γ ∈ Z

d}s
r=1 is an orthonormal basis

for W0. Suppose |det A| = q. It turns out that the number of wavelets needed to
generate such a basis for W0 is exactly q − 1. This makes the case |det A| = 2 espe-
cially interesting since the wavelet basis is generated by only one function just as in
the one-dimensional case. We will use the notation PVj and PWj to denote the orthogo-
nal projections onto the closed spaces Vj and Wj, respectively. One can show that PVj

and PWj extend to bounded operators on Lp(Rd), 1 < p < ∞, provided that the scaling
function has a minimum of decay at infinity, see e.g. [21].

Let {Vj}j∈Z be a multiresolution analysis of L2(Rd) associated with a dilation matrix A
satisfying |det A| = 2. Suppose (Φ, Ψ) is an associated scaling function/wavelet pair.
Then there exist 2πZd-periodic functions m0 and m1 such that

Φ̂(ξ) = m0(Dξ)Φ̂(Dξ)

Ψ̂(ξ) = m1(Dξ)Φ̂(Dξ),

with D = (A∗)−1. Since |det A| = 2 we can find Γ ∈ Zd satisfying Zd = A∗Zd ∪ (Γ +

A∗Zd). Then it is easy to check that the matrix
[

m0(ξ) m0(ξ + 2πDΓ)
m1(ξ) m1(ξ + 2πDΓ)

]

is unitary a.e. for ξ ∈ Rd. This observation leads to the following definition. We let A
and Γ be related as above.

Definition 1.3. Let m0 and m1 be 2πZd periodic functions for which
[

m0(ξ) m0(ξ + 2πDΓ)
m1(ξ) m1(ξ + 2πDΓ)

]

is unitary a.e., then we call (m0, m1) a pair of orthogonal quadrature filters associated
with (A, Γ).

We can now define the natural generalization of wavelet packets to the setting of a
multiresolution analysis associated with a dilation matrix A with |det A| = 2.
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Definition 1.4. Let {(m(p)
0 , m(p)

1 )}∞
p=1 be a sequence of orthogonal quadrature filters

associated with (A, Γ). We define the basic nonstationary wavelet packets {wn}∞
n=0 by

w0 = Φ, w1 = Ψ, and for 2k ≤ n < 2k+1 with binary expansion n = ∑
k+1
j=1 ε j2j−1, we let

ŵn(ξ) =

[ k+1

∏
j=1

m(k−j+2)
ε j (Djξ)

]

Φ̂(Dk+1ξ).

Remark 1.5. The stationary (or classical) wavelet packets consist of the special case of
Definition 1.4, where the filters {(m(p)

0 , m(p)
1 )}∞

p=1 do not depend on p, and m(1)
0 and m(1)

1
are the low- and high-pass filter, respectively, associated with the underlying multires-
olution analysis.

Let us state two most important facts about the wavelet packets from the above defi-
nition. The two propositions below show how to extract orthonormal bases from the
wavelet packet construction above, and thus give us some new (and hopefully useful)
tools to signal and image processing. We have included a sketch of the proofs for con-
venience. However, the reader should notice that everything works exactly as in the
one-dimensional case, only the multiresolution structure matters.

Proposition 1.6. The basic wavelet packets

{wn(x − k)|0 ≤ n < 2j, k ∈ Z
d}

form a basis for Vj. Furthermore,

{wn(x − k)|n ∈ N0, k ∈ Z
d}

form an orthonormal basis for L2(Rd).

Proof. Let Ωn = Span{wn(· − k)}k∈Zd , and define δ f (x) =
√

2 f (Ax). Using the QMF-
condition it is not hard to verify that δΩn = Ω2n ⊕ Ω2n+1 (see e.g. [21, p. 112]). Thus,

δΩ0 	 Ω0 = Ω1

δ2Ω0 	 δΩ0 = δΩ1 = Ω2 ⊕ Ω3

δ3Ω0 	 δ2Ω0 = δΩ2 ⊕ δΩ3 = Ω4 ⊕ Ω5 ⊕ Ω6 ⊕ Ω7

...

δkΩ0 	 δk−1Ω0 = Ω2k−1 ⊕ Ω2k−1+1 ⊕ · · · ⊕ Ω2k−1.

By telescoping the above equalities we finally get the wanted result

δkΩ0 ≡ δkV0 = Vk = Ω0 ⊕ Ω1 ⊕ · · · ⊕ Ω2k−1,

and ∪k≥0Vk is dense in L2(Rd) by the definition of a multiresolution analysis. �

The results mentioned above can be generalized considerably. The following construc-
tion gives us a whole library of orthonormal bases each with different time-frequency
properties.
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Proposition 1.7. Let {wn} be a family of non-stationary wavelet packets associated with the
dilation matrix A. For every partition P of N0 into sets of the form Inj = {n2j, . . . , (n +

1)2j − 1} with n, j ∈ N0, the family

{2j/2wn(Aj · −k)}k∈Zd ,Inj∈P

is an orthonormal basis for L2(Rd).

Proof. An argument similar to the one in the proof of Proposition 1.6 shows that

δkΩn = Ω2kn ⊕ Ω2kn+1 ⊕ · · · ⊕ Ω2k(n+1)−1.

Moreover, the functions {2j/2wn(Aj · −q)}q∈Zd span the space δjΩn and

∑
Inj∈P

δjΩn =
⊕

q≥0

Ωq = L2(R
d),

which proves the claim. �

Our focus in the remainder of this paper will be on a special case of the above construc-
tion that can be considered the natural generalization of the Walsh system on [0, 1) and
on an associated class of smooth non-stationary wavelet packets. The Walsh func-
tions will be associated with dilation matrices that admit a Haar type multiresolution
analysis and thus a generalization of the Haar wavelet. We derive some properties of
generalized Haar wavelets in Lp below.

2. GENERALIZED HAAR FUNCTIONS

Let A be a d × d-dilation matrix with |det A| = 2. We are interested in the case where
there is an associated multiresolution analysis generated by a scaling function given
by the characteristic function of a set Q ⊂ Rd, called a tile. For general A and d > 3
there is no guarantee that such a set Q exists, see [10, 9], so we have to restrict our
construction to dilation matrices A which admit such a tile. The situation is better for
1 ≤ d ≤ 3 since it can be proved that a tile always exists [10, 9]. For the remainder of
this paper we assume that A is such that an associated tile Q exists.

The set Q has many nice properties under the action of A. One can in fact show that
AQ = Q ∪ (Q + ΓQ) for some ΓQ ∈ Zd and we always have |Q| = 1, see [21]. Hence
Q = A−1Q ∪ A−1(Q + ΓQ) and

(2.1) χ̂Q(ξ) = m0(Dξ)χ̂Q(Dξ),

where m0(ξ) = 1
2 + 1

2 e−i〈ΓQ,ξ〉. Also, note that |A−1Q| = 1
2 , so A−1 splits Q into two

sub-tiles of equal measure. We let

(2.2) D0 = {Ω : Ω = A−j(Q + γ), γ ∈ Z
d, j ≥ 0, and Ω ⊂ Q}

denote the collection of Q-dyadic sets. Note that two Q-dyadic sets Q1 and Q2 with
|Q1| ≤ |Q2| share the following important property of the dyadic sets on [0, 1), namely
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either Q1 ∩ Q2 = ∅ or Q1 ⊂ Q2. We also need the unrestricted collection of Q-dyadic
sets given by

D = {Ω : Ω = A−j(Q + γ), γ ∈ Z
d, j ∈ Z}.

With this setup we can define the natural generalization of the Haar function on [0, 1).

Definition 2.1. With Q and ΓQ as above, we define the generalized Haar function by

H(x) = χA−1Q(x) − χA−1(Q+ΓQ)(x).

The Haar system on Q is given by

{χQ} ∪ {2j/2H(Ajx − k)|j ≥ 0, k ∈ Z
d, and supp(H(Ajx − k)) ⊂ Q}.

Example 2.2. Let us consider an example to illustrate the rather technical Definition 2.1.
Figure 1 shows the twin-dragon tile Q generated by the quincunx dilation matrix

A =

[

1 −1
1 1

]

,

where we have chosen the coset representative ΓQ = (1, 0). The differently shaded
areas show the regions (sub-tiles) A−1Q and A−1(Q + ΓQ) that generate the Haar func-
tion of Definition 2.1.

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

–0.6 –0.4 –0.2 0.2 0.4 0.6

FIGURE 1. The twin-dragon tile Q for the quincunx dilation matrix with
the coloring indicating the two sub-tiles that form the associated Haar
function H(x).

There is a unique way to index the Haar functions by D0. For Ω ∈ D0 we simply let
HΩ denote the generalized Haar function (normalized in L2(Q)) with support equal to
Ω.

One would suspect that the generalized Walsh functions form an unconditional basis
for Lp(Q), 1 < p < ∞, and this is exactly the conclusion of the following proposition.
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Proposition 2.3. Let {HΩ}Ω∈D0 be the generalized Haar system associated with the tile Q.
Then {HΩ}Ω∈D0 constitutes an unconditional basis for Lp(Q), 1 < p < ∞.

Proof. Let us first verify that the system is dense in Lp(Q), 1 < p < ∞. Let

Kn(x, y) = ∑
Ω∈D0:|Ω|=2−n

HΩ(x)HΩ(y)

be the kernel of the projection onto Vn. We have, for y ∈ Ω, |Ω| = 2−n,
∫

Q
|Kn(x, y)| dx = |HΩ(y)|

∫

Q
2n/2χQ(Anx) dx = |HΩ(y)|2n/22−n = 1,

and similarly, for x ∈ Ω,
∫

Q
|Kn(x, y)| dy = |HΩ(x)|2n/22−n = 1.

Hence, by standard estimates, the projection onto Vn is bounded on Lp(Q), 1 < p < ∞.
Now, each Vn is spanned by a finite number of Haar functions and χQ so it suffices to
show that Pn f → f in Lp(Q)-norm as n → ∞ for every f ∈ L∞(Q) since such functions
are dense in Lp(Q), 1 < p < ∞. Let f ∈ L∞(Q), and suppose 2 < p < ∞. We have, for
p−1 = α/2 + (1 − α)/(p + 1), using the generalized Hölder inequality,

‖ f − Pn f ‖p ≤ ‖ f − Pn f ‖α
2‖ f − Pn f ‖1−α

p+1.

Hence, ‖ f − Pn f ‖p → 0 since 0 < α < 1 and ‖ f − Pn f ‖p+1 is bounded by a mul-
tiple of ‖ f ‖p+1. The case 1 < p < 2 can be handled the same way. To prove that
the system is unconditional, we build the following regular martingale on the prob-
ability space (Q, dx). Write D0 = {Ω0, Ω1, . . .} in such a way that |Ωn| ≥ |Ωn+1|,
n ≥ 0. Let B0 be the σ-algebra generated by Ω0 = Q and ∅. Suppose Bn has been
defined, then we let Bn+1 be the smallest σ-algebra generated by Bn and Ωn+1. Let
f ∈ Lp(Q). It is easy to check that the expectation EBn f is given by the projection onto
span{χΩ0 , χΩ1 , . . . , χΩn}, so fn = EBn f is indeed a regular martingale w.r.t. {Bn}∞

n=0
and it follows from Burkholder’s theorem [4] that the martingale difference sequence
{ fn+1 − fn}∞

n=0 converges unconditionally in Lp(Q), 1 < p < ∞. However, { f2n −
f2n−1} are just the partial sums of the expansion of f in the generalized Haar system
and the result follows. �

3. GENERALIZED WALSH FUNCTIONS

The Walsh system on [0, 1) is the system of basic wavelet packets associated with the
Haar multiresolution analysis, and using the setup introduced in the previous section
we can use the same scheme to obtain a natural generalization of the Walsh system to
higher dimensional domains.

Let m0(ξ) = 1
2 + 1

2 e−i〈ΓQ, ξ〉 be the low-pass for a generalized Haar wavelet as defined
by (2.1). We define the associated high-pass Haar filter by m1(ξ) = 1

2 − 1
2 e−i〈ΓQ, ξ〉. We

have the following definition of the generalized Walsh functions.



NONSEPARABLE WALSH-TYPE FUNCTIONS ON Rd 8

Definition 3.1. The generalized Walsh functions {Wn}∞
n=0 are the basic wavelet packets

generated by the Haar low-pass and high-pass filters starting from the Haar scaling
function and wavelet.

Remark 3.2. The generalized Walsh functions can also be defined recursively by letting
W0(x) = χQ(x) and then we define {Wn}∞

n=1 by

W2n+ε(x) = Wn(Ax) + (−1)εWn(Ax − ΓQ), ε = 0, 1.

The third possible definition is to view the generalized Walsh system as the product
system on the probability space (Q, dx) defined by the generalized Rademacher func-
tions. The generalized Rademacher functions are obtained by letting

r0(x) = ∑
k∈Zd

H(x − k) ∈ L∞(R
d),

where H is the Haar function of Definition 2.1, and we define rn(x) = r0(Anx). Then
for n ∈ N0 with binary expansion n = ∑

∞
j=0 ε j2j we have

Wn(x) = χQ(x)
∞

∏
j=0

rj(x)ε j ,

which can be proved easily by induction. Notice that an easy consequence of this
definition is that

(3.1) Wn(x)Wm(x) = Wn⊕m(x),

where ⊕ is the bitwise “exclusive or” operator.

The first thing we want to check is that the generalized Walsh system constitutes a
Schauder basis for Lp(Q), for 1 < p < ∞. This will be the content of Proposition 3.5.
But first, let us recall some important facts about the classical Walsh system on [0, 1).
The system is defined recursively on [0, 1) by letting W0 = χ[0,1) and

W2n+ε(x) = Wn(2x) + (−1)εWn(2x − 1), ε = 0, 1.

Clearly, this is a special case of our new construction with d = 1. One important fact
we need is that, for 2J ≤ n < 2J+1, we have

Wn(x) =
2J−1

∑
s=0

Wn−2J (s2−J)W1(2J x − s).

The proof of this fact can be found in [15], and we will in fact prove a more general
statement in Section 4. The 2J × 2J matrix defined by (HJ)i+1,j+1 = 2−J/2Wi(j2−J),
i, j = 0, 1, . . . 2J − 1, is called the Hadamard matrix of order 2J, and it will be used in
Lemma 3.4 below.
The following lemma about the generalized Haar functions is elementary and we leave
the proof to the reader.

Lemma 3.3. Suppose F ⊂ D0 is a finite subset for which f = ∑Ω∈F cΩHΩ ∈ Wj. Then

‖ f ‖p = 2j(1/2−1/p)

(

∑
Ω∈F

|cΩ|p
)1/p

.
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From this simple Lemma, and from the fact that the classical Walsh system is a Schauder
basic for Lp[0, 1), 1 < p < ∞, we can deduce the following property of the Hadamard
matrix

Lemma 3.4. Let Hn be the 2n × 2n Hadamard matrix of order n, and let Dn
m be the 2n × 2n

diagonal matrix with m ones in the upper left corner and zeros everywhere else. Then there
exits a constant C, independent of m and n, such that

‖HnDn
mH?

n‖`p→`p ≤ C.

Proof. Given {cj}2n

j=1 ⊂ C we form f = ∑
2n+1

j=2n cj−2n+1Wj and fm = ∑
2n+m
j=2n cj−2n+1Wj,

where {Wj}n the Walsh system on [0, 1). We have, by the Schauder basis properties of
the Walsh system,

‖ fm‖p ≤ C‖ f ‖p ,
with C independent of m and n. Recall that the Hadamard matrix Hn is the change
of basis matrix between the Walsh basis for Wn and the Haar basis for the same space.
Hence, by Lemma 3.3,

‖ f ‖p = 2n(1/2−j/p)‖Hn[(cj)]‖`p and ‖ fm‖p = 2n(1/2−1/p)‖HnDn
mH?

n[Hn(cj)]‖`p ,

and we conclude that
‖HnDn

mH?
n‖`p→`p ≤ C.

�

We notice that for 2J ≤ n < 2J+1 the wavelet packet Wn is given as a sum of exactly 2J

wavelets in WJ with the expansion coefficients given by the procedure outlined in Def-
inition 1.4. The coefficients of the generalized Haar low-pass and high-pass filters are
the same as in the one-dimensional case, so we deduce that there is an ordering of the
generalized Haar functions {HΩ}Ω∈D0,|Ω|=2−J such that the wavelet packets {Wn}2J+1−1

n=2J

is given by the Hadamard transform of the Haar functions w.r.t. this ordering. We can
now state and prove the following result.

Proposition 3.5. Let {Wn}∞
n=0 be a generalized Walsh system. Then {Wn}∞

n=0 constitutes a
Schauder basis for Lp(Q), 1 < p < ∞.

Proof. The generalized Walsh system is dense in Lp(Q) since it is possible to write every
Haar wavelet HI as a finite linear combination of generalized Walsh functions, and
the Haar system is dense in Lp(Q) by Proposition 2.3. So, given fn = ∑

n−1
j=0 cnWj for

some sequence {cj} ⊂ C, it suffices to prove that there exists a constant C such that
‖ fm‖p ≤ C‖ fn‖p whenever m ≤ n. Define s, k ≥ 0 by m = 2s + k, k < 2s, and write
fm = f2s + ( fm − f2s). Clearly, f2s = PVs fn so ‖ f2s‖p ≤ C‖ fn‖p by Proposition 2.3. All
that remains is to bound fm − f2s ∈ Ws. Let Ms = [〈Wj, HI〉]2

s+1

j=2s,HI∈Ws
be the change of

basis matrix from the generalized Walsh basis for Ws to the Haar basis for Ws. There
exists an ordering of the Haar functions {HΩ}|Ω|=2−j such that the change of basis
matrix is given by the Hadamard Transform, and the coefficients of fm − f2s in the
Haar basis are thus given by,

MsDs
mM?

s [Ms(cj)
2s+1−1
j=2s ],
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where Ds
m is the 2s × 2s diagonal matrix with m ones in the upper left corner and zeros

everywhere else. By Lemma 3.4,

‖MsDs
mM?

s [Ms(cj)
2s+1−1
j=2s ]‖`p ≤ C‖MsDs

2s M?
s [Ms(cj)

2s+1−1
j=2s ]‖`p ,

with C a constant independent of m and s. Hence, from Lemma 3.3 we deduce that

‖ fm − f2s‖p ≤ C‖PWs fn‖p ≤ C1‖ fn‖p,

and we are done. �

For technical reasons we will need the following special class of dilation matrices.

Definition 3.6. Let A be a d × d-dilation matrix with |det A| = 2. We say that A is
almost isotropic if there exists an integer t such that Atd = 2t Id, where Id is the d × d
identity matrix.

Remark 3.7. One example of an almost isotropic dilation matrix is the quincunx dilation

A =

[

1 −1
1 1

]

,

which satisfies A8 = 16I2.

Fix a Haar multiresolution analysis associated with a d × d-dilation matrix A with
|det A| = 2. Let Q be a tile associate with this matrix, and let {Wn}n be the associ-
ated Walsh functions. The following operator will be fundamental in our study of the
metric properties of the Walsh wavelet packet library.

Definition 3.8. The Carleson operator G for the wavelet packet system {wn}n is de-
fined by

(G f )(x) = sup
N≥0

∣

∣

∣

∣

N

∑
n=0

∑
k∈Zd :|k|≤N

〈 f , wn(· − k)〉wn(x − k)
∣

∣

∣

∣

,

for f ∈ Lp(Q), 1 < p < ∞.

The Carleson operator picks out the partial sum with the worst pointwise behavior at
each point x ∈ Q. It is clearly not a priori obvious that the operator for a given system
is finite at any point for general functions f , but Theorem 3.9 stated below will be
proved in Appendix A. We remind the reader that an operator T mapping Lp(Rd) into
the set of measurable functions is of strong type (p, p) if T is sub-linear and satisfies
‖T f ‖p ≤ Cp‖ f ‖p for some finite constant Cp.

Theorem 3.9. The Carleson operator associated with any generalized Walsh system generated
by an almost isotropic dilation matrix is of strong type (p, p), 1 < p < ∞.

Remark 3.10. There are several proofs of this fact for the one dimensional Walsh system,
see e.g. [2, 16]. The proof we outline in the appendix is based on a technique introduced
by Thiele in [20].

The corollary below follows by standard arguments from Theorem 3.9.
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Corollary 3.11. Consider any generalized Walsh system generated by an almost isotropic di-
lation matrix. The associated Walsh wavelet packet expansion of any f ∈ Lp(Q), 1 < p < ∞,
converges a.e.

4. SMOOTH WALSH-TYPE FUNCTIONS

The expansion of Lp functions in the generalized Walsh system is well behaved as
we have seen in the previous section, however, the basis functions are not continuous
which can be a problem for certain applications. The aim of this section is to introduce
a smooth analogue of the generalized Walsh system with the same nice Lp-properties.
We call such functions Walsh-type wavelet packets, see Definition 4.1 below. The main
result of the section, and indeed of the present paper, is Theorem 4.10, where we prove
that smooth Walsh-type wavelet packet expansions converge pointwise a.e. for Lp-
functions, 1 < p < ∞.

Let us define the class of functions we have in mind.

Definition 4.1. Let {WS
n }n≥0,k∈Z be a family of non-stationary wavelet packets con-

structed by using a family {(m(p)
0 , m(p)

1 )}∞
p=1 of finite filters in Definition 1. If there

exists a constant J ∈ N such that (m(p)
0 , m(p)

1 ) is the Haar low-pass and high-pass filter,
respectively, for every p ≥ J, and w1 has compact support, then we call {WS

n }n≥0 a
family of Walsh-type wavelet packets.

We have to state and prove a few technical lemmas before we can attack the main result
stated in Theorem 4.10 below. The lemmas below are well known results in the one-
dimensional case, and we just have to tweak the proofs a little bit to make them work
for almost isotropic dilation in Rd. The techniques used should be well know to the
reader, so we will only give the outlines of the proofs. Further details on the techniques
can be found in [12, 13, 21].

Lemma 4.2. Let A be an almost isotropic d × d-dilation matrix, and let f i ∈ C1(Rd) ∩
L2(Rd), i = 1, 2, be two functions for which

| f i(x)|, |∂/∂xi f j(x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d, j = 1, 2,

for some constant C. Suppose { f i
j,k ≡ 2j/2 f 2(Aj · −k)}j∈Z,k∈Zd is an orthonormal system for

i = 1, 2, and let ε ∈ `∞(Z × Zd) with ‖ε‖`∞ ≤ 1. Then the operator T : L2(Rd) → L2(Rd)
defined by

Tg = ∑
j∈Z,k∈Zd

ε j,k〈g, f 1
j,k〉 f 2

j,k.

can be extended to a bounded operator on Lp(Rd), 1 < p < ∞, with bound independent of ε.

Proof. Fix the nonnegative integers s, t such that As = 2t Id, and take any finite sequence
ε ∈ Z × Zd with ‖ε‖`∞ ≤ 1. We can write any integer j as j = us + r with u ∈ Z and
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0 ≤ r < s. Hence

Tg = ∑
j∈Z,k∈Zd

ε j,k〈g, f 1
j,k〉 f 2

j,k

=
s−1

∑
r=0

∑
u∈Z,k∈Zd

εus+r,k〈g, 2j/2 f 1(2tuAr · −k)〉2j/2 f 2(2tuArx − k).

It follows that

‖Tg‖p ≤ C
s−1

∑
r=0

∥

∥

∥

∥

∑
u∈Z,k∈Zd

εus+r,k〈g, 2tdu/2 f 1(2tuAr · −k)〉2tdu/2 f 2(2tuArx − k)
∥

∥

∥

∥

p
,

where we have used that j = tdu + r. Now, it can be proved that each term on the
right is associated with a Calderón-Zygmund operator using a straightforward mod-
ification of well known estimates, see e.g. [21, 13], taking into account the decay of f i

and ∂/∂xi f j. �

The following Lemma generalizes Lemma 12 in [14].

Lemma 4.3. Let Ψ be a wavelet associated with an almost isotropic d × d-dilation matrix A,
and let H be a generalized Haar wavelet for the same dilation. Suppose Ψ ∈ C1(R

d) satisfies

|Ψ(x)|, |∂/∂xiΨ(x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d,

for some constant C. Then the wavelet systems generated by Ψ and H, respectively, are equiv-
alent unconditional bases for Lp(Rd), 1 < p < ∞.

Proof. We can use the same technique as in proof presented on pages 166-167 of [13].
The kernel for the operator P mapping one system onto the other is given by

Kε̄(x, y) = ∑
j∈Z,k∈Zd

ε j,k2jH(Ajx − k)Ψ(Ajy − k).

Kε̄(x, y) is smooth in the y-variable and we can use the same argument as in Lemma
4.2 to show that P is bounded on Lp(Rd), 1 < p ≤ 2. All that remains is to prove that
P∗ is bounded from L1(Rd) into L1

weak(Rd). To do this, we take f ∈ L1(Rd) ∩ L2(Rd)
and make a Calderon-Zygmund decomposition of f at level α > 0 with the twist that
the decomposition is based on the Q-dyadic sets in D, and not on the dyadic d-cubes.
There is no problem making this type of decomposition following the outline in e.g.
[6, Chap. 9] since for a.a. x ∈ Rd there is a sequence {Qj}∞

j=1 ⊂ D with |Qj| = 2−j

for which the Lebesgue theorem of differentiation holds. This is due to the fact that
A is almost isotropic (the eccentricity of the sets in D is uniformly bounded). With
this slightly modified Calderón-Zygmund decomposition in hand, we can complete
the proof of the lemma by following [13, p. 167]. �

We now use the lemmas presented above to obtain the first interesting conclusion
about the Walsh-type wavelet packets, the generalized Walsh-type wavelet packets are
equivalent to the Walsh functions in Lp(Rd), 1 < p < ∞.
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Proposition 4.4. Let {Wn}∞
n=0 be a generalized Walsh systems and {WS

n }∞
n=0 a Walsh-type

system associated with the same almost isotropic d× d-dilation matrix. Suppose W S
0 ∈ C1(Rd)

and
|WS

0 (x)|, |∂/∂xiWS
0 (x)| ≤ C(1 + |x|)−d+ε, i = 1, 2, . . . , d,

for some constants C, ε > 0. Then there exists an isomorphism P : Lp(Rd) → Lp(Rd), 1 <

p < ∞, for which PWn(· − k) = WS
n (· − k).

Proof. Let K be the scale from which only the Haar filters are used to generate the
Walsh-type wavelet packets. Let {Vj} be the Haar MRA associated with the general-
ized Walsh functions. Since PVK is bounded on Lp(Rd) it suffices to prove that PPVK and
P(1− PVK ) are bounded. One can easily check that PPVK is bounded by brute force esti-
mates on the kernel using that only 2K different functions (and their integer translates)
are involved.

We turn to P(1 − PVK ). Let T : Lp(Rd) → Lp(Rd) be one of the isomorphism from
Lemma 4.3 mapping the generalized Haar system onto some C1(R

d) wavelet sys-
tem generated by the wavelet Ψ. We use the map T to define an intermediate sys-
tem {W I

n(x − k)}∞
n=1,k∈Zd defined by W I

n(x − k) = TWn(x − k). The new system is

clearly equivalent to the generalized Walsh system. Let vn
j,k = 2j/2WS

n (Aj · −k) and

gn
j,k = 2j/2W I

n(Aj · −k). Notice that

{gn
j,k}2K≤n<2K+1,(j,k)∈Z×Zd and {vn

j,k}2K≤n<2K+1,(j,k)∈Z×Zd

are both orthonormal bases for L2(Rd). It follows from Lemma 4.2 that there is an
isomorphism U : Lp(Rd) → Lp(Rd) for which

Ugn
j,k = vn

j,k, 2K ≤ n < 2K+1, (j, k) ∈ Z × Z
d.

Let n ≥ 2N+1. We expand WS
n (x − k) to get

(4.1) WS
n (x − k) = ∑

s∈F
cn,svñ

K,s(x − k),

with 2K ≤ ñ < 2K+1 and F ⊂ Zd a finite set (depending on n). The coefficients cn,s
depend only on n and the Haar filter. Thus, W I

n(x − k) has the same expansion:

(4.2) W I
n(x − k) = ∑

s∈F
cn,sgñ

K,s(x − k).

We conclude that UW I
n(x − k) = WS

n (x − k) for n ≥ 2K+1 and k ∈ Zd, i.e., the iso-
morphism UT : Lp(R

d) → Lp(R
d), 1 < p < ∞, maps Wn(x − k) onto WS

n (x − k) for
n ≥ 2K+1. This completes the proof of the claim. �

Remark 4.5. The previous proposition shows that the generalized Walsh-type system
constitutes a Schauder basis for Lp(Rd), 1 < p < ∞. However, the system is bound to
fail as a basis for L1(Rd) since the functions are uniformly bounded.
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Lemma 4.6. Let A be an almost isotropic d × d-dilation matrix associated with an MRA {Vj}
with scaling function Φ satisfying

|Φ(x)| ≤ C(1 + |x|)−n−ε,

for some ε > 0. Then the Carleson operator, f → supj |PVj f (x)|, associated with the projec-
tions onto Vj is of strong type (p, p), 1 < p < ∞.

Proof. By assumption, As = 2t Id for some s, t ∈ N, and for j ∈ Z we write j = su + r
with 0 ≤ r < s. Then the kernel of the projection onto Vj can be written as

Kj(x, y) = ∑
k∈Zd

2jΦ(Ajx − k)Φ(Ajy − k)

= 2r ∑
k∈Zd

2tduΦ(2tu Arx − k)Φ(2tu Ary − k),

where we have used that s = td. From this and standard estimates we deduce that

|Kj(x, y)| ≤ C2tdu(1 + 2tu|x − y|)−d−ε,

with C is a constant independent of j. But then it follows from [17, p. 62] that, for
f ∈ Lp(Rd),

|Pj f (x)| =

∣

∣

∣

∣

∫

Rd
Kj(x, y) f (y) dy

∣

∣

∣

∣

≤ CM f (x),

where M is the Hardy-Littlewood maximal operator. Hence, supj |PVj f (x)| ≤ CM f (x)

and we are done. �

Remark 4.7. The idea of using the maximal function to bound the scaling space projec-
tions is due to Tao [19].

Note that there are exactly 2J values of k ∈ Z
d for which the function χQ(AJ x − k)

has support contained in Q. Let FJ ⊂ Z
d denote the set of such k’s. We let QJ

k =

supp{χQ(AJ x − k)}, k ∈ FJ .

Lemma 4.8. Let f1 ∈ L2(Rd), and define { fn}n≥2 recursively by

f2n+ε(x) = fn(Ax) + (−1)ε fn(Ax − Γ), ε = 0, 1.

Then for n, J ∈ N, 2J ≤ n < 2J+1, we have

fn(x) = ∑
k∈FJ

(

|QJ
k|
−1

∫

QJ
k

Wn−2J (ω) dω

)

f1(AJ x − k).

Proof. Clearly, it suffices to prove that

Wn(x) = ∑
k∈FJ

(

|QJ
k|
−1

∫

QJ
k

Wn−2J (ω) dω

)

W1(AJ x − k).
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However, since 2J ≤ n < 2J+1, it follows from (3.1) that Wn(x) = Wn−2J (x)W2J (x).
Then the result follows from the fact that each Wn−2J (x), 2J ≤ n < 2J+1, is constant on
each set QJ

k and supp{W1(AJ x − k)} = QJ
k. �

Remark 4.9. We will use the notation f (Q J
k) to denote the average

|QJ
k|
−1

∫

QJ
k

f (ω) dω.

We can state the main result about generalized Walsh-type wavelet packets.

Theorem 4.10. Let L be the Carleson operator for a basic Walsh-type wavelet packet system
{WS

n}n associated with an almost isotropic dilation matrix. Suppose W0 ∈ C1(Rd). Then L is
of strong type (p, p), 1 < p < ∞.

Proof. Let us begin by reducing the problem. Choose N ∈ N such that supp(WS
n ) ⊂

[−N, N]d for n ≥ 0. Fix p ∈ (1, ∞) and take any

f (x) = ∑
n≥0,k∈Zd

cn,kWS
n (x − k) ∈ Lp(R

d).

Define
fk(x) = ∑

n≥0
cn,kWS

n (x − k), gk(x) = ∑
n≥0

cn,kWn(x − k).

We have ‖ fk‖p ' ‖gk‖p, with bounds independent of k, by Proposition 4.4. Note that
for q ∈ Z

d,

|{x ∈ q + [0, 1)d : |L f (x)| > α}| ≤ C
αp ∑

|k−q|≤(N+1)d

∫

|L fk(x)|p dx,

so (using the Marcinkiewicz interpolation theorem) it suffices to prove that ‖L fk‖p ≤
C‖ fk‖p, where C is a constant independent of k, since

∑
q∈Zd

∑
|k−q|≤(N+1)d

‖ fk‖
p
p ≤ 2d(N + 1)d ∑

k∈Zd

‖ fk‖
p
p

≤ C2d(N + 1)d ∑
k∈Zd

‖gk‖
p
p

≤ C̃2d(N + 1)d‖ f ‖p
p.

We can, w.l.o.g., assume that k = 0. Let K ∈ N be the scale from which only the Haar
filter is used to generate the wavelet packets {WS

n }n≥2K+1. Let m ∈ N and suppose
2J ≤ m < 2J+1 for some J > K + 1. Clearly, for each x ∈ Rd,

m

∑
n=0

cn,0WS
n (x) =

2K+1−1

∑
n=0

cn,0WS
n (x) +

2J−1

∑
n=2K+1

cn,0WS
n (x) +

m

∑
n=2J

cn,0WS
n (x),
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so we have

sup
m≥1

∣

∣

∣

∣

m

∑
n=0

cn,0WS
n (x)

∣

∣

∣

∣

≤ sup
1≤m<2K+1

∣

∣

∣

∣

m

∑
n=0

cn,0WS
n (x)

∣

∣

∣

∣

+ sup
J>K+1

∣

∣

∣

∣

2J+1

∑
n=2K+1

cn,0WS
n (x)

∣

∣

∣

∣

+ sup
J>K+1

(MJ f0)(x),(4.3)

where

(MJ f0)(x) = sup
2J≤m<2J+1

∣

∣

∣

∣

m

∑
n=2J

cn,0WS
n (x)

∣

∣

∣

∣

.

We use brute force to estimated the first term of (4.3)

sup
0<m<2K+1

∣

∣

∣

∣

m

∑
n=0

cn,0WS
n (x)

∣

∣

∣

∣

≤
2K+1−1

∑
n=0

|cn,0|‖WS
n (x)‖∞χ[−N,N]d(x)

≤ ‖ f0‖p

2K+1−1

∑
n=0

‖WS
n ‖p′‖WS

n (x)‖∞χ[−N,N]d(x).

The second term of (4.3) satisfies
∥

∥

∥

∥

sup
J>K+1

∣

∣

∣

∣

2J+1

∑
n=2K+1

cn,0WS
n (x)

∣

∣

∣

∣

∥

∥

∥

∥

p
≤ C‖ f0‖p

by Lemma 4.6, since

2J+1

∑
n=2K+1

cn,0WS
n (x) = PVK f0(x) − PVJ f0(x)

so

sup
J>K+1

∣

∣

∣

∣

2J+1

∑
n=2K+1

cn,0WS
n (x)

∣

∣

∣

∣

≤ 2 sup
J

|PVJ f0(x)|.

The challenge is to prove that the third term is of strong type (p, p). Note that

(MJ f0)(x) ≤
2K−1

∑
j=0

(Mj
J f0)(x),

where

(Mj
J f0)(x) = sup

2J+j2J−K≤m<2J+(j+1)2J−K

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

,

so it suffices to prove that

‖ sup
J>K+1

(Mj
J f0)‖p ≤ C‖ f0‖p,
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for j = 0, 1, . . . 2K − 1. Fix J > K + 1, 0 ≤ j < 2K − 1, and 2J + j2J−K ≤ m < 2J + (j +
1)2J−K. We have, using Lemma 4.8,

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑
s∈FJ−K

{ m

∑
n=2J+j2J−K

cn,0Wn−2J−j2J−K(QJ−K
s )

}

WS
2K+j(AJ−Kx − s)

∣

∣

∣

∣

.

Define

Fm(t) =
m

∑
n=2J+j2J−K

cn,0Wn−2J−j2J−K(t) and F(t) = sup
m<2J+(j+1)2J−K

|Fm(t)|.

From this we easily derive the following estimate
∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

≤ ∑
s∈FJ−K

F(QJ−K
s )|WS

2K+j(AJ−K x − s)|.

Then, using the fact that supp(WS
2K+j) ⊂ [−N, N]d, we obtain the following estimate

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

≤ ‖WS
2K+j‖∞ ∑

s∈FJ−K∩SJ−K(x)

F(QJ−K
s ),

where SJ−K(x) = AJ−Kx + [−N − 1, N + 1]d ⊂ Rd. Notice that SJ−K(x) ∩ FJ−K contains
at most 2d(N + 1)d points. We need an estimate of F that does not depend on J. Note
that for 0 ≤ k < 2J−K, using (3.1),

W2J +j2J−K(ω)Wk(ω) = W2J +j2J−K+k(ω),

since the binary expansions of 2J + j2J−K and of k have no ones in common. Hence,

|Fm(ω)| = |W2J +j2J−K(ω)Fm(ω)| =

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0Wn(ω)

∣

∣

∣

∣

,

so F(ω) ≤ 2(Gg0)(ω), with G the Carleson operator for the generalized Walsh system.
Thus,

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

≤ 2‖WS
2K+j‖∞ ∑

s∈FJ−K∩SJ−K(x)

|QJ−K
s |−1

∫

QJ−K
s

Gg0(ω) dω.

We let Q?
s be the smallest dyadic d-cube centered at x containing Q J−K

s . Note that
|Q?

s | ≤ C2d(N + 1)d|QJ−K
s |. We have

∣

∣

∣

∣

m

∑
n=2J+j2J−K

cn,0WS
n (x)

∣

∣

∣

∣

≤ 2‖WS
2K+j‖∞ ∑

s∈FJ−K∩SJ−K(x)

|QJ−K
s |−1

∫

Q?
s

(Gg0)(t) dt

≤ C‖WS
2K+j‖∞22d(N + 1)2d(MGg0)(x),(4.4)
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where M is the maximal operator of Hardy and Littlewood. The righthand side of (4.4)
does not depend on m nor J so we may conclude that

sup
J>K+1

(Mj
J f0)(x) ≤ C‖WS

2K+j‖∞22d(N + 1)2d(MGg0)(x), a.e.,

and thus, since M and G are both of strong type (p, p) (see Theorem 3.9),

‖ sup
J>K+1

(Mj
J f0)‖p ≤ C‖g0‖p ≤ C1‖ f0‖p, j = 0, 1, . . . 2K − 1,

and we are done. �

The pointwise convergence result now follows by a standard argument (see, e.g., [8]).

Corollary 4.11. Let {WS
n }n be a Walsh-type wavelet packet system associated with an almost

isotropic dilation matrix. The Fourier expansion of any f ∈ Lp(Rd), 1 < p < ∞, w.r.t.
{WS

n}n converges a.e.

The basic Walsh-type wavelet packets is only one out of an infinite number of the pos-
sible Walsh-type wavelet packet bases given by Proposition 1.7, and it is interesting to
know if we have the same convergence properties for other bases in the library. Fortu-
nately, it turns out that we can generalize the above corollary to any basis in the library,
and the key to this result is the possibility of decomposing the partial sum operator for
a given wavelet packet system in the basic wavelet packets. In fact, the proof below
shows that the basis wavelet packets always have the worst metric properties of all the
bases in the library.

Corollary 4.12. Let P = {In,j} be a partition of N0 as in Proposition 1.7. Let f ∈ Lp(Rd),
1 < p < ∞. Define the partial sum operator for the Walsh-type wavelet packet system associ-
ated with P by

SN f (x) = ∑
In,j∈P :n·j≤N,k∈Zd

〈 f , 2j/2WS
n (Aj · −k)〉2j/2WS

n (Ajx − k).

We have SN f (x) → f in Lp(R
d)-norm and pointwise a.e.

Proof. Consider SN f (x). By the proof of Proposition 1.7 there is an Ñ ≤ N such that

SN f (x) =
Ñ

∑
n=0

∑
k∈Zd

〈 f ,WS
n ( · − k)〉WS

n (x − k).

From this we obtain the pointwise bound |SN f (x)| ≤ L f (x), where L is the Carleson
operator for the Walsh-type system. Thus, the Carleson operator for the wavelet packet
system given by P , supN |SN( f )(x)|, is bounded pointwise by L f (x) and is thus of
strong type (p, p), 1 < p < ∞. Both claims of the corollary follow easily from this
fact. �

Remark 4.13. In one dimension, the above corollary generalizes the results obtained by
the author in [15].
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5. PERIODIC WAVELET PACKETS

The process of 1-periodization works well for one-dimensional wavelet and wavelet
packets due to the fact that the one-dimensional multiresolution structure is based on
integer shifts. The same is true for the general multiresolution structure in Definition
1.2 so it should be no surprise to the reader that we can periodize the nonseparable
wavelet packets and obtain the same useful results as in the one dimensional case. We
should note that the periodic version of the one-dimensional Walsh system is the sys-
tem itself, so this case is not that interesting. However, for higher dimensional Walsh
systems, periodization has the advantage that it can transform the fundamental do-
main from the potentially complicated fractal tile Q to a less complicated fundamental
domain such as [0, 1)d.

Let us state the results. We leave the easy details of the proofs to the reader. Let {Wn}n
be a wavelet packet system in Rd for which each Wn ∈ L1(Rd). For the wavelet packet
Wn,j,k(x) := 2j/2Wn(Aj(x − k)) we can define the associated periodized wavelet packet
by

Wper
n,j,k(x) = χΣ(x)2j/2 ∑

γ∈Zd

Wn(Aj(x − γ) − k),

where Σ is any tile of Rd such as Q itself or the fundamental domain [0, 1)d. One can
easily verify that Proposition 1.7 is still true with the obvious modification that the
space Ωn be defined as the closed span of {Wper

n,0,k|k ∈ Zd}. Also, notice that the dimen-
sion of span{Wper

n,j,k|k ∈ Zd} is exactly 2j. For periodic Walsh-type wavelet packets we
obtain the periodic analog of Theorem 4.10.

Corollary 5.1. Consider a system of periodic Walsh-type wavelet packets {W per
n,0,0}n for which

W0 ∈ C1(Rd). Let f ∈ Lp(Σ), 1 < p < ∞. Then
N

∑
n=0

〈 f ,Wper
n,0,0〉W

per
n,0,0(x) −→ f , as N → ∞,

in Lp(Σ)-norm and pointwise a.e.

Remark 5.2. The result can be proved by using the compact support of the aperiodic
Walsh-type wavelet packets to bound the Carleson operator for the periodic system by
the Carleson operator for the aperiodic system.

6. SOME EXAMPLES OF Ck(R2) WALSH TYPE WAVELET PACKETS

We have all the machinery to obtain nice nonseparable Ck(Rd) wavelet packets with
good Lp and pointwise properties provided that we can find appropriate low-pass
filters yielding compactly supported Ck(Rd), k ≥ 1, scaling functions associated with
the given dilation matrix A. Unfortunately, such constructions are difficult in general
mainly due to the fact that not every nonnegative trigonometric polynomial of two
variables admits a spectral factorization. We remind the reader that it is still an open
problem whether the quincunx dilation admits a C1(R2) compactly supported scaling
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function. However, a construction of Ck-wavelets, k ≥ 1, is carried out in [1] for the
special case of a 2 × 2-dilation matrix A satisfying A2 = 2I2 such as

(6.1) A =

[

0 2
1 0

]

.

We can obviously use these compactly supported scaling function/wavelet pairs and
the associated filters in Definition 4.1 to construct examples of nonseparable Walsh-
type wavelet packets of type Ck(R2), for k ≥ 1.

APPENDIX A. A PROOF OF THEOREM 3.9

We give a proof of Theorem 3.9 based on an elegant technique introduced by Thiele
in [20], which he used to prove the same result for the one-dimensional Walsh system.
We have made some adjustments to adapted the proof to the present multidimensional
setting, but a large part of combinatorics involved in the proof of Theorem 3.9 is virtu-
ally identical to the combinatorics presented in [20] so we will only state those results
and refer the reader to [20] for the details.
First, some notation. Fix a generalized Walsh system {Wn}n associated with the tile Q
generated by an almost isotropic dilation matrix A (the only place where this hypoth-
esis is used is in (A.2) below). The set F = Q × N0 is called the generalized Walsh
phase plane. Let Ω ∈ D0 (see (2.2) for the definition of D0) and j, n ≥ 0. Consider sets
of the form

Ω × {n2j, n2j + 1, . . . , n2j+1 − 1} ⊂ Q × N0.
We call such a set a tile if 2j|Ω| = 1 and a bitile if 2j|Ω| = 2. We let T and B denote
the collection of all tiles and bitiles, respectively. Let P be a tile or bitile. We use the
notation P = ΩP × ωP to separate the time and frequency sets of P. For E ⊂ F we
define the following projection operator

ΠE f (x) = ∑
n:(x,n)∈E

〈 f ,Wn〉Wn(x).

The Carleson operator associated with the function b : Q → N ∩ [0, 2N] is defined by
ΠEb where Eb = {(x, n) ⊂ Q × N0 : n < b(x)}. It is clear that Theorem 3.9 will follow
if we can prove that ΠEb is of strong type (p, p) on Lp(Q), 1 < p < ∞, with bound
independent of b and N (the bound will depend on p).
We define a partial ordering on B by saying that P ≺ P′ if P ∩ P′ 6= ∅ and ΩP ⊂ ΩP′

(or equivalently ωP′ ⊂ ωP).
We fix f ∈ Lp(Q), 1 < p < ∞. For each P ∈ B we define the associated density

dP =

[

log2 sup
P≺P′

‖ΠP′ f ‖∞

]

.

Using the ordering of the bitiles we split B according to their density as follows

• Tk = {P ∈ B : dP = k}
• T max

k = {maximal bitiles in Tk w.r.t. the given partial ordering of B}
• Tk,i = {P ∈ Tk : 2i ≤ |P′ ∈ T max

k : P ≺ P′}| < 2i+1}
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• T max
k,i = {maximal bitiles in Tk,i w.r.t. the given partial ordering of B}.

Each set Tk,i is called a forest, and for R ∈ T max
k,i we define the tree Tk,i,R = {P ∈ Tk,i|P ≺

R} and call R the tree top. One can easily check using the definition of the density d
that if P1, P2 ∈ Tk,i,R and P ∈ B is such that P1 ≺ P ≺ P2 then P ∈ Tk,i,R. We call a set of
bitiles with this property convex.

Let P = Q×{n, . . . , n′ − 1} be a bitile. We split P in to a lower tile lP = Q×{n, . . . , (n +
n′)/2 − 1} and an upper tile uP = Q × {(n + n′)/2, . . . , n′}, and let EP be the set of all
points (x, n) contained in the lower tile of P, such that (x, b(x)) is contained in the
upper tile of P.

Then we have the following combinatorial type lemma.

Lemma A.1 ([20]). We have

(1) The union
⋃

P∈B EP is a partition of Eb.
(2) Let E be a disjoint union of tiles, and let p be the collection of all tiles that are subsets

of E. Then E is the disjoint union of the minimal (maximal) tiles in p.
(3) The union of a finite convex collection of bitiles can be written as a disjoint union of

tiles.
(4) Let p be a tile and E a subset of the phase plane such that p ⊂ E. If E can be written as

a union of tiles, then E\p can be written as a union of tiles.

We let TP = ΠEP , and from Lemma A.1.1 we obtain the finite decomposition ΠEb =
∑P∈B TP (the sum is finite since b is bounded). For finite subsets Ξ ⊂ B we use the
notation TΞ to denote the operator ∑P∈Ξ TP.

We note that any bitile in Tk is dominated by at least one maximal bitile or else we could
obtain an infinite sequence of associated time intervals {ΩPk}∞

k=1 ⊂ Q with |ΩPk | = 2k

which is impossible since |Q| = 1. The same argument shows that each bitile in Tk,i is
dominated by at least one bitile in T max

k,i . Thus, Tk is partitioned by the forests contained
in it, and each forest is the union of its trees. The trees actually form a partition of of
the forest, which can be deduced as follows. Suppose a bitile P ∈ Tk,i is smaller than
the two distinct tree tops R1 and R2. Then ΩP ⊂ ΩR1 ∩ ΩR2 6= ∅. Notice that by the
definition of Tk,i there are less than 2i+1 bitiles of T max

k greater than P, but at least 2i of
them greater than each of the tree tops, so that there must be a bitile M greater than
both tree tops, which means that ωM ⊂ ωR1 ∩ ωR2 6= ∅ so R1 and R2 are comparable
and thus equal since they are maximal. Hence the partition Tk,i = ∪R∈T max

k,i
Tk,i,R and we

obtain the corresponding decomposition of the Carleson operator

ΠEb = ∑
i≥0,k∈Z,R∈T max

k,i

TTk,i,R.

The following two Lemmas will provide the estimates on “tree operators” we need to
prove Theorem 3.9.

Lemma A.2. For q ∈ (1, ∞) there is a constant Cq such that for every tree Tk,i,R we have

‖TTk,i,R‖q ≤ Cq.
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Proof. Define Tl = {P ∈ Tk,i,R| lP ∩ lR = ∅} and Tu = Tk,i,R\Tl . Clearly, TTk,i,R =
TTl + TTu and we will handle each of the terms separately.

First we consider TTu . Take P, P′ ∈ Tu with P 6= P′. We claim that uP ∩ uP′ = ∅. The
only nontrivial case of the claim is when P and P′ are comparable, say P ≺ P′ ≺ R.
But then P, P′, and R have a common nonempty intersection necessarily contained in
lP ∩ lP′ by the definition of Tu. It follows that ωP′ ⊂ ωP and the inclusion is strict since
P 6= P′. Thus ωP′ ⊂ ωlP so uP and uP′ are disjoint as claimed. It follows that TP f
and TP′ are supported on disjoint sets. Recall that for any tile p there is exactly one
generalized Walsh wavelet packet Wp with time-frequency support equal to p. Hence,

(A.1) Πp f (x) = χQp(x) ∑
Q:|Q||ωp|=1

〈 f ,WQ×ωp〉WQ×ωp = 〈 f ,WQp×ωp〉WQp×ωp ,

from which we get

(A.2) |TP f (x)| ≤ |Πlp f (x)| = |〈 f ,Wlp〉Wlp(x)| ≤ 1
|Qlp |

∫

Qlp

| f (y)| dy ≤ CM f (x),

where we have used that A is almost isotropic which implies that the sets Qlp have
bounded eccentricity so there exists an d-ball B centered at x such that Qlp ⊂ B and
|Qlp | ≥ c|B| with c independent of p. We conclude that ∑P∈Pu TP f (x) can be bounded
pointwise by a constant times M f (x).

Next, we turn to TTl . Pick a frequency N ∈ lR, and let TN = Π{(x,n)|n<N}. Notice that
‖TN‖q ≤ Cq by Lemma 3.5. Suppose we can find two tiles p and p′ such that

(A.3) TTl f (x) = (ΠpTN f )(x) − (Πp′TN f )(x).

Then, using the same argument as above, we can bound TTl f (x) by 2CMTN f (x) which
will prove the Lemma.

Suppose TTl f (x) 6= 0, and define Ex = {n|(x, n) ∈ Pl}. We let P be a minimal bitile
in Pl such that (x, b(x)) ∈ uP and let P′ be a maximal bitile with the same property,
and define p = Ωp × ωP where Ωp is defined such that p is a tile and x ∈ Ωp, and
we let p′ = uP′ . The decomposition (A.3) will follow at once if we can prove that
Ẽx = {n| n < N, n ∈ ωp, and n 6∈ ωp′} equals Ex. Given (x, n) ∈ EU with U ∈ Pl,
then (x, b(x)) ∈ uU and (x, n) ∈ lU. Moreover, U ≺ R so ωR ⊂ ωU which implies that
(x, N) ∈ uU (note that (x, N) 6∈ lU since U ∈ Pl). Hence n < N and ωU ⊂ ωp since
ωp = ΩP and P ≺ U so n ∈ ωp. Also, (x, b(x)) ∈ uU ∩ uP′ 6= ∅ so ωuP′ ⊂ ωuU since
U ≺ P′. But n ∈ ωlU so n 6∈ ωp′ ⊂ ωuU . Hence Ex ⊂ Ẽx. Conversely, given n ∈ Ẽx, then
n < N and {(x, N), (x, b(x))} ⊂ uP′ but (x, n) 6∈ uP′ . Thus, n < b(x) and we can find a
bitile V such that (x, n) ∈ EV satisfying P ≺ V ≺ P′ so V ∈ Tk,i,R by convexity. It also
follows that V ∈ Pl which implies Ẽx ⊂ Ex and we are done. �

Lemma A.3. For q ∈ (1, ∞) there is a constant Cq such that for every tree Tk,i,R,

‖TTk,i,R f ‖q ≤ C2k|ΩR|1/q,

where C does not depend on the fixed function f .
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Proof. The area E of the tree Tk,i,R is a convex union of bitiles so it follows from Lemma
A.1.3 that E can be written as a disjoint union of tiles. E\lP is also a disjoint union
of tiles, so using (A.1) we obtain that for P ∈ Tk,i,R the projections ΠE\lP and ΠlP are
orthogonal. Hence,

ΠlPΠE = ΠlP(ΠlP + ΠE\lP) = ΠlPΠlP = ΠlP ,

and we deduce that TP f (x) = TPΠE f (x). Consequently, TTk,i,R f = TTk,i,RΠE f and
‖TTk,i,R f ‖q ≤ ‖TTk,i,R‖q‖ΠE f ‖q. The support of ΠE f is contained in ΩR. Fix x ∈ ΩR
and let P be the minimal bitile in the tree containing x. Then ωP is exactly the frequen-
cies n such that (x, n) ∈ E. To see this we suppose (x, n) ∈ E. Then there is a bitile
P′ containing (x, n). Since P′ and P are smaller than R, their frequency intervals both
contain a point ñ ∈ ωR. Hence P and P′ are comparable and P ≺ P′ by the definition
of P. Thus (x, n) ∈ P. The opposite inclusion is trivial. Hence, ΠE f (x) = ΠP f (x) so
from the densities of the bitiles in Tk,i,R we get ‖ΠE f ‖∞ ≤ 2k+1. Using that the support
of ΠE is contained in ΩR we get the estimate ‖ΠE f ‖q ≤ 2k+1|ΩR|1/q. Combined with
the previous lemma this gives us ‖TTk,i,R f ‖q ≤ C2k|ΩR|1/q. �

Completion of the proof. The area of two distinct trees Tk,i,R1
and Tk,i,R2 from the

same forest are clearly disjoint so we have, for q > 0,

|TTk,i f (x)|q = ∑
R∈T max

k,i

|TTk,i,R f (x)|q,

which combined with Lemma A.3 implies

(A.4) ‖TTk,i f ‖q ≤ C2k
(

∑
R∈T max

k,i

|ΩR|
)1/q

.

For P ∈ T max
k consider the bitiles R in T max

k,i which are smaller than P. The time in-
tervals of these bitiles are contained in ΩP and must be pairwise disjoint because oth-
erwise the frequency intervals of two such bitiles with nonempty intersection would
both contain ωP and thus make two of the bitiles in T max

k,i comparable, which is clearly
not the case. This observation gives us the following estimate

∑
R∈T max

k,i :R≺P
|ΩR| ≤ |ΩP|.

We add this inequality up for all the bitiles P ∈ T max
k , using the fact that each R ∈ T max

k,i
dominates at least 2i bitiles from T max

k , to obtain

(A.5) 2i ∑
R∈T max

k,i

|ΩR| ≤ ∑
P∈T max

k

|ΩP|.
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Next, we observe that any tile p we have the important property that ‖Πp f ‖2
2 =

‖Πp f ‖2
∞|Ωp|, which follows from (A.1) Thus for any bitile P,

2‖ΠP f ‖2
2 = 2(‖ΠuP f ‖2

2 + ‖ΠlP f ‖2
2)

= 2|ΩP|(‖ΠuP f ‖2
∞ + ‖ΠlP f ‖2

∞)

≥ ‖ΠP f ‖2
∞|ΩP|.

From the fact that the time intervals of the bitile in T max
k are pairwise disjoint, we have

(A.6) ‖ f ‖2
2 ≥ ∑

P∈T max
k

‖ΠP f ‖2
2 ≥ ∑

P∈T max
k

1
2
‖ΠP f ‖2

∞|ΩP| ≥
1
2

22k ∑
P∈T max

k

|ΩP|,

where we used the definition of the density of the tiles in T max
k . We use (A.5) in (A.6)

and combine with (A.4) to conclude that

‖TTk,i f ‖q ≤ C2k‖ f ‖2/q
2 2−(2k+i)/q.

Fix K ∈ Z, and let q > 2. We add all bitiles with density less than or equal to K to get
∥

∥

∥

∥

∑
P:aP≤K

TP f
∥

∥

∥

∥

q
≤ C‖ f ‖2/q

2 ∑
k<K,i≥0

2k(1−2/q)

2i/q ≤ C‖ f ‖2/q
2 2K(1−2/q),(A.7)

from which we obtain the following weak estimate

(A.8)
∣

∣

{

x :
∣

∣ ∑
P:aP≤K

TP f (x)
∣

∣ > 2K}
∣

∣ ≤ C‖ f ‖2
2

2K(q−2)

2Kq = C
‖ f ‖2

2
22K .

To get the general result we follow R. Hunt and verify that restricted type inequalities
holds for the Carleson operator, and then use interpolation of the restricted type in-
equalities (see e.g. [18, Chap. V]) to get the full result. Let us suppose f = χΩ, Ω ⊂ Q.
Then ‖ f ‖2

2 = ‖ f ‖p
p for 1 < p < ∞. Notice that no bitile can have density larger than

1 so taking taking K = 1 in (A.7) immediately gives us the bound ‖TP f ‖p ≤ C‖ f ‖p,
which is the required restricted inequality. For 1 < p < 2 we put r − p = p(r − s) in
(A.8) to get

∣

∣

{

x :
∣

∣ ∑
P:aP≤pK

TP f (x)
∣

∣ > 2pK}
∣

∣ ≤ C
‖ f ‖2

2
2pK = C

‖ f ‖p
p

2pK .

Next, consider g = ∑P:aP>pK TP f . If x is in the support of g then x is contained in the
time interval of some bitile with density larger than pK, and it follows from (A.2) that
M f (x) > C2pK. Hence

|{x : |g(x)| > 2pK}| ≤ |{x : M f (x) > C2pK}| ≤ C
‖ f ‖1

2pK =
‖ f ‖p

p

2pK .

The strong estimate now follows by interpolation. �
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