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BI-FRAMELET SYSTEMS WITH FEW VANISHING MOMENTS

CHARACTERIZE BESOV SPACES

LASSE BORUP, RÉMI GRIBONVAL‡, AND MORTEN NIELSEN†

Abstract. We study the approximation properties of wavelet bi-frame systems in Lp(R
d).

For wavelet bi-frame systems the approximation spaces associated with best m-term ap-
proximation are completely characterized for a certain range of smoothness parameters
limited by the number of vanishing moments of the functions in the dual frame. The
approximation spaces turn out to be essentially Besov spaces, just as in the classical
orthonormal wavelet case. We also prove that for smooth functions, the canonical ex-
pansion in the wavelet bi-frame system is sparse and one can reach the optimal rate of
approximation by simply thresholding the canonical expansion. For twice oversampled
MRA based wavelet frames, a characterization of the associated approximation space is
proved without any restrictions given by the number of vanishing moments, but now the
canonical expansion is replaced with another linear expansion.

1. Introduction

Given a finite collection of functions Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(R
d) we use the notation

X(Ψ) to denote the corresponding “wavelet” system,

X(Ψ) :=
{

2jd/2ψ`(2j · −k) | j ∈ Z, k ∈ Z
d, ` = 1, 2, . . . , L

}

.

A wavelet bi-frame for L2(R
d) consists of two sequences of wavelets

Ψ = {ψ1, ψ2, . . . , ψL} ⊂ L2(R
d) and Ψ̃ = {ψ̃1, ψ̃2, . . . , ψ̃L} ⊂ L2(R

d)

for which the systems X(Ψ) and X(Ψ̃) are Bessel systems, and satisfy the perfect recon-
struction formula

(1.1) f =
L

∑

`=1

∑

j∈Z,k∈Zd

〈f, ψ̃`j,k〉ψ
`
j,k, ∀f ∈ L2(R

d),

where
ψj,k := 2jd/2ψ(2j · −k), j ∈ Z, k ∈ Z

d.

This definition implies that both X(Ψ) and X(Ψ̃) are frames for L2(R
d) and in fact the

roles of Ψ and Ψ̃ are interchangeable in (1.1). The special case with Ψ = Ψ̃ corresponds
to a so-called tight wavelet frame.
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The most common method to construct wavelet bi-frames relies on so-called extension
principles. The resulting bi-frames are based on a multiresolution analysis, and the gen-
erators are often called bi-framelets. The construction of multiresolution-based wavelet
frames have been studied extensively, see e.g. [6, 8, 22, 23, 24].

In this paper we study the nonlinear approximation properties of the systems X(Ψ) and
X(Ψ̃) when the approximation error is measured in Lp(R

d). That is, we consider the
(nonlinear) set

Σm(X(Ψ)) :=
{

∑

i∈Λ

cigi

∣

∣

∣
ci ∈ C, gi ∈ X(Ψ), cardΛ ≤ m

}

of all possible m-term expansions with elements from the system X(Ψ). The error of
the best m-term approximation to an element f ∈ Lp(R

d) is then σm(f,X(Ψ))p :=
inffm∈Σm(X(Ψ)) ‖f − fm‖Lp(Rd). A first problem (Problem 1) is to characterize the class

Aα of functions f ∈ Lp(R
d) for which σm(f,X(Ψ))p = O(m−α). A related problem

(Problem 2) is to characterize the class Kτ of functions f with expansions in X(Ψ) that
are sparse in the sense that the `τ norm of the expansion coefficients is finite.

In the special case where X(Ψ) is indeed a (bi)orthogonal wavelet basis in L2(Rd), it is
well known that when α = 1/τ − 1/p, the two (families of) classes Aα and Kτ essentially
coincide and are indeed Besov spaces Bdα

τ (Lτ (R
d)). The decay, smoothness, and number

of vanishing moments of the wavelet determine the range of values of τ for which the char-
acterization is true. We refer the reader to, e.g. [25, 2] for a definition and some properties
of the Besov spaces. When X(Ψ) is a redundant frame, since the perfect reconstruction
formula (1.1) only provides one among an infinite number of possible expansions of f in
the system X(Ψ), one must a priori consider separately two families of “sparseness classes”
depending whether sparseness is measured in terms of synthesis or analysis coefficients.

Some results on approximation with tight wavelet frames were obtained by the authors
in [3], but the results in the present paper are more general even for the tight wavelet
case. For oversampled tight wavelet frames based on splines, the approximation spaces
associated with best m-term approximation in Lp(R

d) were completely characterized by
two of the present authors in [15].

We address Problem 1 in Section 5 and 6, where it is proved that σm(f,X(Ψ))p = O(m−α)
if and only if f belongs to (essentially) a Besov space. Put another way, the wavelet bi-
frame system completely characterize Besov spaces through the quantities σm(f,X(Ψ))p.
This characterization holds for smoothness parameters α in a certain range limited by
the number of vanishing moments of the dual frame X(Ψ̃). For a univariate orthonormal
wavelet system, smoothness and decay automatically imply a sufficient number of vanish-
ing moments, see e.g. [16, Theorem 3.4], but this is no longer true for wavelet bi-frame
systems.We use the standard approach to handle the characterization problem, deriving
so-called Bernstein and Jackson estimates for the system X(Ψ).

A nice corollary of the estimates in Section 5 and 6 is that smooth functions (in the Besov
sense) have very sparse canonical expansions (1.1) in the bi-frame system. This addresses
Problem 2 and, again, this is true for functions with smoothness α in a certain range
given by the number of vanishing moments of the analysis system X(Ψ̃).
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The set of approximation spaces we are able to characterize in Section 6 is limited by
the number of vanishing moments of the functions in the dual frame Ψ̃. In fact, we show
in Section 3 that this limit cannot be improved in the general case. In Section 7, we
consider approximation with an oversampled version of the wavelet bi-frame dictionary
X(Ψ) in dimension d = 1. For such oversampled systems we prove that there is a Jackson
inequality independent of the number of vanishing moments of the functions in Ψ. This
leads to a complete characterization of the approximation spaces for oversampled wavelet
bi-frame systems.

The structure of the paper is as follows. In Section 2 we review the most common
method to construct wavelet bi-frames using the so-called extension principles. Section 3
is devoted to proving boundedness for certain matrix operators that will be needed to
obtain Jackson inequalities for nonlinear approximation with wavelet bi-frame systems.

In Section 4 we give some elements of (nonlinear) approximation theory: we define ap-
proximation spaces for a general dictionary and state the corresponding Jackson and
Bernstein inequalities. In Section 5 we prove a general Bernstein inequality for wavelet
bi-frame systems with compact support.

The matrix lemmas from Section 3 are used in Section 6 where we consider Jackson
inequalities for best m-term approximation with bi-frame systems in Lp(R

d), and we
discuss the fairly general case where a complete characterization of the approximation
spaces –associated with best m-term approximation in Lp(R

d) with bi-frame systems– in
terms of (essentially) Besov spaces is possible.

In the final section of the paper, Section 7, we prove a characterization of the approxi-
mation spaces for oversampled wavelet bi-frame systems, again in terms of (essentially)
Besov spaces.

Appendix A contains the analysis of the stability properties of wavelet bi-frame expansions
in Lp(R

d). We give a complete characterization of the Lp(R
d)-norm, 1 < p <∞, in terms

of analysis coefficients associated with the frame, and prove that the bi-frame expansion
gives an atomic decomposition for Lp(R

d). The characterization has the same form as the
classical characterization of the Lp(R

d)-norm by wavelet coefficients, see e.g. [20]. The
main use of the results in this appendix is as a tool to derive a Jackson inequality for
wavelet bi-frame systems.

2. MRA based wavelet bi-frame systems

In this section we will briefly describe how to construct MRA-based wavelet bi-frames
-called bi-framelets- through so-called extension principles. The extension principles to
construct bi-frames were introduced independently in [5] and [8]. We refer the reader to
either [5] or [8] for a more detailed discussion of MRA based bi-frames. Below we use the
notation of [8].

Let τ = (τ0, τ1, . . . , τL) and τ̃ = (τ̃0, τ̃1, . . . , τ̃L) be two sequences of 2πZd-periodic essen-
tially bounded functions. Assume that τ0 and τ̃0 both generate refinable functions

φ̂(2ξ) = τ0(ξ)φ̂(ξ) and ˆ̃φ(2ξ) = τ̃0(ξ)
ˆ̃φ(ξ),
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satisfying

lim
ξ→0

φ̂(ξ) = 1 and lim
ξ→0

ˆ̃φ(ξ) = 1,

with

ess supξ
∑

k∈Zd

|φ̂(ξ − k)|2 <∞ and ess supξ
∑

k∈Zd

| ˆ̃φ(ξ − k)|2 <∞,

where φ̂(ξ) is the Fourier transform of the function φ(x). We associate the wavelets to τ

and τ̃ as follows

ψ̂`(2ξ) = τ`(ξ)φ̂(ξ), ˆ̃ψ`(2ξ) = τ̃`(ξ)
ˆ̃φ(ξ).

The spectrum σ(φ) associated to φ is defined up to a null-set as

σ(φ) := {ω ∈ [−π, π]d : φ̂(ω + 2πk) 6= 0, for some k ∈ Z
d}.

The spectrum σ(φ̃) associated to φ̃ is defined likewise. Assuming that the systems X(Ψ)

and X(Ψ̃) are both Bessel, we define the mixed fundamental function of the parent

vectors τ and τ̃ by

Θ(ξ) :=
∞

∑

j=0

L
∑

`=1

τ`(2
jξ)τ̃`(2jξ)

j−1
∏

m=0

τ0(2
mξ)τ̃0(2mξ).

The following theorem proved in [8] is the main tool to create bi-framelet systems, the
theorem is called the Mixed Oblique Extension Principle.

Theorem 2.1 (Mixed OEP). Let τ and τ̃ be the combined mask of the systems X(Ψ)

and X(Ψ̃), respectively. Assume that the systems X(Ψ) and X(Ψ̃) are Bessel systems.
Suppose there exists a 2π-periodic function Θ satisfying

a) Θ is essentially bounded, continuous at the origin, and Θ(0) = 1.

b) If ξ ∈ σ(φ) ∩ σ(φ̃) and ν ∈ {0, π}d such that ξ + ν ∈ σ(φ) ∩ σ(φ̃), then

Θ(2ξ)τ0(ξ)τ̃(ξ + ν) +
L

∑

`=1

τ`(ξ)τ̃`(ξ + ν) =

{

Θ(ξ), if ν = 0

0, otherwise.

Then X(Ψ), X(Ψ̃) is a bi-framelet system.

Remark 2.2. In many (most) interesting cases the spectra σ(φ) and σ(φ̃) are both equal

to [−π, π]d. For example, if the integer translates of the scaling functions φ and φ̃ are
Riesz sequences, this is the case.

When X(Ψ) = X(Ψ̃), Theorem 2.1 gives the so-called Oblique Extension principle, see
[8]. If, in addition, Θ ≡ 1, Theorem 2.1 reduces to the Unitary Extension Principle, see
[23, 24].

The reader can consult [5] and [8] for many explicit examples on how to construct framelet
systems using the different extension principles.
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3. Some matrix lemmas

This section contains mainly technical matrix lemmas that will be used to derive Jackson
inequalities for wavelet bi-frame systems in Section 6. Given two functions ψ and η with
a prescribed number of vanishing moments and degree of smoothness, we study the range

of τ ∈ (0,∞) for which the infinite matrix [〈ψp
′

j′,k′, η
p
j,k〉]j∈Z,k∈Zd defines a bounded operator

on `τ , where p ∈ (1,∞), 1 = 1/p+ 1/p′ and

(3.1) ψpj,k := 2jd(1/p−1/2)ψj,k.

Notice that ‖ψpj,k‖Lp(Rd) = ‖ψ‖Lp(Rd) for all j and k. We are especially interested in the
case where ψ is a function from a bi-frame system with some (possibly few) vanishing
moments and η is a “nice” wavelet.

In order to prove the main result of the section (Proposition 3.5) we need the following
technical results.

Lemma 3.1. Given p ∈ [1,∞), γ > d and positive constants c1, c2, let

bm = bm(c1, c2) :=

{

2−mdc1 for m ≥ 0,

2mdc2 for m < 0.

Denoting |x| the Euclidean norm of x ∈ Rd, for k, k′ ∈ Zd let

am;k,k′ = am;k,k′(γ) :=

{

2−md/p(1 + |k − 2−mk′|)−γ for m ≥ 0,

2md/p
′

(1 + |2mk − k′|)−γ for m < 0,

where 1/p′ = 1− 1/p. Suppose p (1− c1) < τ < p (1 + c2) and τ ≥ 1. Then
∑

m∈Z

∑

j′∈Z

∑

k′∈Zd

bm

(

∑

k∈Zd

am;k,k′|cj′−m,k|
)τ

≤ C‖{cj,k}‖
τ
`τ .

Proof. Lemma 8.10 in [21] implies for any {dk}k ∈ `τ , 1 ≤ τ <∞,
∑

k′∈Zd

(

∑

k∈Zd

am;k,k′|dk|
)τ

≤ C2md(1−τ/p)
∑

k∈Zd

|dk|
τ , for m ∈ Z.

The use of Lemma 8.10 in [21] is direct for m < 0 and a duality argument is used to get
the estimate for m ≥ 0. This estimate yields

∑

m∈Z

bm
∑

j′∈Z

∑

k′∈Zd

(

∑

k∈Zd

am;k,k′|cj′−m,k|
)τ

≤ C
∑

m∈Z

bm2md(1−τ/p)
∑

j′∈Z

∑

k∈Zd

|cj′−m,k|
τ

= C
(

∑

m∈Z

bm(δ1, δ2)
)

‖{cj,k}‖
τ
`τ ,

where δ1 := c1 − (1 − τ/p) and δ2 := c2 + (1 − τ/p). Now, the lemma follows since
(1− c1) < τ/p < (1 + c2) implies δ1 > 0 and δ2 > 0. �
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With this lemma at hand we can now characterize a range of τ for which the matrix
[bmaj′−j;k,k′]j,j′∈Z,k,k′∈Zd defines a bounded operator on `τ .

Lemma 3.2. Given p ∈ [1,∞), γ > d and positive constants c1, c2, let bm and am;k,k′ be
as in Lemma 3.1. Then

∑

j′∈Z,k′∈Zd

(

∑

j∈Z,k∈Zd

bj′−jaj′−j;k,k′|cj,k|
)τ

≤ C‖{cj,k}‖
τ
`τ

for any τ in the range
Λ(c1) < τ < p(1 + c2),

where

(3.2) Λ(x) = Λ(x, p, γ/d) :=











p(1− x) for x ≤ 1− 1/p,

(x + 1/p)−1 for 1− 1/p < x ≤ γ/d− 1/p,

d/γ for γ/d− 1/p < x.

Proof. For τ ≥ 1, Hölders inequality (for the sum over j), with 1 = 1/τ + 1/τ ′ yields
∑

j∈Z,k∈Zd

bj′−jaj′−j;k,k′|cj,k| =
∑

j∈Z

b
1/τ ′+1/τ
j′−j

(

∑

k∈Zd

aj′−j;k,k′|cj,k|
)

≤
(

∑

j∈Z

bj′−j

)1/τ ′
(

∑

j∈Z

bj′−j

(

∑

k∈Zd

aj′−j;k,k′|cj,k|
)τ

)1/τ

≤ C

(

∑

m∈Z

bm

(

∑

k∈Zd

am;k,k′|cj′−m,k|
)τ

)1/τ

.

The result then follows using Lemma 3.1, provided that max(1, p(1− c1)) < τ < p(1+ c2).
For τ < 1 we have

∑

j′∈Z,k′∈Zd

(

∑

j∈Z,k∈Zd

bj′−jaj′−j;k,k′|cj,k|
)τ

≤
∑

j′∈Z,k′∈Zd

∑

j∈Z,k∈Zd

bτj′−ja
τ
j′−j;k,k′|cj,k|

τ

=
∑

m∈Z

∑

j′∈Z

∑

k′∈Zd

bτm

(

∑

k∈Zd

aτm;k,k′|cj,k|
τ
)

=
∑

m∈Z

∑

j′∈Z

∑

k′∈Zd

b̃m

(

∑

k∈Zd

ãm;k,k′|cj,k|
τ
)

.

In the last line we have used the fact that

bτma
τ
m;k,k′ = bm(c1, c2)

τaτm;k,k′(γ) = bm(c̃1, c̃2)am;k,k′(γ̃) =: b̃mãm;k,k′

with c̃1 = c1τ − 1/p(1− τ), c̃2 = c2τ − 1/p′(1− τ) and γ̃ = γτ . Notice that we have the
same structure as in Lemma 3.1. Thus, using Lemma 3.1 with {dj,k} = {|cj,k|

τ} ∈ `1 we
obtain that the result holds provided that p(1− c̃1) < 1 < p(1 + c̃2) and γ̃ > d, which is
equivalent to

(3.3) τ > max(d/γ, (c1 + 1/p)−1).

Now combining the results for τ < 1 and τ ≥ 1 we see that if c1 + 1/p ≤ 1, the set of
τ < 1 that satisfy (3.3) is empty, and as max(1, p(1− c1)) = p(1− c1) we get the first part
of the result. If c1 + 1/p > 1, we get the rest. �
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Definition 3.3. For N ∈ N and γ > 0 we let DN
γ (Rd) be the set of all functions f defined

on Rd with N derivatives and decay γ, i.e., for which there exists a constant c <∞ such
that

(3.4) |∂αf(x)| ≤ c(1 + |x|)−γ for x ∈ R
d, α ∈ N

d, |α| ≤ N,

where |α| is the usual length of a multi-index. Likewise, we let MN
γ (Rd) denote the set of

all functions f with N vanishing moments and decay, i.e., for which
∫

xαf(x)dx = 0 for α ∈ N
d, |α| < N,

and

(3.5) |f(x)| ≤ C(1 + |x|)−d−N−γ for x ∈ R
d.

We need the following lemma in order to prove Proposition 3.5.

Lemma 3.4. Consider N1, N2 ∈ N and γ1, γ2 > 0. Suppose η ∈ DN1

γ1 (Rd)∩MN2

γ2 (Rd) and

ψ ∈ DN2

γ2
(Rd) ∩MN1

γ1
(Rd). Then, for j ′ ≥ j, we have

(3.6) |(ηj,k ? ψj′,k′) (x)| ≤
C2−(j′−j)(N1+d/2)

(1 + |2jx− 2j−j′k′ − k|)γ1

and for j ′ ≤ j

(3.7) |(ηj,k ? ψj′,k′) (x)| ≤
C2−(j−j′)(N2+d/2)

(1 + |2j′x− k′ − 2j′−jk|)γ2

where ? denotes the convolution product.

The result is well known (see e.g. Lemma 3.3 in [13]) but will be shown here for the sake
of completeness.

Proof. We will simply prove Eq. (3.6), since interchanging the role of ψ and η will then
provide Eq. (3.7). We notice that (ηj,k ? ψj′,k′) (x) = (η ? ψj′−j,0) (2jx−2j−j

′

k′−k). Thus,
it suffices to prove Eq. (3.6) for j = k = k′ = 0 and m := j ′ − j ≥ 0. Since ψ has N1

vanishing moments, a Taylor expansion of η gives

|η ? ψm,0(x)| ≤

(
∫

|y−x|≤|x|/2

+

∫

|y−x|>|x|/2

)

|ψm,0(x− y)||x− y|
N1E(x, y) dy = A +B,

where E(x, y) := sup|β|=N1
supε∈(0,1) |∂

βη(x+ ε(y− x))|/β! (with β! the standard factorial

for a multi-index β ∈ Nd). By (3.4) we have |E(x, y)| ≤ c(1+ |x|)−γ1 when |y−x| ≤ |x|/2.
This estimate together with (3.5) applied on ψ, yield

A ≤ C

∫

|ψm,0(x− y)||x− y|
N1 dy · (1 + |x|)−γ1

≤ C 2md/2
∫

|y−x|≤|x|/2

(1 + 2m|y|)−(N1+d+γ1)|y|N1 dy · (1 + |x|)−γ1

≤ C 2md/2 2−m(N1+d)(1 + |x|)−γ1 .
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Moreover, since E is bounded, we have

B ≤ C

∫

|y−x|>|x|/2

|ψm,0(x− y)||x− y|
N1 dy

≤ C 2md/2
∫

|y−x|>|x|/2

(1 + 2m|x− y|)−(N1+d+γ1)|x− y|N1 dy

≤ C 2md/2 2−m(N1+d)(1 + |x|)−γ1.

This proves (3.6). �

We can now state the main result of this section.

Proposition 3.5. Suppose η ∈ DN1

γ (Rd) ∩MN2

γ (Rd) and ψ ∈ DN2

γ (Rd) ∩MN1

γ (Rd) for
some N1, N2 ∈ N and γ > d. Consider the matrix operator T given by

(3.8) (T(cj,k))j′,k′ :=
∑

j∈Z,k∈Zd

cj,k〈η
p
j,k, ψ

p′

j′,k′〉

for p ∈ [1,∞) and 1 = 1/p + 1/p′. Then T is bounded on `τ (Z × Zd) for any τ in the
range

(3.9) Λ

(

N1

d

)

< τ < p

(

1 +
N2

d

)

,

with Λ(x) = Λ(x, p, d/γ) given by (3.2).

Proof. By Lemma 3.4,

|〈ηj,k, ψj′,k′〉| ≤























C2(j−j′)(d/2+N1)

(1 + |k − 2j−j′k′|)γ
for j ′ ≥ j,

C2(j′−j)(d/2+N2)

(1 + |k′ − 2j′−jk|)γ
for j ′ ≤ j.

Recalling the definition of ψpj,k and ηpj,k in Eq. (3.1), this gives for j ′ ≥ j,

|〈ηpj,k, ψ
p′

j′,k′〉| ≤ C2jd(1/p−1/2)2j
′d(1/p′−1/2) 2(j−j′)(d/2+N1)

(1 + |k − 2j−j′k′|)γ

= C2j(d/p−d/2+d/2)2−j
′(−d/p′+d/2+d/2) 2(j−j′)N1

(1 + |k − 2j−j′k′|)γ

= C
2(j−j′)(d/p+N1)

(1 + |k − 2j−j′k′|)γ
.

A similar argument shows that for j > j ′,

|〈ηpj,k, ψ
p′

j′,k′〉| ≤ C
2(j′−j)(d/p′+N2)

(1 + |k′ − 2j′−jk|)γ
.

We can thus write

(3.10) |〈ηpj,k, ψ
p′

j′,k′〉| ≤ bj′−j(N1/d,N2/d) aj′−j;k,k′(γ)

The result now follows using Lemma 3.2. �
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It is the lower bound in (3.9), Λ(N1/d) < τ , that will be most important to us in the
subsequent sections. The following example shows that this bound cannot be improved
in the general case.

Proposition 3.6. Suppose ψ ∈ L2(R) has fast decay and exactly N1 ∈ N vanishing
moments, i.e., ψ ∈ MN1

γ (R) but ψ 6∈ MN1+1
γ (R) for any γ > 1, and suppose η ∈ C∞(R)

is compactly supported. Consider the matrix operator T given by (3.8) in Proposition 3.5
for some p ∈ [1,∞). Then T is not bounded on `τ (Z× Z) for any τ ≤ (N1 + 1/p)−1.

Proof. It suffices to prove that
∑

j,k |〈η, ψ
p′

j,k〉|
τ = ∞ for τ ≤ 1/(N1 + 1/p). Since ψ has

exactly N1 vanishing moments and fast decay, there exists a function θ with fast decay,
such that ψ = (−1)N1θ(N1) and

∫

R
θ(x) dx 6= 0, see e.g. [19, Theorem 6.2]. Observe that

〈η, ψj,k〉 =

∫

R

η(x)2j/2ψ(2jx− k) dx

= 2−jN1(−1)N1

∫

R

η(x)2j/2θ(N1)(2jx− k) dx

= 2−jN1

∫

R

η(N1)(x)2j/2θ(2jx− k) dx

= 2−j(N1+1/2)
(

η(N1) ? w2−j

)

(2−jk),

where wε(x) := ε−1θ(−x/ε). Since η ∈ C∞(R) has compact support, limε→0

(

η(N1) ?

wε
)

(x) = a · η(N1)(x) uniformly, where a =
∫

R
θ(x) dx, see e.g. [12]. Moreover, if we define

the Riemann sums sε := ε
∑

k∈Z
|η(N1)(εk)|τ , τ ∈ (0,∞), we have limε→0 sε = ‖η(N1)‖ττ .

Combining these two properties, there exists ε0 > 0 such that

ε
∑

k∈Z

|
(

η(N1) ? wε
)

(εk)|τ ≥ c‖η(N1)‖ττ for all ε ∈ (0, ε0).

Thus, since ψp
′

j,k = 2j(1/p
′−1/2)ψj,k, there exists j0 > 0 such that for all j > j0,

∑

k∈Z

|〈η, ψp
′

j,k〉|
τ = 2−j(N1+1−1/p′)τ

∑

k∈Z

|
(

η(N1) ? w2−j

)

(2−jk)|τ

≥ c2−j(N1+1/p)τ2j‖η(N1)‖ττ .

Now, in order to get
∑

j,k |〈η, ψ
p′

j,k〉|
τ <∞ we need to have −(N1 + 1/p)τ + 1 < 0, that is

to say τ > 1/(N1 + 1/p). �

4. Approximation spaces

The remaining sections contain the core of the paper. We begin by introducing some
notions of approximation theory that will be used throughout the rest of the paper. In
Section 5 we prove a Bernstein inequality that provides “one half” of the characterization
of m-term approximation with “nice” wavelet bi-frame systems. In Section 6 we will con-
sider Jackson inequalities that match the Bernstein inequalities in order to get complete
characterizations.
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A dictionary D = {gk}k∈N in Lp(R
d) is a countable collection of quasi-normalized elements

from Lp(R
d). For D we consider the collection of all possible m-term expansions with

elements from D:
Σm(D) :=

{

∑

i∈Λ

cigi

∣

∣

∣
ci ∈ C, cardΛ ≤ m

}

.

The error of the best m-term approximation to an element f ∈ Lp(R
d) is then

σm(f,D)p := inf
fm∈Σm(D)

‖f − fm‖Lp(Rd).

Definition 4.1 (Approximation spaces). The approximation space Aαq (Lp(R
d),D) is de-

fined by

|f |Aα
q (Lp(Rd),D) :=

( ∞
∑

m=1

(

mασm(f,D)p
)q 1

m

)1/q

<∞,

and (quasi)normed by ‖f‖Aα
q (Lp(Rd),D) = ‖f‖p + |f |Aα

q (Lp(Rd),D), for 0 < q, α < ∞. When
q =∞, the `q norm is replaced by the sup-norm.

In what follows, we use the notation V ↪→ W to indicate V is continuously embedded in
W for two (quasi)normed spaces V and W , i.e., V ⊂ W and there is a constant C < ∞
such that ‖ · ‖W ≤ C‖ · ‖V .

It is well known that the main tool in the characterization of Aαq (Lp(R
d),D) comes from

the link between approximation theory and interpolation theory (see e.g. [11, Theorem
9.1, Chapter 7]). Let Yp(R

d) be a (quasi)Banach space continuously embedded in Lp(R
d)

with semi-(quasi)norm | · |Yp
. Given α > 0, the Jackson inequality

σm(f,D)p ≤ Cm−α|f |Yp(Rd), ∀f ∈ Yp(R
d), ∀m ∈ N(4.1)

and the Bernstein inequality

|S|Yp(Rd) ≤ C ′mα‖S‖p, ∀S ∈ Σm(D)(4.2)

(with some constants C and C ′ independent of f , S and m) imply, respectively, the
continuous embedding

(

Lp(R
d), Yp(R

d)
)

β/α,q
↪→ Aβq (Lp(R

d),D)

and the converse embedding
(

Lp(R
d), Yp(R

d)
)

β/α,q
←↩ Aβq (Lp(R

d),D)

for all 0 < β < α and q ∈ (0,∞]. Here (X, Y )θ,q denotes the real interpolation space
between the Banach spaces X and Y . We refer the reader to [1] for the definition of the
real interpolation method.

Thus, to get a complete characterization of the approximation space Aα
q (Lp(R

d), X(Ψ)),
we need to prove associated Jackson and Bernstein inequalities. In Section 5, a Bernstein
inequality for an MRA based bi-frame system is proved. In Section 6, a Jackson inequality
is proved for a general bi-frame system under mild assumptions on the smoothness, decay
and number of vanishing moments of its generators. The proof relies on the matrix lemmas
proved in Section 3 and provides, at the same time, a characterization of Besov spaces in
terms of the `τ norm of the dual (properly re-normalized) frame coefficients that appear
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in Eq. (1.1). The set of approximation spaces we are able to characterize in Section 6

is limited by the number of vanishing moments of the functions in the dual frame Ψ̃.
In Section 7, Jackson and Bernstein inequalities for a twice oversampled MRA based
bi-frame system are considered. For such a system the Jackson inequalities are, in fact,
independent of the number of vanishing moments of the functions in Ψ̃. This leads to a
complete characterization of the approximation spaces for oversampled framelet systems
without any assumptions on the number of vanishing moments.

5. Bernstein estimates for the bi-frame system

Let us begin by proving a Bernstein inequality for bi-framelet systems, since such an
inequality will show us “how big” Aβq (Lp(R

d), X(Ψ)) can possibly be. In the following

we denote by W s(L∞(Rd)) the Sobolev space consisting of functions with s distributional
derivatives in L∞(Rd). Given a function φ ∈ L∞(Rd), let

Γ = {k ∈ Z
d : |{x ∈ (0, 1)d : φ(x− k) 6= 0}| > 0}.

We say that {φ(·−k)}k∈Zd is a locally linearly independent set if the set {φ(·−k)}k∈Γ

is linearly independent. For MRA based bi-frame systems we have the following Bernstein
inequality.

Proposition 5.1. Let X(Ψ), X(Ψ̃) be a bi-framelet system and assume that X(Ψ) is
based on a compactly supported refinable function φ where:

(1) φ ∈ W s(L∞(Rd)) with s ≥ 0;
(2) {φ(·−k)}k∈Zd is a locally linearly independent set (this condition is void if d = 1);
(3) The functions τ`(ξ), 1 ≤ ` ≤ L are trigonometric polynomials (see Section 2).

Then the Bernstein inequality

(5.1) |S|Bdα
τ (Lτ (Rd)) ≤ Cmα‖S‖Lp(Rd), ∀S ∈ Σm(X(Ψ)), ∀m ≥ 1

holds true for each 0 < α < s/d, 0 < p ≤ ∞, with 1/τ := α + 1/p and C = C(α, p).

Proof. In the case d = 1, if the integer shifts of the function φ are not already linearly
independent, we can always find a perfect generator φ̃ for the shift invariant space S0 :=
span{φ(· − k) : k ∈ Z}, i.e., φ̃ is a compactly supported refinable function with linearly
independent shifts that generates S0, see [18, Theorem 1]. In particular, there exists a

finite sequence {ak}k such that φ(x) =
∑

k akφ̃(x − k). In the arguments below we may

use φ̃ in place of φ.

By the result of Jia [17], for each 0 < α < s/d, the Bernstein inequality

|S|Bdα
τ (Lτ (Rd)) ≤ Cmα‖S‖Lp(Rd), ∀S ∈ Σm(X(φ)),

1/τ := α + 1/p, 0 < p ≤ ∞, holds true for the system

X(φ) := {φ(2jx− k)}j∈Z,k∈Zd.

Now, since X(Ψ) is based on φ we have finite masks {b`k}k such that

ψ`(x) =
∑

k∈Zd

b`kφ(2x− k).
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Thus, for j ∈ Z and k ∈ Zd, we have

(5.2) ψ`(2jx− i) =
∑

k∈Zd

b`kφ
(

2j+1x− 2i− k
)

That is to say ψ`j,i ∈ ΣK(X(φ)) for some uniform constant K depending only the length
of the finite masks used above. Take any S ∈ Σm(X(Ψ)), then S ∈ ΣKm(X(φ)). Using
the Bernstein inequality for X(φ) we obtain the wanted inequality,

|S|Bdα
τ (Lτ (Rd)) ≤ C(Km)α‖S‖Lp(Rd)

≤ C̃mα‖S‖Lp(Rd), ∀S ∈ Σm(X(Ψ)).

�

Proposition 5.1 shows that, at best, the approximation space Aβq (Lp(R
d), X(Ψ)) will be

(essentially) a Besov space. Indeed, as mentioned in Section 4, the Bernstein inequality
(5.1) implies the continuous embedding

(5.3) Aβq (Lp(R
d), X(Ψ)) ↪→

(

Lp(R
d), Bdα

τ (Lτ (R
d))

)

β/α,q

for 0 < β < α and q ∈ (0,∞]. It is well known (see, e.g., [9]) that the right hand side of
(5.3) equals the Besov space Bβd

q (Lq(R
d)) when 1/q = β + 1/p.

Thus, in order to be able to completely characterize Aβq (Lp(R
d), X(Ψ)), we need to obtain

a matching Jackson estimate for smooth functions in Bdα
τ (Lτ (R

d)). We address this
problem in the following section.

6. Jackson estimates for the bi-frame system

In this section, we derive a Jackson inequality that matches the Bernstein inequality
obtained in the previous section, and we obtain a complete characterization of m-term
approximation with “nice” wavelet bi-frame systems. The basic tool is the matrix lemmas
given in Section 3. The main result of this section is the following theorem.

Theorem 6.1. Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system and assume that X(Ψ) is
based on a compactly supported refinable function φ where:

(1) φ ∈ W s(L∞(Rd)) with s ≥ 0;
(2) {φ(·−k)}k∈Zd is a locally linearly independent set (this condition is void if d = 1);
(3) The functions τ`(ξ) are trigonometric polynomials (see Section 2);

(4) Ψ̃ ⊂ Cβ(Rd) ∩MN1

γ (Rd) for some β > 0, N1 ∈ N and γ > d.

Let p ∈ (1,∞) and τ := (α + 1/p)−1 where we assume

(6.1) 0 < α < min

{

s

d
,

1

Λ
(

N1

d

) −
1

p

}

,

with Λ(x) = Λ(x, p, d/γ) given by (3.2). Then, for each 0 < β < α, q ∈ (0,∞], we have
the characterization

(6.2) Aβq (Lp(R
d), X(Ψ)) =

(

Lp(R
d), Bdα

τ (Lτ (R
d))

)

β/α,q
.
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We refer the reader to Definition 3.3 for the class MN
γ (Rd). The above theorem is obtained

simply by combining Proposition 5.1 above with Proposition 6.2 below.

Proposition 6.2. Let X(Ψ), X(Ψ̃) be a bi-frame. Suppose Ψ̃ ⊂ MN1

γ (Rd) for some

N1 ∈ N and γ > d and suppose there exist β, ε > 0 such that for all ψ ∈ Ψ ∪ Ψ̃,
ψ ∈ Cβ(Rd) and |ψ(x)| ≤ C(1 + |x|)−d−ε. Then, we have the Jackson inequality

σm(f,X(Ψ))p ≤ Cm−α‖f‖Bdα
τ (Lτ (Rd))

for p ∈ (1,∞), Λ
(

N1

d

)

< τ < p, and α = 1/τ − 1/p, with Λ(x) = Λ(x, p, d/γ) given by
(3.2).

We will provide a detailed proof of Proposition 6.2 later in this section, but let us first
give an outline of the proof. First, using the characterization of Besov spaces in terms
of wavelet coefficients, we know that the wavelet coefficients of any f ∈ Bdα

τ (Lτ (R
d) are

in `τ . Then, using the matrix lemmas from Section 3, we show that the wavelet-frame
coefficients in Eq. (1.1), once properly normalized, are also in `τ for τ admissible. Thanks
to the Lp(R

d)-stability of bi-frame expansions –which we prove in Appendix A– we show
that this implies f ∈ Kτ,τ

(

Lp(R
d), X(Ψ)

)

, where the latter class is a “sparseness class”

of functions in Lp(R
d) with well-defined `τ -summable frame expansions in X(Ψ). We

can then conclude and get the desired Jackson inequality by relying on a more general
“abstract” Jackson inequality with Yp(R

d) = Kτ,τ
(

Lp(R
d), X(Ψ)

)

proved in [14, Theorem
6].

Let us now give the definition of the sparseness classes Kτ,τ
(

Lp(R
d), X(Ψ)

)

. Then, we
will have all the tools in our hands to prove Proposition 6.2.

6.1. Sparseness Classes. It will be proved in the appendix that the bi-frame system
X(Ψ), once normalized in Lp(R

d), has the so-called `p,1-hilbertian property (see Corol-
lary A.4). Applying Proposition 3 in [14], it follows that we can define, for p ∈ (1,∞),
τ < p and q ∈ (0,∞]:

Kτ,q
(

Lp(R
d), X(Ψ)

)

=

{

f ∈ Lp(R
d)

∣

∣

∣

∣

∃{c`j,k}j,k,` ∈ `τ,q, f =
L

∑

`=1

∑

j∈Z,k∈Zd

c`j,kψ
`,p
j,k

}

,

and |f |Kτ,q(Lp(Rd),X(Ψ)) the smallest Lorentz norm ‖{c`j,k}j,k,`‖`τ,q
such that f =

∑

j,k,` c
`
j,kψ

`,p
j,k

(see, e.g., (A.3) for the definitions of the Lorentz norm on `p,q).

6.2. Proof of a Jackson inequality for the bi-frame system. We are now ready to
give the proof of Proposition 6.2.

Proof of Proposition 6.2. Take f ∈ Bdα
τ (Lτ (R

d)). The expansion of f in the Meyer wavelet

system {ηi}2
d−1
i=1 is given by

f =

2d−1
∑

i=1

∑

j∈Z,k∈Zd

cij,kη
i,p
j,k, 1/τ − 1/p = α,
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with coefficients cij,k satisfying ‖{cij,k}‖`τ � ‖f‖Bdα
τ (Lτ (Rd)), see [10]. Now we calculate the

bi-frame coefficients of f :

〈f, ψ̃`,p
′

j′,k′〉 =

2d−1
∑

i=1

(

∑

j∈Z,k∈Zd

cij,k
〈

ηi,pj,k, ψ̃
`,p′

j′,k′

〉

)

.

Since ηi ∈ DN
γ (Rd)∩MN

γ (Rd) for any N and γ, we can apply Proposition 3.5 for each ` and

i to get that ‖{〈f, ψ̃`,p
′

j′,k′〉}‖`τ ≤ C‖f‖Bdα
τ (Lτ (Rd)). According to Corollary A.4, the system

X(Ψ) is `p,1-hilbertian so the canonical frame expansion (1.1), which can be rewritten as

(6.3) f =

L
∑

`=1

∑

j∈Z,k∈Zd

〈f, ψ̃`,p
′

j,k 〉ψ
`,p
j,k,

is unconditionally convergent in Lp(R
d). It follows that f ∈ Kτ,τ (Lp(R

d), X(Ψ)) and
|f |Kτ,τ(Lp(Rd),X(Ψ)) ≤ C‖f‖Bdα

τ (Lτ (Rd)). Eventually, using again the fact that the system
X(Ψ) is `p,1-hilbertian, we obtain by [14, Theorem 6]

σm(f,X(Ψ))p ≤ Cm−α|f |Kτ,τ(Lp(Rd),X(Ψ))

≤ Cm−α‖{〈f, ψ̃`,p
′

j′,k′〉}‖`τ

≤ Cm−α‖f‖Bdα
τ (Lτ (Rd)).(6.4)

�

Remark 6.3. Notice that the sparse representation of f ∈ Bdα
τ (Lτ (R

d)) we use to prove
that f ∈ Kτ,τ (Lp(R

d), X(Ψ)) is exactly the canonical bi-frame expansion (properly nor-
malized in Lp(R

d)). Thus, to realize the rate of approximation given by the Jackson
estimate, we simply threshold the coefficients of the expansion (6.3).

6.3. Characterization of the sparseness classes. One of the interesting byproducts
of the proof of Proposition 6.2 is that, under the hypotheses of Theorem 6.1, we also get
a characterization of Besov spaces and approximation spaces in terms of the sparseness
classes. Indeed, one can deduce from the proof of Proposition 6.2 that

(6.5) Bdα
τ (Lτ (R

d)) =
{

f ∈ Lp(R
d), {〈f, ψ`,p

′

j,k 〉}j,k,` ∈ `
τ
}

= Kτ,τ (Lp(R
d), X(Ψ))

for α = 1/τ−1/p and τ admissible (see the statement of Proposition 6.2). The embedding
of Bdα

τ (Lτ (R
d)) into the middle class in Eq. (6.5) is derived explicitly in the proof of

Proposition 6.2. The embedding of the middle class into Kτ,τ (Lp(R
d), X(Ψ)) is trivial,

and the converse embedding, Kτ,τ(Lp(R
d), X(Ψ)) ↪→ Bdα

τ (Lτ (R
d)) is a consequence of

the Jackson estimate Kτ,τ (Lp(R
d), X(Ψ)) ↪→ Aατ (Lp(R

d), X(Ψ)) –which follows from [14,
Theorem 6]– and the Bernstein “embedding” (5.3) for the system X(Ψ).

7. On the role of Vanishing Moments

In this section, we discuss the role of the number N1 of vanishing moments of the bi-
framelet system with respect to its ability to characterize Besov spaces through sparseness
spaces and/or approximation spaces. We say that a collection of wavelets Ψ has vanishing
moments of order N if each ψ ∈ Ψ has at least N vanishing moments (i.e., ψ ∈MN

γ (Rd)
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for some γ > 0, see Eq. (3.5)) , and at least one of the functions in Ψ has exactly N
vanishing moments, i.e., ψ /∈ MN ′

γ for any N ′ > N . We denote by VM(Ψ) the order of
vanishing moments of Ψ.

At the beginning of this section, we discuss the fact that when VM(Ψ̃) is “small”, the
range of smoothness parameters α for which Besov spaces are characterized by bi-framelet
expansions/approximations (see Theorem 6.1 and Eq. (6.5)) can be rather limited. Fol-
lowing an idea introduced in [15] we propose means to overcome this limitation: since
the system X(Ψ) is redundant, one can choose another representation of any f than its
canonical frame expansion; by replacing the canonical frame representation with a “bet-
ter” one, it is sometimes possible to recover the characterization of Besov spaces even
when VM(Ψ̃) is small. However, the price we have to pay for getting better expansions is
that we can no longer expand the functions in the canonical system X(Ψ), but we have
to consider expansions in the twice oversampled system, which will be defined soon.

7.1. Limitations of the canonical frame expansion. Let us first motivate the need
for the results of this section by discussing the role of the number N1 := VM(Ψ̃) of
vanishing moments of the dual bi-frame, and some limitations of Theorem 6.1 when we
use framelet systems with few vanishing moments.

As stated in Theorem 6.1 the number of vanishing moments puts a limit to the range of
approximation spaces for the bi-framelets that can be characterized even if we assume the
wavelets are smooth and compactly supported. Notice that by Eq.(3.2),

1

Λ(x)
−

1

p
=











(1/x− 1)−1 · 1/p if x ≤ 1− 1/p,

x if 1− 1/p < x ≤ γ/d− 1/p,

γ/d− 1/p if γ/d− 1/p < x.

Thus, if N1/d > 1− 1/p, the set of admissible α in Theorem 6.1 is given by

(7.1) 0 < α < min

{

s

d
,
N1

d
,
γ

d
−

1

p

}

.

If N1/d ≤ 1−1/p, the set is even more restricted. This shows the importance of the three
qualities of a wavelet: smoothness, vanishing moments and decay. A “good” bi-frame
system, X(Ψ), X(Ψ̃), in this context is when the functions Ψ are compactly supported and
smooth, and the functions Ψ̃ have fast decay and a large number of vanishing moments.

On Figure 1 we display, as a function of N1/d (and with s, d, p and γ fixed), the range of
admissible values of α.

VM(ψ) for univariate wavelets. For a univariate orthonormal wavelet ψ ∈ L2(R)∩Cr(R)
with decay |ψ(x)| ≤ C(1+ |x|)−r−ε for some ε > 0, it is well known that ψ has (at least) r
vanishing moments, see e.g. [16, Theorem 2.3.4]. So for orthonormal wavelets, smoothness
and decay enforce vanishing moments, and we get the characterization

(7.2) Aβq (Lp(R
d), X(ψ)) = (Lp(R), Bα

τ (Lτ (R)))β/α,q

for all 1 < p <∞, 0 < q ≤ ∞, 0 < β < α < r, and τ = (α + 1/p)−1.
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N1

d

α

1− 1
p

1− 1
p

0

αmax

Figure 1. A crosshatch of the range of admissible values of α in Theorem
6.1 (given by (6.1)) as a function of N1/d, αmax = min{s/d, γ/d− 1/p}.

VM(Ψ) for univariate tight spline framelets. The relation between smoothness and van-
ishing moments satisfied by orthonormal wavelets, is far from true for wavelet frames. The
most well-known example is the family of spline-based tight wavelet frames built through
the unitary extension principle: the smoothness s, which corresponds to the degree of
the splines, can be arbitrarily high; however at least one of the framelets will have only
one vanishing moment, see [8], hence N1 = VM(Ψ) = VM(Ψ̃) = 1. In this case, since
the wavelets have compact support, we can take γ � N1 and check that the range of
admissible α is exactly 0 < α < N1 = 1 while the smoothness s of Ψ might be arbitrarily
large.

Wavelet bi-frames with few vanishing moments in Lp(R
d). Suppose the decay γ and

smoothness s are large compared to the number N1 of vanishing moments of X(Ψ̃):

s > N1

γ > d+N1

and that the latter is not too small, i.e., N1 ≥ d. Then, again, the range of admissible α
is exactly 0 < α < N1/d.

At first sight, it seems that the possibly limited number of vanishing moments of bi-
framelet systems is an obstacle that prevents them from having good approximation
properties, in the sense that the characterization (7.2) is for a limited range of α. The
rest of this section is devoted to showing that this restriction can be avoided by using an
oversampled version of the framelet system.

7.2. Beyond the canonical frame decomposition. We have mentioned that to get
characterizations of Besov spaces with systems with few vanishing moments, we will need
to oversample them. Given a wavelet bi-frame X(Ψ), X(Ψ̃) and R ≥ 1 we let XR(Ψ)
denote the oversampled system,

XR(Ψ) :=
{

2jd/2ψ`(2j · −k/R)|j ∈ Z, k ∈ Z
d, ` = 1, 2, . . . , L

}

.

Just as the non-oversampled system, the oversampled one XR(Ψ) is a frame in L2(R)
and is `p,1-hilbertian in Lp(R

d) after proper normalization. See, e.g., [15, Theorem 4.11]
for a proof in the case R = 2, which directly extends to arbitrary oversampling factors
R ∈ N. Denoting ψ`I(·) = 2jd/2ψ`(2j · −k/R), I ∈ DR, where DR is the collection of
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all “oversampled dyadic intervals” I = 2−j([0, 1]d + k/R), we can thus define sparseness
classes for p ∈ (1,∞), τ < p and q ∈ (0,∞] as follows

Kτ,q
(

Lp(R
d), XR(Ψ)

)

:=

{

f ∈ Lp(R
d)

∣

∣

∣

∣

∃{c`I}I,` ∈ `τ,q, f =
∑

I∈DR,`∈E

c`Iψ
`,p
I

}

,

and |f |Kτ,q(Lp(Rd),X(Ψ)) the smallest Lorentz norm ‖{c`I}I,`‖`τ,q
such that f =

∑

I,` c
`
Iψ

`,p
I .

It turns out that, when X(Ψ), X(Ψ̃) is a “nice” wavelet bi-frame, the oversampled sys-
tem XR(Ψ), again, gives rise to an approximation space no larger than a Besov space.
Indeed, using refinability in (5.2) we can prove a corresponding Bernstein inequality for
the oversampled system XR(Ψ), by exactly the same arguments as given in the proof of
Proposition 5.1 (see [4] for details on how to use refinability to deal with the oversampling).

Proposition 7.1. Let X(Ψ), X(Ψ̃) be a bi-framelet system with X(Ψ) based on a com-
pactly supported refinable function φ where:

(1) φ ∈ W s(L∞(Rd)) with s ≥ 0;
(2) {φ(·−k)}k∈Zd is a locally linearly independent set (this condition is void if d = 1);
(3) The functions τ`(ξ), 1 ≤ ` ≤ L are trigonometric polynomials (see Section 2).

Then, the Bernstein inequality

|S|Bdα
τ (Lτ (Rd)) ≤ Cmα‖S‖Lp(Rd), ∀S ∈ Σm(XR(Ψ)), ∀m ≥ 1

holds true for each 0 < α < s/d, 0 < p ≤ ∞, with 1/τ := α + 1/p and C = C(α, p).

Again, in order to get a complete characterization of Besov spaces in terms of the approx-
imation spaces based on XR(Ψ), we need to prove a matching Jackson estimate. Just as
in Section 6, we will use the fact that we can find a “nice” orthogonal wavelet system
with a sparse expansion in XR(Ψ). However, the sparse expansion that we will consider is
no longer expressed in terms of canonical frame coefficients of the orthogonal wavelet(s),
but rather on adequately chosen sparse synthesis coefficients, as can be seen in the next
lemma.

Lemma 7.2. Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system. Let ψ ∈ L2(R
d) for which

there exists a sequence {d`k}`∈E, k∈Zd and R ∈ N such that

ψ(x) =

L
∑

`=1

∑

k∈Zd

d`kψ
`(x− k/R).

Then, for 1 < p <∞, and τ < p such that {d`k} ∈ `1 ∩ `τ , we have

Kτ,τ (Lp(R
d), X(ψ)) ↪→ Kτ,τ (Lp(R

d), XR(Ψ)).
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Proof. Let f ∈ Kτ,τ (Lp(R), X(ψ)). Then f =
∑

j,k cj,kψ
p
j,k, for some sequence {cj,k} ∈ `τ .

We rewrite this as

f =
∑

j∈Z,k∈Zd

cj,k2
j/pψ(2j · −k)

=
∑

j∈Z,k∈Zd

L
∑

`=1

∑

k′∈Zd

cj,kd
`
k′2

j/pψ`(2j · −k − k′/R)

=
∑

j∈Z,k∈Zd

L
∑

`=1

∑

n∈Zd

cj,kd
`
n−Rk2

j/pψ`(2j · −n/R)

=
∑

j∈Z,n∈Zd

L
∑

`=1

(

∑

k

cj,kd
`
n−Rk

)

2j/pψ`(2j · −n/R).

It is easy to check using brute force for 0 < τ ≤ 1, and Young’s inequality for 1 < τ < p,
that

∑

j∈Z,n∈Zd

L
∑

`=1

∣

∣

∣

∣

∑

k

cj,kd
`
n−Rk

∣

∣

∣

∣

τ

≤ L ·max
(

‖{d`k}‖`1, ‖{d
`
k}‖

τ
`τ

)

·
∑

j∈Z,k∈Zd

|cj,k|
τ ,

and we conclude that indeed f ∈ Kτ,τ(Lp(R), XR(Ψ)). �

The following corollary gives more details on how Lemma 7.2 will be used to prove the
desired Jackson inequality.

Corollary 7.3. Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system, X({ψi}2
d−1
i=1 ) a bi-orthogonal

wavelet basis and r > 0 such that

Bdα
τ (Lτ (R

d)) = Kτ,τ (Lp(R
d), X({ψi}2

d−1
i=1 )), 0 < α = 1/τ − 1/p < r.

Assume that for 1 ≤ i ≤ 2d − 1 there exists sequences {d`,ik }`∈E,k∈Zd ∈ `1/(r+1), such that

ψi(x) =
L

∑

`=1

∑

k∈Zd

d`,ik ψ
`(x− k/R).

Then, for 1 < p <∞, and 0 < α = 1/τ − 1/p < r, we have the Jackson inequality

σm(f,XR(Ψ))p ≤ Cm−α‖f‖Bdα
τ (Lτ (Rd)).

Proof. First, notice that we have (see [14]), for 0 < α = 1/τ − 1/p < r,

Bdα
τ (Lτ (R

d)) = Kτ,τ (Lp(R
d), X({ψi}2

d−1
i=1 )) =

2d−1
∑

i=1

Kτ,τ (Lp(R
d), X(ψi)).

Then, since τ = (α+1/p)−1 > (r+1/p)−1 ≥ (r+1)−1 we have `1/(r+1) ⊂ `1. Hence, using

the fact that {d`,ik } ∈ `1/(r+1) ∩ `1 ⊂ `τ ∩ `1 we can apply Lemma 7.2 to get, for each i,

Kτ,τ (Lp(R
d), X(ψi)) ↪→ Kτ,τ (Lp(R

d), XR(Ψ)).

The conclusion follows just as in the proof of Proposition 6.2. �
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We can now combine Corollary 7.3 and Proposition 7.1 to get the following complete
characterization of the approximation spaces Aβq (Lp(R

d), X2(Ψ)). Notice the extended
range for α as compared to Theorem 6.1.

Corollary 7.4. Suppose X(Ψ), X(Ψ̃) satisfy all the assumptions of Proposition 7.1 and
Corollary 7.3 with parameters s and r, respectively. Then, for 0 < α < min{s, r}, 0 <
β < α, q ∈ (0,∞], we have the characterization

(7.3) Aβq (Lp(R
d), X2(Ψ)) =

(

Lp(R
d), Bdα

τ (Lτ (R
d))

)

β/α,q
.

Now the task is to show that the assumption of Lemma 7.2 is satisfied for interesting
framelet systems. This will be done in the following subsection where we restrict to the
univariate case d = 1.

7.3. Constructing wavelets out of framelets in the univariate case. In our stra-
tegy to get a Jackson inequality for the (oversampled) framelet system XR(Ψ), the crucial
issue is to identify some “nice” wavelet(s) that can be expanded sparsely in terms of
oversampled bi-framelets. In [4] such a construction is proposed in the multivariate case
for wavelet type systems that need not be frames, however there is no control on how large
the oversampling factor R must be, and the proof is not constructive. In the univariate
case for spline-based tight wavelet frames, it was shown in [15] how to get a finite expansion
of a nice semi-orthogonal wavelet in the twice oversampled (R = 2) framelet system. Here,
still in the univariate case, we propose a construction which is valid for more general
wavelet bi-frames and only requires R = 2. It is an interesting but open question whether
similar constructions are possible in the multivariate case.

The constructed wavelet will be the “standard” orthogonal wavelet associated with the
MRA underlying the bi-framelet system.

Definition 7.5. Let φ be a univariate scaling function generated by the refinement filter
τ0(ξ), and let P (ξ) :=

∑

k∈Z
|φ̂(ξ−k)|2. The “standard” orthonormal wavelet ψ associated

with the scaling function φ is defined by

(7.4) ψ̂(2ξ) = e−iξτ0(ξ + π)
φ̂(ξ)

√

P (ξ)
.

Let us recall that the number of vanishing moments of the standard orthonormal wavelet
associated to φ is given by

VM(ψ) = min{N, |τ0(ξ + π)| = O(|ξ|N) around ξ = 0},

see, e.g., [20]. Moreover, as discussed previously, if φ is r-regular (see [20]) then so is ψ
and we have VM(ψ) ≥ r.

Proposition 7.6. Let X(Ψ), X(Ψ̃) be an MRA-based wavelet bi-frame system with com-
bined mask τ = (τ0, τ1, . . . , τL) and τ̃ , and let φ and ψ be respectively the scaling function
generated by τ0 and the associated standard orthonormal wavelet. Suppose that

• each filter τ`, 0 ≤ ` ≤ L, is a trigonometric polynomial;
•

∑L
`=1 |τ`(ξ)|

2 > 0 for ξ 6= 0;
• φ is an r-regular scaling function (not necessarily orthonormal);
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• VM(Ψ) ≤ VM(ψ).

Then ψ can be expressed as a linear combination

ψ(·) :=

L
∑

`=1

∑

k∈Z

d`kψ
`(· − k/2), Ψ = {ψ1, ψ2, . . . , ψL},

where {d`k} ∈
⋂

τ>0 `τ .

Remark 7.7. It is clear that such a construction will fail if we have VM(ψ) < VM(Ψ). This
follows from the fact that a sparse expansion of functions with at least VM(Ψ) vanishing
moments will also have (at least) VM(Ψ) vanishing moments, while the orthonormal
wavelet will have exactly VM(ψ) < VM(Ψ) vanishing moments. However this is not a
problem since, in such a case, X(Ψ) has enough vanishing moments to get a Jackson
inequality from the theory developed in Section 6.

Proof. We want to expand the standard orthonormal wavelet ψ in the twice oversampled
framelet system. In the frequency domain the problem is to find “nice” 2π-periodic
functions Q`(ξ) such that

ψ̂(ξ) =

L
∑

`=1

Q`(ξ/2)τ`(ξ/2)φ̂(ξ/2).

We will look for Q` of the form Q`(ξ) = Q(ξ)τ`(ξ). Using Eq. (7.4), we see that the
problem will be solved if Q` has fast decaying Fourier coefficients and Q satisfies

Q(ξ)
L

∑

`=1

|τ`(ξ)|
2 =

e−iξτ0(ξ + π)
√

P (ξ)
.

Hence, we define for ξ 6= 0

Q`(ξ) :=
τ`(ξ) · τ0(ξ + π)
∑L

`=1 |τ`(ξ)|
2
·

e−iξ
√

P (ξ)
.(7.5)

Let us check that Q` can be readily extended at ξ = 0 and that the resulting extension has
no pole on the unit circle. First, we have1, for ξ close to zero,

∑L
`=1 |τ`(ξ)|

2 � |ξ|2·VM(Ψ).
Then, we use the fact that, for ξ close to zero,

|τ`(ξ)τ0(ξ + π)| = O(|ξ|VM(Ψ)+VM(ψ)) = O(|ξ|2·VM(Ψ)).

We conclude by proving that the Fourier coefficients of Q` decay faster than any polyno-
mial. Notice that P (ξ)−1/2 is C∞ (see, e.g., [20]) so its Fourier coefficients decay faster
than any polynomial. The factor

τ`(ξ) · τ0(ξ + π)
∑L

`=1 |τ`(ξ)|
2

in (7.5) is a quotient of two trigonometric polynomials with no pole on the unit circle, so its
Fourier coefficients decay exponentially which can be seen from its Laurent expansion. �

By combining Corollary 7.3 and Proposition 7.6 we get

1By F � G we mean that there exist two constants 0 < c ≤ C <∞ such that cF ≤ G ≤ CF .
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Corollary 7.8. Let X(Ψ), X(Ψ̃) be an MRA-based wavelet bi-frame system with combined
mask τ = (τ0, τ1, . . . , τL) and τ̃ , and let φ and ψ be respectively the scaling function
generated by τ0 and the associated standard orthonormal wavelet. Suppose that

• each filter τ`, 0 ≤ ` ≤ L, is a trigonometric polynomial;
•

∑L
`=1 |τ`(ξ)|

2 > 0 for ξ 6= 0;
• φ is an r-regular scaling function (not necessarily orthonormal);
• VM(Ψ) ≤ VM(ψ).

Then, for 1 < p <∞, 0 < τ < p,

Kτ,τ (Lp(R), X(ψ)) ↪→ Kτ,τ (Lp(R), X2(Ψ)).

In particular, for 1 < p <∞ and 0 < α = 1/τ − 1/p < r, we have the Jackson inequality

σm(f,X2(Ψ))p ≤ Cm−α‖f‖Bα
τ (Lτ (R)).

Proof. Using Proposition 7.6, we get the sparse expansion coefficients which make it possi-
ble to apply Lemma 7.2 to obtain Kτ,τ (Lp(R), X(ψ)) ↪→ Kτ,τ (Lp(R), X2(Ψ)). The second
claim follows from Corollary 7.3 using the fact that Kτ,τ(Lp(R), X(ψ)) = Bα

τ (Lτ (R)),
α ∈ (0, r), α = 1/τ − 1/p, see e.g. [10]. �

Remark 7.9. In particular, Corollary 7.8 applies to any tight framelet system Ψ with
VM(Ψ) = 1. For example, it applies to tight framelet systems constructed using the UEP
based on the B-splines [8, 15].

8. Conclusion

In this paper we have studied approximation with wavelet bi-frame systems in Lp(R
d),

1 < p < ∞, and we have characterized the associated approximation spaces Aα and
shown that they are essentially Besov spaces Bdα

τ (Lτ (R
d)), with α = 1/τ − 1/p. The

characterization holds true for the smoothness parameter α in a certain range depending
on the number of vanishing moments for the bi-frame system. It is also shown that for a
function f in a Besov space with smoothness parameter in this range, the corresponding
canonical Lp(R

d)-normalized bi-frame expansion of f is sparse in the sense that the frame
coefficients are contained in `τ . Moreover, the rate of best m-term approximation to f is
obtained simply by thresholding the canonical expansion.

For twice oversampled univariate wavelet bi-frames, we give a complete characterization of
the approximation spaces in terms of the Besov spaces Bα

τ (Lτ (R)). The characterization
holds true even for systems with few vanishing moments, and there is no restriction on the
smoothness parameter α except the natural requirement that α is less than the smoothness
of the generators of the wavelet frame. To obtain a characterization for wavelet bi-frames
with few vanishing moments, we prove that there exists a “nice” orthonormal wavelet with
a highly sparse expansion in the framelet system. This fact is then used to show that
smooth functions in Bα

τ (Lτ (R)) have sparse expansions in the twice oversampled wavelet
bi-frame system with expansion coefficients in `τ .

There is one fundamental difference between the sparse expansions obtained for systems
with many vanishing moments and for the twice oversampled wavelet bi-frames. When
we have enough vanishing moments, we can use the canonical frame expansion and it
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will be sparse for smooth functions. For wavelet bi-frames with few vanishing moments
we no longer use the canonical expansion, but show that a smooth function has another
sparse expansion in the twice oversampled system, obtained through an expansion of the
function in an orthonormal wavelet.

Appendix A. Stability of wavelet bi-frame systems in Lp(R
d)

In this appendix we study stability of wavelet bi-frame systems in Lp(R
d). Theorem A.1

below will show that we can characterize the Lp(R
d)-norms by the analysis coefficients

associated with the bi-frame. Theorem A.3 will show that there is a stable way to re-
construct Lp(R

d)-functions using the bi-frame expansion. The main application of the
stability result in this paper is to prove the Jackson inequality for the bi-frame system
(Proposition 6.2). The technique to obtain the various characterizations in this appendix
is similar to the technique introduced by the authors in [3].

Below we let D denote the set of dyadic intervals I = 2−j([0, 1]d + k), j ∈ Z, k ∈ Zd,
ψI := ψj,k, and χI denotes the indicator function for I.

Theorem A.1. Let X(Ψ), X(Ψ̃) be a wavelet bi-frame system. Suppose for all ψ ∈ Ψ∪ Ψ̃
there are β > 0 and ε > 0 such that ψ ∈ Cβ(Rd), and

|ψ(x)| ≤ C(1 + |x|)−d−ε.

Then
(A.1)

‖f‖p �

∥

∥

∥

∥

(

∑

I∈D,`∈E

|〈f, ψ`I〉|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

�

∥

∥

∥

∥

(

∑

I∈D,`∈E

|〈f, ψ̃`I〉|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

,

for 1 < p <∞, where E := {1, 2, . . . , L}.

Proof. Let {ηs}2
d−1
s=1 be the orthonormal Meyer wavelet(s) defined on Rd. For each ` ∈ E

we consider the integral kernel

K`(x, y) :=
∑

I∈D

η1
I (x)ψ

`
I(y).

Notice that the corresponding operator

T ` : f 7→

∫

Rd

K`(x, y)f(y) dy

is bounded on L2(R
d) due to the fact that {ψ`I}I∈D is a subset of a frame. Also, standard

estimates show that (see e.g. [7])

|K`(x, y)| ≤ C|x− y|−d,

|K`(x′, y)−K`(x, y)| ≤ C|x− x′|α|x− y|−d−α,

and

|K`(x, y′)−K`(x, y)| ≤ C|y − y′|α|x− y|−d−α,

because of the smoothness and decay of ψ`. Thus T ` is a Calderón-Zygmund operator
and therefore bounded on Lp(R

d), 1 < p <∞. However T `f has a nice expansion in the
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orthonormal Meyer wavelet, so using the Lp(R
d)-characterization of such expansions we

get
∥

∥

∥

∥

(

∑

I∈D

|〈f, ψ`I〉|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

� ‖T `f‖p ≤ C‖f‖p.

Using this estimate for ` = 1, 2, . . . , L, and the fact that `1 ↪→ `2 we get

∥

∥

∥

∥

(

∑

I∈D,`∈E

|〈f, ψ`I〉|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

=

∥

∥

∥

∥

(

∑

`∈E

({

∑

I∈D

|〈f, ψ`I〉|
2|I|−1χI(x)

}1/2)2)1/2∥
∥

∥

∥

p

≤

∥

∥

∥

∥

∑

`∈E

{

∑

I∈D

|〈f, ψ`I〉|
2|I|−1χI(x)

}1/2∥
∥

∥

∥

p

≤ L · C‖f‖p.

Using a similar argument applied to the frame X(Ψ̃), we may conclude that
∥

∥

∥

∥

(

∑

I∈D,`∈E

|〈f, ψ̃`I〉|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

≤ L · C‖f‖p.

Now we turn to the converse estimate. Notice that since we have a bi-frame we have the
identity

〈f, g〉 =
∑

I∈D,`∈E

〈f, ψ̃`I〉〈g, ψ
`
I〉, f, g ∈ L2(R

d).

Write

Wf(x) = {|I|−1/2〈f, ψ`I〉χI(x)}I,`, W̃ g(x) = {|I|−1/2〈g, ψ̃`I〉χI(x)}I,`,

and notice that for f ∈ L2(R
d)∩Lp(R

d) and g ∈ L2(R
d)∩Lp′(R

d), with p−1 + (p′)−1 = 1,

|〈f, g〉| =

∣

∣

∣

∣

∫

〈Wf(x), W̃ g(x)〉`2 dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

‖Wf(x)‖`2‖W̃ g(x)‖`2 dx

∣

∣

∣

∣

≤
∥

∥‖Wf(x)‖`2
∥

∥

p

∥

∥‖W̃ g(x)‖`2
∥

∥

p′

≤ C

{
∥

∥‖Wf(x)‖`2
∥

∥

p
‖g‖p′,

∥

∥‖W̃g(x)‖`2
∥

∥

p′
‖f‖p.

(A.2)

Taking the supremum of the estimate (A.2) for {g ∈ L2(R
d) ∩ Lp′(R

d) : ‖g‖p′ ≤ 1} we
obtain

‖f‖p ≤ C̃
∥

∥‖Wf(x)‖`2
∥

∥

p
.
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This proves the result for f ∈ L2(R
d) ∩ Lp(R

d). To complete the proof for f ∈ Lp(R
d)

we just notice that from the first part of the proof it follows that f 7→ ‖Wf(x)‖`2 is
continuous on Lp(R

d).

Using (A.2) once more, taking the supremum for {f ∈ L2(R
d) ∩ Lp(R

d) : ‖f‖p ≤ 1} we

obtain ‖g‖p′ ≤ C̃
∥

∥‖W̃ g(x)‖`2
∥

∥

p′
. �

¿From Theorem A.1 we see that the following sequence space plays an important role.

Definition A.2. Let dp denote the set of sequences {c`I}I∈D,`∈E for which

|||{c`I}|||p :=

∥

∥

∥

∥

(

∑

I∈D,`∈E

|c`I|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

<∞.

In fact, let us show that there is a stable reconstruction operator defined on dp for bi-frame
systems.

Theorem A.3. Let X(Ψ) and X(Ψ̃) be a bi-frame for L2(R
d). Suppose for all ψ ∈ Ψ∪ Ψ̃

there exist β > 0 and ε > 0 such that ψ ∈ Cβ(Rd) and |ψ(x)| ≤ C(1 + |x|)−d−ε. Then the
maps T : dp 7→ Lp(R

d) and T̃ : dp 7→ Lp(R
d) defined by

T{c`I} =
∑

I∈D,`∈E

c`Iψ
`
I , T̃{c`I} =

∑

I∈D,`∈E

c`Iψ̃
`
I

are both bounded linear maps.

Proof. We consider the operator U ` with kernel

K̃`(x, y) :=
∑

I∈D

ψ`I(x)η
1
I (y).

By exactly the same arguments as given in the first part of the proof of Theorem A.1,
it can be shown that U ` is bounded on Lp(R

d). Take {c`I}I∈D,`∈E ∈ dp and consider
f ` :=

∑

I∈D c
`
Iη

1
I . This is a well-defined function in Lp(R

d) with

‖f `‖p �

∥

∥

∥

∥

(

∑

I∈D

|c`I|
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

,

where we used the characterization of Lp(R
d) using wavelets. Thus,

∥

∥

∑

I∈D,`∈E

c`Iψ
`
I

∥

∥

p
≤

∑

`∈E

∥

∥

∑

I∈D

c`Iψ
`
I

∥

∥

p
=

∑

`∈E

∥

∥U `f `
∥

∥

p

≤ C
∑

`∈E

∥

∥f `
∥

∥

p
≤ C̃

∑

`∈E

∥

∥

∥

∥

(

∑

I∈D

|c`I |
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

≤ LC̃

∥

∥

∥

∥

(

∑

I∈D,`∈E

|c`I |
2|I|−1χI(x)

)1/2∥
∥

∥

∥

p

,

and it follows that T : dp 7→ Lp(R
d) is bounded. The claim for T̃ is proved using similar

arguments with appropriately modified operator kernels. �
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Recall the Lorentz space `p,q(Λ), 1 ≤ p < ∞, 0 < q ≤ ∞, for some countable set Λ, as
the set of sequences {am}m∈Λ satisfying ‖{am}‖`p,q

<∞, where

(A.3) ‖{am}‖`p,q
=







(

∑∞
j=0

(

2j/τa∗2j

)q
)1/q

, 0 < q <∞,

supj≥0 2j/τa∗2j , q =∞,

with {a∗j}
∞
j=0 a decreasing rearrangement of {am}m∈Λ.

It can be shown that there exist constants c, C > 0 such that

(A.4) c‖{c`I}‖`p,∞(D×E) ≤

∥

∥

∥

∥

(

∑

I∈D,`∈E

|c`I |
2|I|−2/pχI(x)

)1/2∥
∥

∥

∥

p

≤ C‖{c`I}‖`p,1(D×E),

for any {c`I} ∈ `p,1(D × E), see e.g. [3].

¿From the above results we easily deduce the following important corollary. As before,
we denote by ψ`,pI the function ψ`I normalized in Lp(R

d), i.e. ‖ψ`,pI ‖p � |I|
1/2−1/p‖ψ`I‖p.

Corollary A.4. Let X(Ψ) and X(Ψ̃) be a wavelet bi-frame for L2(R
d). Suppose for all

ψ ∈ Ψ∪ Ψ̃ there exist β > 0 and ε > 0 such that ψ ∈ Cβ(Rd) and |ψ(x)| ≤ C(1+ |x|)−d−ε.
Then X(Ψ) and X(Ψ̃) are `p,1-hilbertian systems in Lp(R

d), 1 < p <∞, that is to say
we have

∥

∥

∥

∑

I∈D,`∈E

c`Iψ
`,p
I

∥

∥

∥

p
≤ Cp‖{c

`
I}‖`p,1(D×E),

∥

∥

∥

∑

I∈D,`∈E

c`Iψ̃
`,p
I

∥

∥

∥

p
≤ Cp‖{c

`
I}‖`p,1(D×E),

for any sequence {c`I} ∈ `p,1(D × E).

Proof. Follows from Theorem A.3 and equation (A.4). �

This property is used to prove a Jackson inequality in Section 6.
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