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BANACH FRAMES FOR MULTIVARIATE α-MODULATION SPACES

LASSE BORUP AND MORTEN NIELSEN

Abstract. The α-modulation spaces Ms,α
p,q (Rd), α ∈ [0, 1], form a family of spaces that

include the Besov and modulation spaces as special cases. This paper is concerned with
construction of Banach frames for α-modulation spaces in the multivariate setting. The
frames constructed are unions of independent Riesz sequences based on tensor products
of univariate brushlet functions, which simplifies the analysis of the full frame. We
show that the multivariate α-modulation spaces can be completely characterized by the
Banach frames constructed, and as an application we consider Jackson-type estimates
for m-term nonlinear approximation.

1. Introduction

The α-modulation spaces M s,α
p,q (Rd), α ∈ [0, 1], are a parameterized family of spaces

that include the Besov and modulation spaces as special cases corresponding to α = 1 and
α = 0, respectively.

Besov spaces, see e.g. [22] for the definition, are based on coverings of frequency space
R

d by balls B(an, rn) satisfying |an| ≍ |B(an, rn)|1/d, that is to say there exist constants

c, C ∈ (0,∞) such that c|an| ≤ |B(an, rn)|1/d ≤ C|an| for all the balls. On the other hand,
the modulation spaces introduced by Feichtinger in [6] are based on uniform coverings of
the frequency space, i.e., coverings satisfying |an|0 ≍ |B(an, rn)|1/d, and it was pointed
out by Feichtinger and Gröbner [8, 7] that Besov and modulation spaces are special cases
of an abstract construction, the so-called decomposition type Banach spaces D(Q,B, Y ).
Gröbner [12] used the methods in [8] to define the α-modulation spaces as a family of
intermediate spaces. Gröbners idea was to define spaces corresponding to coverings based
on the rule |an|α ≍ |B(an, rn)|1/d, 0 ≤ α ≤ 1. The precise definition of an α-modulation
space will be given in Section 3. The coverings giving rise to α-modulation spaces have
also been considered (independently) by Päivärinta and Somersalo in [20]. Päivärinta and
Somersalo used the partitions to extend the Calderón-Vaillancourt boundedness result for
pseudodifferential operators to the local Hardy spaces hp.

The family of α-modulation spaces arise naturally in several applications. In [1], pseu-
dodifferential operators on α-modulation spaces are studied in the univariate case. It was
proved that certain pseudodifferential operators with “excotic” symbols of Hörmander
type extends naturally to bounded operators on α-modulation spaces. The proof are
based on the brushlet characterization of the α-modulation spaces given in [3]. The map-
ping properties of pseudodifferential operators on α-modulation spaces are also studied by
Holschneider and Nazaret in [19]. These results can be seen as extensions of earlier clas-
sical results by Córdoba and Fefferman [5]. Pseudodifferential operators on modulation
spaces have also been studied, see e.g. [21, 14].

One successful approach to study function spaces and operators on such spaces is to
construct an unconditional basis for the space and use the corresponding norm character-
ization of the elements in the space to study various operators on the space. One striking
example is the study of Calderón-Zygmund operators in smooth wavelet bases, see e.g.
[17]. Another family of orthonormal bases for L2(R) is brushlet bases. Brushlets are the
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image of a local trigonometric basis under the Fourier transform, and such systems were
introduced by Laeng [15]. Later Coifman and Meyer [16] used brushlets as a tool for image
compression. The present authors proved in [2] that “nice” brushlets form unconditional
bases for Lp(R

d), 1 < p <∞. In [3], the freedom to choose the frequency localization of a
brushlet system was used to construct (orthonormal) unconditional brushlet bases for the
univariate α-modulation spaces. The structure of the real line was used extensively in [3],
and we cannot see any straightforward way of extending the bases to the multivariate set-
ting. Fornasier has studied Gabor-type Banach frames for univariate α-modulation spaces
in [9]. However, as Fornasier also states in [9], it also seems to be technically difficult to
extend the construction to the multivariate case. The purpose of the present paper is to
introduce an easy construction of Banach frames based on brushlet systems for multivari-
ate α-modulation spaces. The frames constructed are not orthonormal bases, but each
system is “locally” orthonormal (in a certain sense that will be explained in Section 4).
One of the main tools we use to construct the brushlet frames is the theory of localized
frames introduced by Gröchenig [13]. Localized frames are frames with a Gram matrix
having fast decay (usually polynomial or exponential decay) of the entries away from the
diagonal. In particular, we use an important recent result by Fornasier and Gröchenig [10]
that a so-called self-localized frame has a self-localized dual frame. As an application of
the frames, we consider Jackson-type estimates for m-term nonlinear approximation.

The structure of the paper is as follows. In Section 2 we recall the definition of a
self-localized frame and we describe some recent results on such frames by Fornasier and
Gröchenig [10]. The α-modulation spaces are defined in Section 3, and Section 4 contains
the construction of the multivariate brushlet systems that will form Banach frames for
the α-modulation spaces. In Section 5 we summarize the results and prove that suitable
multivariate brushlet systems form Banach frames for the α-modulation spaces. In Section
6 we consider an application of the Banach frames to approximation theory and derive
Jackson estimates for best m-term approximation. Finally, there is an appendix where
we prove some technical results related to the partitions of unity used to define the α-
modulation spaces.

2. Self-localized frames

In this section we recall the definition of a frame for L2(R
d). We also discuss some recent

results by Fornasier and Gröchenig [10] on so-called self-localized frames for L2(R
d). The

results will be used in Section 5 to construct brushlet-type systems that form Banach
frames for the α-modulation spaces M s,α

p,q (Rd).
A countable subset G = {gn : n ∈ Z

d} ⊂ L2(R
d) is a frame for L2(R

d) if there exist
constants 0 < A,B <∞ such that

A‖f‖2
L2
≤

∑

n∈Zd

|〈f, gn〉|2 ≤ B‖f‖2
L2
, ∀f ∈ L2(R

d).

Define the coefficient (analysis) operator C = CG by CGf = (〈f, gn〉)n∈Zd and the synthesis
operator D = DG = C∗

G by Dc =
∑

n cngn, and let S = SG be the frame operator
S = DC = C∗C. It is well-known (see [4]) that S is positive and boundedly invertible,

and the set G̃ := S−1G is again a frame for L2(R
d), called the canonical dual frame to G.

We have the reconstruction formula

f = SS−1f =
∑

n

〈f, S−1gn〉gn =
∑

n

〈f, g̃n〉gn = S−1Sf =
∑

n

〈f, gn〉g̃n.

Next we introduce the notion of a self-localized frame. To simplify the definition in [10],
we assume that the frame is indexed by Z

d. Let 〈x〉 := (1 + |x|2)1/2 for x ∈ R
d.
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Definition 2.1. A frame G = {gn : n ∈ Z
d} for L2(R

d) is called polynomially s-self-
localized, s > d, if

|〈gn, gm〉| ≤ C〈n−m〉−s, n,m ∈ Z
d.

We now state a special case of a result by Fornasier and Gröchenig.

Theorem 2.2 ([10]). Let G = {gn : n ∈ Z
d} be a frame for L2(R

d). If G is polynomially

s-self-localized, for some s > d, then G̃ is also polynomially s-self-localized.

We need the notion of a Banach frame for a Banach space.

Definition 2.3. A Banach frame for a separable Banach space B is a sequence G = {gn :
n ∈ Z

d} in the dual space B′ with an associated sequence space Bd on Z
d such that the

following properties hold.

(1) The coefficient operator CG is bounded from B into Bd.
(2) Norm equivalence:

‖f‖B ≍ ‖(〈f, gn〉)n∈Zd‖Bd
, f ∈ X.

(3) There exists a bounded operator R from Bd onto B, a so-called synthesis or re-
construction operator, such that

RCGf = R(〈f, gn〉)n∈Zd = f.

When B = L2(R
d) and Bd = ℓ2(Zd), Definition 2.3 coincides with the usual definition

of a frame for L2(R
d).

We now define a class of Banach spaces associated with a Banach frame G. A weight
m : R

d → [0,∞) is called s-moderate if m(x + y) ≤ 〈x〉sm(y) for all x, y ∈ R
d. Let

ℓpm(Zd) be the weighted ℓp space with weight m. Assume that m is s-moderate and
ℓpm(Zd) ⊆ ℓ2(Zd). We define

Hp
m(G, G̃) =

{
f ∈ L2(R

d) : f =
∑

n∈Zd

〈f, g̃n〉gn, (〈f, g̃n〉)n∈Zd ∈ ℓpm(Zd)

}
.

Notice that Hp
m(G, G̃) ⊂ L2(R

d) is well-defined since ℓpm(Zd) ⊆ ℓ2(Zd). The following
important result was proved in [10].

Theorem 2.4 ([10]). Suppose G = {gn : n ∈ Z
d} is a polynomially r-self-localized frame

for L2(R
d), for some r > d. Let m be an s-moderate weight, 0 < s < r − d. Then, for p

with d/(r − s) < p ≤ ∞,

Hp
m(G, G̃) =

{
f ∈ L2(R

d) : f =
∑

n∈Zd

cngn, (cn)n∈Zd ∈ ℓpm(Zd)

}
,

and ‖f‖Hp
m
≍ inf{‖c‖ℓp

m
: c ∈ ℓpm, f = DGc}. Moreover, both G and G̃ are Banach frames

for Hp
m(G, G̃).

3. α-Modulation spaces

We now define the α-modulation spaces. The spaces are defined by a parameter α,
belonging to the interval [0, 1]. This parameter determines a segmentation of the frequency
domain from which the spaces are built. Thus, we need to define “nice” partitions of the
frequency space. Let B(c, r) ⊂ R

d denote the ball with center c and radius r.

Definition 3.1. A countable set Q of subsets Q ⊂ R
d is called an admissible covering if

Rd = ∪Q∈QQ and there exists n0 < ∞ such that #{Q′ ∈ Q : Q ∩ Q′ 6= ∅} ≤ n0 for all
Q ∈ Q. Let

rQ = sup{r ∈ R : B(cr, r) ⊂ Q for some cr ∈ R
d},

RQ = inf{R ∈ R : Q ⊂ B(cR, R) for some cR ∈ R
d}
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denote respectively the radius of the inscribed and circumscribed sphere of Q ∈ Q. An
admissible covering is called an α-covering, 0 ≤ α ≤ 1, of R

d if |Q| ≍ 〈x〉αd (uniformly)
for all x ∈ Q and for all Q ∈ Q, and there exists a constant K ≥ 1 such that RQ/rQ ≤ K
for all Q ∈ Q.

We also need partitions of unity compatible with the covers from Definition 3.1. We let
F(f)(ξ) := (2π)−d/2

∫
Rd f(x)e−ix·ξ dx, f ∈ L2(R

d), denote the Fourier transform.

Definition 3.2. Given p ∈ (0,∞] and an α-covering Q of R
d. A corresponding bounded

admissible partition of unity of order p (p-BAPU) {ψQ}Q∈Q is a family of functions sat-
isfying

• supp(ψQ) ⊂ Q
• ∑

Q∈Q ψQ(ξ) = 1

• supQ |Q|1/p̃−1‖F−1ψQ‖Lp̃
<∞, p̃ := min(1, p).

Remark 3.3. It is proved in Lemma A.1 that an α-covering with a corresponding p-BAPU
actually exist for every α ∈ [0, 1] and p > 0.

We have the following definition of the α-modulation spaces.

Definition 3.4. Given 0 < p, q ≤ ∞, s ∈ R, and 0 ≤ α ≤ 1, let Q be an α-covering of R
d

for which there exists a p-BAPU Ψ. Then we define the α-modulation space, M s,α
p,q (Rd) as

the set of distributions f ∈ S′(Rd) satisfying

(3.1) ‖f‖Ms,α
p,q

:=

(∑

Q∈Q

〈ξQ〉qs
∥∥F−1(ψIFf)

∥∥q

Lp

)1/q

<∞,

with {ξQ}Q∈Q a sequence satisfying ξQ ∈ Q. For q = ∞ we have the usual change of the
sum to sup over Q ∈ Q.

It is easy to see that (3.1) defines a quasi-norm (or a norm if p, q ≥ 1) on M s,α
p,q (Rd)

and that two different sequences {ξQ}Q∈Q give equivalent norms. Furthermore, Theorem
4.1 below, shows that two different p-BAPU’s give equivalent norms too. Thus, the α-
modulation space is well defined. Notice that the definition is given for the full range og
p and q, extending Gröbners original definition.

It can be proved thatM s,α
p,q (Rd) is a quasi-Banach space, and that S(Rd) →֒M s,α

p,q (Rd) →֒
S(Rd)′, see [3]. Moreover, if p, q <∞, S(Rd) is dense in M s,α

p,q (Rd).

3.1. Admissible coverings. In this section we discuss a specific construction of an α-
covering of R

d. This type of covering was considered in [12] and in [20]. A Proof of Lemma
3.5 below can be found in [12], but since Gröbner’s work has never been published, we
have included a proof for the sake of completeness. Construction of α-coverings are also
considered (from another perspective) in [20].

Notice that the set of balls {B(k,
√
d)}k∈Zd\{0} is an admissible 0-covering of R

d. De-

fine for some β ∈ (−1,∞), the bijection δβ on R
d by δβ(ξ) := ξ |ξ|β (with inverse δβ′ ,

β′ = −β/(1 + β)). Since the set {B(k,R)}k∈Zd\{0} is admissible for R ≥
√
d, so is

{δβ(B(k,R))}k∈Zd\{0}. Moreover, we have the following result.

Lemma 3.5. Suppose β ≥ 0. Given R > 0, there exists an r > 0, such that

δβ(B(z,R)) ⊆ B(δβ(z), r|z|β), for all z ∈ R
d, with |z| ≥ 1.(3.2)

Likewise, given r > 0 there exists an R > 0, such that

B(δβ(z), r|z|β) ⊆ δβ(B(z,R)), for all z ∈ R
d.(3.3)
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Proof. The proof is based on the following observation. For two points x, z ∈ R
d and

β ∈ (−1,∞), we have

|δβ(x)− δβ(z)| =
∣∣∣x|x|β − z|z|β

∣∣∣

≤
∣∣∣x|x|β − x|z|β

∣∣∣ +
∣∣∣x|z|β − z|z|β

∣∣∣

= |x|
∣∣∣|x|β − |z|β

∣∣∣ + |z|β|x− z|

=
(
|β||x|

∣∣x̃
∣∣β−1

+ |z|β
)
|x− z|(3.4)

for some x̃ ∈ L(x, z), by the mean value theorem.
GivenR > 0, suppose x ∈ B(z,R). Then since |z| ≥ 1, (3.4) yields |δβ(x)−δβ(z)| ≤ r|z|β

for some r > 0 depending only on β and R. Now, take any y ∈ δβ(B(z,R)), i.e., y = δβ(x)

for some x ∈ B(z,R). Then |y − δβ(z)| ≤ r|z|β, which proves (3.2).

We turn to (3.3). Suppose first that |z| ≤ K for some K > r1+β. Then it is easy
to verify that there exists a radius P > 0 such that B(δβ(z), r|z|β) ⊂ B(0, P ) for all z.
Likewise, there exists a radius R such that B(0, P ) ⊂ δβ(B(z,R)) for all z. This proves
(3.3) for |z| ≤ K.

Suppose now that |z| > r1+β. Recall that δ−1
β = δβ′ , where β′ := −β/(β + 1). Thus, to

show the inclusion (3.3) is equivalent to show that

(3.5) δβ′(B(z, r|z|−β′)) ⊆ B(δβ′(z), R).

Suppose x ∈ B(z, r|z|−β′) for some β′ > −1, then (1 − r|z|−(1+β′))|z| ≤ |x| ≤ (1 +

r|z|−(1+β′))|z|. Since 1 + β = (1 + β′)−1, (3.4) yields

|δβ′(x)− δβ′(z)| ≤ R|z|β′ |z|−β′ = R

for some R > 0 depending only on r and β′. Now, take any y ∈ δβ′(B(z, r|z|−β′)), i.e.,

y = δβ′(x) for some x ∈ B(z, r|z|−β′). Then, |y − δβ′(z)| ≤ R, which proves (3.5). �

We can now deduce the following result from Lemma 3.5.

Theorem 3.6. Given 0 ≤ α < 1, let β = α/(1− α). Then there exists a constant r1 > 0
such that

(3.6) {B(k|k|β, r|k|β)}k∈Zd\{0}

is an α-covering for any r > r1.

Proof. By (3.2) there exists a radius r1 such that R
d ⊂ ∪k∈Zd\{0}B(δβ(k), r|k|β) for all

r ≥ r1. Fix such an r and let R := R(r) be given such that (3.3) holds. Then, since
{δβ(B(k,R(r)))}k∈Zd\{0} is an admissible covering of R

d, so is {B(δβ(k), r|k|β)}k∈Zd\{0}.

It is easy to see that |B(δβ(k), r|k|β)| ≍ 〈y〉dα for all y ∈ B(δβ(k), r|k|β) independent of

k ∈ Z
d \ {0}. Thus {B(δβ(k), r|k|β)}k∈Zd\{0} is an α-covering for any r > r1. �

Denote by Q(c, r) the cube with center c and side lengths 2r. We have the following
corollary to Theorem 3.6.

Corollary 3.7. Given 0 ≤ α < 1, let β = α/(1− α). Then there exists a constant r1 > 0
such that

{Q(k|k|β, r|k|β)}k∈Zd\{0}

is an α-covering of R
d for any r > r1.
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3.2. A specific α-covering. Given 0 ≤ α < 1. In Section 4.2 below we will give an
equivalent norm for the α-modulation spaces using a fixed α-covering P defined as follows.

Let r1 be the constant from Corollary 3.7 and fix r > r1. Then according to Corollary
3.7 the set

(3.7) P := Pα,r := {Q(k|k|α/(1−α), r|k|α/(1−α))}k∈Zd\{0}

is an α-covering. Fix an ε ∈ (0, 1/2) such that r−ε > r1. ForQ = Q(k|k|α/(1−α), r|k|α/(1−α)) ∈
P define

(3.8) Qε := Q(k|k|α/(1−α), (r − ε)|k|α/(1−α)).

Then the set {Qε}Q∈P, is an α-covering too. In particular ∪Q∈PQε = R
d.

4. Localized multivariate brushlet systems

Univariate brushlet bases have proven succesfull in characterizing univariate α-modulation
spaces. However, it is still an open question how to construct orthonormal multivariate
brushlet bases. In this section we define separable multivariate brushlet systems and
study their localization properties. The study concludes in Section 5 where we will see
that nice separable brushlet systems in fact constitutes Banach Frames for multivariate
α-modulation spaces.

4.1. Brushlet systems. Let us first recall the definition of a univariate brushlet. Take
a non-negative ramp function ρ ∈ Cr(R), for some r ≥ 1, satisfying

(4.1) ρ(ξ) =

{
0 for ξ ≤ 0,
1 for ξ ≥ 1.

Given ε ∈ (0, 1/2) as in Section 3.2, define g by

(4.2) ĝ(ξ) := ρ

(
ξ

ε

)
ρ

(
1− ξ

ε

)
,

where ĝ denotes the Fourier transform of g.
For an interval I = [aI , a

′
I), we define the bell function

(4.3) bI(ξ) := ĝ
(
|I|−1(ξ − aI)

)
= ρ

(
ξ − aI

ε|I|

)
ρ

(
a′I − ξ

ε|I|

)
.

Notice that supp(bI) ⊆ I and bI(ξ) = 1 for ξ ∈ [aI + ε|I|, a′I − ε|I|]. Now for each n ∈ N0

we define the univariate brushlet wn,I by

(4.4) ŵn,I(ξ) =

√
2

|I|bI(ξ) cos

(
π
(
n+ 1

2

)ξ − aI

|I|

)
.

The brushlets also have an explicit representation in the time domain. Let for notational
convenience

en,I :=
π
(
n+ 1

2

)

|I| .

Then,

(4.5) wn,I(x) =

√
|I|
2
eiaIx

{
g
(
|I|(x+ en,I)

)
+ g

(
|I|(x− en,I)

)}
.

By a straight forward calculation it can be verified that there exists a constant C <∞,
such that

(4.6) |g(x)| ≤ C(1 + |εx|)−r,
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with r ≥ 1 given by the smoothness of the ramp function. Thus a univariate brushlet
wn,I essentially consists of two humps at ±en,I . We call r in (4.6) the decay rate of the
brushlet.

Let Q =
∏d

i=1 Ii be a cube in R
d, and let

wn,Q :=
d⊗

i=1

wni,Ii
, n ∈ N

d
0,

be the associated multivariate brushlet. Notice that {wn,Q}n∈Nd
0

is an orthonormal system

in L2(R
d) for a fixed cube Q. We say that the brushlet wn,Q has decay rate r > 0 if each

wni,Ii
, i = 1, 2, . . . , d, has decay rate r.

We associate a family of projection operators to the brushlets as follows. These oper-
ators will be used to obtain an equivalent norm for the α-modulation spaces in Section
4.2.

Given an interval I ⊂ R, define the operator PI : L2(R) → L2(R) by

P̂If(ξ) := bI(ξ)
[
bI(ξ)f̂(ξ) + bI(2aI − ξ)f̂(2aI − ξ)− bI(2a

′
I − ξ)f̂(2a′I − ξ)

]
.

It can be verified that PI is an orthogonal projection, mapping L2(R) onto Span{wn,I : n ∈
N0}.

For Q =
∏d

i=1 Ii a cube in R
d, we define the operator PQ by the corresponding tensor

product. Clearly, PQ is a projection operator PQ : L2(R
d) → Span{wn,Q : n ∈ N

d
0}. More-

over, given f ∈ L2(R
d) we have supp(P̂Qf) ⊆ Q, and P̂Qf(ξ) = f̂(ξ) for all Q ∈ P and

ξ ∈ Qε.
Finally, notice that,

(4.7) PQ = SQ

[ d⊗

i=1

(Idi +RaIi
−Ra′

Ii

)
]
SQ,

where ŜQf := bQf̂ and Raf(x) := ei2af(−x), x, a ∈ R.

4.2. Characterization of α-modulation spaces. Now we show that it is possible to
rewrite the M s,α

p,q (Rd)-norm using the projection operators PQ associated with the α-
covering P. This leads to a characterization of the α-modulation space norm using the
multivariate brushlet system.

The main result is the following.

Theorem 4.1. Given 0 ≤ α < 1, 0 < p, q ≤ ∞, and s ∈ R. Let P be the disjoint

α-covering defined in (3.7), and let PQ, Q ∈ P, be the associated projection operators

generated from a brushlet system with decay rate r > max(1, 1/p). Then for any f ∈
M s,α

p,q (Rd) we have

(4.8) ‖f‖Ms,α
p,q

≍
(∑

Q∈P

〈ξQ〉qs‖PQf‖q
Lp

)1/q
.

Proof. Let Ψ be a p-BAPU subordinate to an α-covering Q. Take f ∈M s,α
p,q (Rd). Then,

PQf =
∑

Q′∈AQ

PQ(F−1(ψQ′ f̂)), Q ∈ P,

in S ′(R), where AQ is the set of cubes Q′ ∈ Q with Q∩Q′ 6= ∅. According to Lemma B.2
in Appendix B,

sup
Q∈P

#AQ ≤ dA <∞.
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Using (4.3) we have that ‖F−1bQ‖Lp ≤ Cp|Q|1−1/p, for 0 < p ≤ ∞. Now, by the identity

(4.7) and since F−1(ψQ′ f̂) ∈ Lp, 0 < p ≤ ∞, for any Q′ ∈ Q, Proposition 1.5.1 in [22]
implies

‖PQf‖Lp ≤ C|Q|1/p̃−1‖F−1bQ‖Lp̃

∑

Q′∈AQ

‖F−1(ψQ′ f̂)‖Lp (p̃ := min(1, p))

≤ C ′
∑

Q′∈AQ

‖F−1(ψQ′ f̂)‖Lp

with C ′ independent of Q. Clearly, 〈ξQ〉 ≍ 〈ξQ′〉 for any ξQ ∈ Q, ξQ′ ∈ Q′, when Q′ ∈ AQ.
Hence

(4.9) 〈ξQ〉s‖PQf‖Lp ≤ C ′
∑

Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp for 0 < p ≤ ∞,

with C ′ independent of Q. Suppose 0 < q ≤ 1, then

∑

Q∈P

( ∑

Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q
=

∑

Q∈P

( ∑

Q′∈Q

1AQ
(Q′)〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q

≤
∑

Q′∈Q

∑

Q∈P

(
1AQ

(Q′)〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q
,

where 1AQ
(Q′) = 1 for Q′ ∈ AQ and 0 for Q′ ∈ Q\AI . Since 1AQ

(Q′) = 1AQ′
(Q), for any

Q ∈ P and Q′ ∈ Q, this gives

∑

Q∈P

( ∑

Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q
≤ dA

∑

Q′∈P

〈ξQ′〉qs‖F−1(ψQ′ f̂)‖q
Lp
.

Likewise, for q = ∞,

sup
Q∈P

∑

Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp ≤ dA sup
Q∈P

sup
Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

= dA sup
Q′∈Q

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp .

For 1 < q <∞, Hölder’s inequality with 1 = 1/q + 1/q′ implies

∑

Q∈P

( ∑

Q′∈AQ

〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q

≤
∑

Q∈P

( ∑

Q′∈Q

(1AQ
(Q′))q′

)q/q′(∑

Q∈P

(
1AQ

(Q′)〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q
)

≤ dq−1
A

∑

Q∈P

∑

Q′∈Q

1AQ
(Q′)

(
〈ξQ′〉s‖F−1(ψQ′ f̂)‖Lp

)q

≤ dA

∑

Q′∈Q

〈ξQ′〉qs‖F−1(ψQ′ f̂)‖q
Lp
.

The lower bound in (4.8) now follows by combining the above estimates with the inequality
(4.9). The upper bound can be proved in a similar fashion. �

We now have a characterization of the M s,α
p,q (Rd)-norm using the Lebesgue norm of the

projection operators PQ. If the associated brushlets have a sufficiently high decay rate,
this Lebesgue norm can be given by the size of the brushlet coefficients.
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Corollary 4.2. Suppose f ∈ L2(R
d), and Q is a cube in R

d. Given p ∈ (0,∞]. If each

brushlet wn,Q, n ∈ N
d
0, has decay rate r > max(1, 1/p), then PQf ∈ Lp(R

d) if and only if

{〈f, wn,Q〉}n∈Nd
0

∈ ℓp. In fact, if one of these conditions are satisfied we have

(4.10) ‖PQf‖Lp ≍ |Q|
1

2
− 1

p

( ∑

n∈Nd
0

|〈f, wn,Q〉|p
)1/p

, 0 < p <∞,

with equivalence independent of Q. When p = ∞ the sum in (4.10) is changed to sup over

n ∈ N
d
0.

Proof. From (4.6) we have that g ∈ Lp(R). This, together with the representation (4.5),
imply that

(4.11) sup
x∈Rd

∑

n∈Nd
0

|wn,Q(x)|p ≤ C|Q| p2 and sup
n∈Nd

0

‖wn,Q‖p
Lp
≤ C ′|Q| p2−1.

Suppose p ≤ 1. Since ŵn,Q is compactly supported, we have (see e.g. [22, p. 18])
∑

n∈Nd
0

|〈f, wn,Q〉|p =
∑

n∈Nd
0

|〈PQf, wn,Q〉|p

≤ C|Q|1−p
∑

n∈Nd
0

∫

Rd

|PQf(x)|p|wn,Q(x)|p dx ≤ C ′|Q|1− p
2 ‖PQf‖p

Lp
.

Likewise,

‖PQf‖p
Lp
≤

∑

n∈Nd
0

|〈f, wn,Q〉|p‖wn,Q‖p
Lp
≤ C|Q| p2−1

∑

n∈Nd
0

|〈f, wn,Q〉|p.

For 1 < p <∞ the lemma follows using the two estimates (4.11) for p = 1, together with
Hölder’s inequality (see e.g. [18, §2.5]). The case p = ∞ is left for the reader. �

Let us introduce a new notation for the brushlets wn,Q associated with the α-covering
P. Recall that each cube Q ∈ P is of the form

Q = Qk = Q(k|k| α
1−α , r|k| α

1−α ), k ∈ Z
d \ {0}.

For Qk ∈ P we use the short hand notation

wn,k := wn,Qk
, k ∈ Z

d \ {0}.
Using Lemma 4.2 we can derive the following result from Theorem 4.1.

Proposition 4.3. Given 0 < p, q ≤ ∞, and s ∈ R. Let B = {wn,k}k∈Zd\{0},n∈Nd
0

be a

brushlet system with decay rate r > max(1, 1/p) associated with the α-covering P, 0 ≤ α <
1. Then we have the characterization

‖f‖Ms,α
p,q

≍
( ∑

k∈Zd\{0}

( ∑

n∈Nd
0

(
|k|

1

1−α
(s+ αd

2
−αd

p
)|〈f, wn,k〉|

)p
)q/p)1/q

.

4.3. Localized brushlets. In this section we will see that brushlet systems with suffi-
ciently high decay rate are self-localized.

Lemma 4.4. Given n, n′ ∈ N0, and two intervals I, I ′ ⊂ R. Suppose the associated

univariate brushlets wn,I and wn′,I′ have decay rate r ≥ 2N , N ∈ N. Then we have

|〈wn,I , wn′,I′〉| ≤
{
CNε

−2N〈n− n′〉−2N if I ∩ I ′ 6= ∅,
0 otherwise,

with ε given in (4.2).
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Proof. By definition,

〈wn,I , wn′,I′〉 =
2√
|I||I ′|

∫

R

bI(ξ)bI′(ξ) cos(en,I(ξ − aI)) cos(en′,I′(ξ − aI′)) dξ.

Clearly, the inner product equals zero if I and I ′ are disjoint. Suppose that I ∩ I ′ 6= ∅.
Writing the cosines as complex exponentials, and substituting ξ → (ξ − aI)/|I|, the inner
product is given by four terms of the form

(4.12) 2

√
|I|
|I ′|e

ih(n,n′,I,I′)

∫

R

ĝ(ξ)ĝ
( |I|
|I ′|ξ +

aI − aI′

|I ′|
)
e±i((n+1/2)±|I||I′|−1(n′+1/2))ξ dξ,

with h a real valued function of the indices. Let us temporarily denote γ := ±(n+ 1/2)±
|I||I ′|−1(n′ + 1/2) for a particular choice of signs. Define Lξ := 1− d2

dξ2 . Then by partial

integration (4.12) can be rewritten

2

√
|I|
|I ′|e

ih(n,n′,I,I′)〈γ〉−2N

∫

R

LN
ξ

[
ĝ(ξ)ĝ

( |I|
|I ′|ξ +

aI − aI′

|I ′|
)]
eiaξ dξ,

Choose A > 0 such that A−1 ≤ |I||I ′|−1 ≤ A. Since ρ ∈ C2N (R), supp(ĝ) ⊆ [0, 1], we
obtain∣∣∣∣

∫

R

LN
ξ

[
ĝ(ξ)ĝ

( |I|
|I ′|ξ +

aI − aI′

|I ′|
)]
eiaξ dξ

∣∣∣∣ ≤ sup
ξ∈R

∣∣∣LN
ξ

[
ĝ(ξ)ĝ

( |I|
|I ′|ξ +

aI − aI′

|I ′|
)]∣∣∣

≤ CN (A/ε)2N ,

and thus

|〈wn,I , wn′,I′〉| ≤ CN (A/ε)2N〈(n+ 1/2)− |I||I ′|−1(n′ + 1/2)|〉−2N

≤ C ′
NA

4Nε−2N 〈n− n′〉−2N .

�

For the multivariate brushlets we obtain the following corollary.

Corollary 4.5. Given n, n′ ∈ N
d
0, and two cubes Q,Q′ ⊂ R

d with A−1 ≤ |Q||Q′|−1 ≤ A.

Suppose the associated brushlets wn,Q and wn′,Q′ have decay rate r ≥ 2N , N ∈ N. Then

we have

|〈wn,Q, wn′,Q′〉| ≤
{
C〈n− n′〉−2N if Q ∩Q′ 6= ∅,
0 otherwise,

with a constant depending only on N , ε and A.

Proof. The result follows directly from Lemma 4.4 since
∏d

i=1〈xi〉 ≥ 〈x〉 for any x ∈
R

d. �

Remark 4.6. In the following section we will show that a collection of brushlet func-
tions B = {wn,k}n∈Nd

0
,k∈Zd\{0} with enough decay form a polynomially localized frame for

L2(R
d). Since #{Q′ ∈ P : Q ∩Q′ 6= ∅} ≤ n0, Q ∈ P, for some uniform finite constant n0,

we only have to prove localization w.r.t. the n-index as given in Corollary 4.5.

5. Banach frames for α-modulation spaces

We now have the tools needed to show that a nice brushlet system constitute a Banach
frame for the α-modulation spaces. We have the following result which shows that the
family of brushlet functions form a polynomially localized frame for L2(R

d), see also
Remark 4.6.
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Theorem 5.1. Let B = {wn,k}n∈Nd
0
,k∈Zd\{0} be a collection of brushlet functions in L2(R

d),

with decay rate 2N , N ∈ N, and α-covering P given by (3.7), 0 ≤ α < 1. Then B is a

polynomially 2N -self-localized frame for L2(R
d).

Proof. The covering P has finite height, i.e.,
∑

Qk∈Zd\{0} χQk
(ξ) ≤ C < ∞ for some fixed

constant C. We can therefore write P = ∪N
j=1Pj , with {wn,k}n∈N0,Qk∈Pj

an orthonormal
system for j = 1, 2, . . . , N . The brushlet system B can thus be written as a union of
orthonormal sequences and B therefore has a finite upper frame bound. Next we turn to
the lower frame bound. Let f ∈ L2(R

d). Consider the orthogonal projection

PQk
f̂ =

∑

n∈Nd
0

〈f̂ , ŵn,k〉ŵn,k, Qk ∈ P,

which (by construction) satisfies PQ|Qε = IdL2(Qε), where Qε is given by (3.8). Therefore,

using ∪Q∈PQε = R
d,

‖f‖2
L2

= ‖f̂‖2
L2
≤

∫

Rd

∑

Q∈P

χQε(ξ)|f̂(ξ)|2dξ =
∑

Q∈P

∫

Rd

χQε(ξ)|f̂(ξ)|2dξ

≤
∑

k∈Zd\{0}

‖PQk
f̂‖2

L2
=

∑

k∈Zd\{0}

∑

n∈Nd
0

|〈f̂ , ŵn,k〉|2 =
∑

k∈Zd\{0}

∑

n∈Nd
0

|〈f, wn,k〉|2,

which proves the existence of a lower frame bound ≥ 1. So B is a frame for L2(R
d).

Corollary 4.5 shows that B is polynomially r-self-localized. �

Remark 5.2. We do not have a closed formula for the canonical dual frame to B =
{wn,k}n∈Nd

0
,k∈Zd\{0} since B is not tight. However, we can still expand an arbitrary L2

function in the frame using the iterative frame algorithm, see e.g. [4, Lemma 1.2.3]. In
fact, there is an efficient method to implement brushlet expansions using the FFT in the
Fourier domain, see [16]. One can use this fast expansion algorithm to implement the
frame algorithm.

Proposition 5.3. Let B = {wn,k}n∈Nd
0
,k∈Zd\{0} be a collection of brushlet functions in

L2(R
d), with decay rate r > d, and α-covering P given by (3.7), 0 ≤ α < 1. Let B̃ be its

canonical dual. Then B and B̃ are Banach frames for the α-modulation spaces M s,α
p,p (Rd),

for 1
r < p ≤ 2 and s ≥ α(d

p − d
2). Moreover, we have the identity

Hp
ms̃

(B, B̃) = M s,α
p,p (Rd),

1

r
< p ≤ 2, s ≥ α

(
d

p
− d

2

)
,

where

ms̃(n, k) = |k| 1

1−α
s̃

and s̃ = s+ α

(
d

2
− d

p

)
.

Proof. Notice that ℓpms̃
(Nd × Z

d \ {0}) ⊆ ℓ2(Nd × Z
d \ {0}), and by Theorem 2.4 and

Proposition 4.3,

Hp
ms̃

(B, B̃) ⊃M s,α
p,p (Rd).

Conversely, suppose f ∈ Hp
ms̃

(B, B̃). Then by Corollary 4.5 and [10, Lemma 2.1] we have(
〈f, wn,k〉

)
n,k

∈ ℓpms̃(N
d×Z

d \ {0}), and thus f ∈M s,α
p,p (Rd) by Proposition 4.3. The result

now follows from Theorem 2.4. �

6. Nonlinear approximation

In this section we consider an application of the Banach frames for the α-modulation
spaces to nonlinear approximation. We are mainly interested in Jackson estimates for
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best m-term approximation, and using the stabillity of the frames, we can apply a general
theory introduced in [11].

We let B = {wn,k}k∈Zd\{0},n∈Nd
0

be a brushlet system with decay rate r > 0, and

associated with an α-covering P for some 0 < α ≤ 1. Consider the normalized functions

w̃n,k =
wn,k

‖wn,k‖Ms,α
p,p (Rd)

, k ∈ Z
d \ {0}, n ∈ N

d
0.

Notice that for any finite brushlet expansion f =
∑

n,k cn,kw̃n,k we have,

‖f‖Ms,α
p,p (Rd) ≤ C

( ∑

k∈Zd\{0},n∈Nd
0

|cn,k|p
)1/p

,
1

r
< p,

by Proposition 4.3, i.e., {w̃n,k}n,k is ℓp-hilbertian (as defined in [11]).
Let us introduce some notation that will be needed to explore nonlinear approximation

with brushlet bases. Let D = {gk}k∈N be a dictionary in a Banach space X. We consider
the collection of all possible m-term expansions with elements from D:

Σm(D) :=
{ ∑

i∈Λ

cigi

∣∣∣ ci ∈ C,#Λ ≤ m
}
.

The error of the best m-term approximation to an element f ∈ X is then

σm(f,D)X := inf
fm∈Σm(D)

‖f − fm‖X .

The corresponding approximation spaces are defined as follows.

Definition 6.1 (Approximation spaces). The approximation space Aγ
q(X,D) is defined

by

|f |Aγ
q(X,D) :=

( ∞∑

m=1

(
mγσm(f,D)X

)q 1

m

)1/q

<∞,

and (quasi)normed by ‖f‖Aγ
q(X,D) = ‖f‖X + |f |Aγ

q(X,D) for 0 < q, γ <∞, with the ℓq norm

replaced by the sup-norm, when q = ∞.

We can now use the stability of the brushlet frames in the α-modulation spaces and
apply [11, Theorem 6] to obtain a Jackson inequality for the brushlet frames.

Proposition 6.2. Let {wn,k}k∈Zd\{0},n∈Nd
0

be a brushlet system with decay rate r > d,

associated with a disjoint α-covering P for some 0 ≤ α ≤ 1, and let

D =
{
wn,k/‖wn,k‖Ms,α

p,p (Rd)

}
k∈Zd\{0},n∈Nd

0

for 1
r < p ≤ 2 and s ≥ α(d

p − d
2). Then

Mβ,α
τ,τ (Rd) →֒ Aγ

τ

(
M s,α

p,p (Rd),D
)

for γ =
1

τ
− 1

p
=
β − s

αd
> 0,

with equivalent norms.

Proof. The Proposition follows from [11, Theorem 6] since {w̃n,k}n,k is ℓp-hilbertian, and

one can verify (using the notation of [11]) that Kτ
τ (M s,α

p,p (Rd),D) = Mβ,α
τ,τ (Rd) with β =

s+ αd
(

1
τ − 1

p

)
. �
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Appendix A. Bounded admissible partitions of unity and their properties

The α-modulation spaces are defined using a bounded admissible partition of unity,
but the spaces are actually independent of the specific choice. We have the following
construction.

Proposition A.1. For α ∈ [0, 1), 0 < p ≤ ∞, there exists an α-covering of R
d with a

corresponding p-BAPU {ψk}k∈Zd\{0} ⊂ S(Rd) satisfying

|∂βψk(ξ)| ≤ Cβ〈ξ〉−|β|α,

for every multi-index β and k ∈ Z
d \ {0}.

Proof. For r > 0, and k ∈ Z
d \ {0} we define the ball

Br
k := {ξ ∈ R

d :
∣∣ ξ − |k| α

1−α k
∣∣ < r|k| α

1−α }.

By Lemma 3.5, there exists r1 > 0 such that {Br1

k }k∈Zd\{0} is an α-covering of R
d. There

also exists 0 < r2 < r1, such that {Br2

k }k∈Zd\{0} is pairwise disjoint.

Fix r > r1. We take Φ ∈ C∞(Rd) satisfying infξ∈B(0,r1) |Φ(ξ)| := c > 0 and supp(Φ) ⊂
B(0, r). Let

gk(ξ) := Φ(|ck|−α(ξ − ck)), k ∈ Z
d \ {0},

where ck := |k| α
1−αk. Clearly, gk ∈ C∞(Rd) with supp(gk) ⊂ Br

k. In fact, {supp(gk)}k

is an α-covering of R
d. The covering is admissible (see Lemma 3.5) since {Br2

k }k∈Zd\{0},

with Br2

k ⊂ supp(gk), is pairwise disjoint. It is easy to see that the partition has “finite
height”, i.e.,

∑
k∈Zd\{0} χsupp(gk)(ξ) ≤ n1 for some uniform constant n1.

Notice that

|∂βgk(ξ)| = |ck|−α|β||(∂βΦ)(|ck|−α(ξ − ck))| ≤ Cβ|ck|−α|β|,

and since |ck| ≥ 1 for all k ∈ Z
d \ {0}, we have

|∂βgk(ξ)| ≤ C ′
β〈ck〉−α|β| ≍ 〈ξ〉−α|β| for all ξ ∈ Br

k.

Since we want a p-BAPU, we consider the sum g(ξ) :=
∑

k∈Zd\{0} gk(ξ). Now, {supp(gk)}k

has finite height, so g is well-defined, and the finite overlap ensures that |∂βg(ξ)| ≤
C ′

β〈ξ〉−|β|α. Recall that gk(ξ) ≥ c for all ξ ∈ Br1

k , and since {Br1

k }k∈Zd\{0} covers R
d,

we have g(ξ) ≥ c. Thus, we can define

ψn(ξ) :=
gn(ξ)∑

k∈Zd\{0} gk(ξ)
.

It is straightforward to show that |∂βψk(ξ)| ≤ Cβ〈ξ〉−|β|α. In order to conclude, we need

to verify that supQ |Q|1/p̃−1‖F−1ψk‖Lp̃
<∞, where p̃ = min{1, p}. Let

ψ̃k(ξ) = ψk(|ck|αξ + ck) =
Φ(ξ)∑

k′ Φ(|ck|α|ck′ |−α(ξ − ck′) + ck)
.

Notice that for every β ∈ N
d there exists a constant Cβ independent of k ∈ Z

d \ {0} such
that

(A.1) |∂β
ξ ψ̃k(ξ)| ≤ CβχB(0,r)(ξ).
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By a simple substitution in each of the following integrals, we obtain

‖F−1ψk‖p̃
Lp̃

=

∫

Rd

∣∣∣∣
∫

Rd

ψk(ξ)e
ix·ξ dξ

∣∣∣∣
p̃

dx

= |ck|αd(p̃−1)

∫

Rd

∣∣∣∣
∫

Rd

ψ̃k(ξ)e
ix·ξ dξ

∣∣∣∣
p̃

dx, and since |ck|dα ≍ |Q|,

≤ |Q|p̃−1Cd

( ∑

|β|≤⌈(d+1)/p̃⌉

‖∂βψ̃k‖L1

)p̃ ∫

Rd

〈x〉−d−1dx ≤ C ′
d|Q|p̃−1,

where we have used integration by parts and (A.1) for the last estimate. We conclude that
{ψk}k is a p-BAPU corresponding to the α-covering {supp(gk)}k. �

Appendix B. Some properties of α-coverings

Let sd = πd/2/Γ(d
2 + 1) be the volume of the unit ball in R

d. Given an α-covering Q,
let rQ and RQ denote respectively the radius of the inscribed and circumscribed sphere of
Q ∈ Q. Let K ≥ 1 be such that RQ/rQ ≤ K for all Q ∈ Q. Notice that for Q ∈ Q we

have sd · rd
Q ≤ |Q| ≤ sd ·Rd

Q, so

sd ≤
|Q|
rd
Q

=
Rd

Q

rd
Q

· |Q|
Rd

Q

≤ Kd · sd,

and consequently |Q| ≍ Rd
Q ≍ rd

Q independent of Q.

Given two α-coverings Q and Q′, suppose Q ∈ Q and Q′ ∈ Q′ have nonempty intersec-
tion. Then from the observation above, we have RQ ≍ RQ′ . Let dQ and dQ′ denote the
center of the circumscribed sphere of Q and Q′ respectively, and let cQ be the center of
the inscribed sphere of Q. Then there exists a constant κ > 2K such that

(B.1) Q′ ⊆ B(dQ′ , RQ′) ⊂ B(dQ,
κ

2KRQ) ⊂ B(cQ, κrQ).

Lemma B.1. Given an α-covering Q, there exist n0 <∞ subsets Qi ⊆ Q, i = 1, 2, . . . , n0,

such that Q = ∪n0

i=1Qi and the elements of Qi are pairwise disjoint.

The proof is given in Lemma c.1.1 and Lemma c.8.3 in [12], but will be given here for
completeness.

Proof. Given Q ∈ Q define Q∗ := {Q′ ∈ Q : Q ∩Q′ 6= ∅}. By (B.1) we have ∪Q′∈Q∗Q′ ⊂
B(cQ, κrQ). Since Q has finite height, there exists a constant n2 such that

n2C
d|Q| ≥ n2sdκ

drd
Q >

∑

Q′∈Q∗

|Q′| ≥ c(#Q∗)|Q|,

i.e., #Q∗ is bounded by a constant n0 independent of Q.
Let Q1 ⊆ Q be a maximal set of pairwise disjoint elements, and let inductively Qi ⊂

Q \ ∪i−1
k=1Qk, i = 2, 3, . . ., be a maximal set of pairwise elements. Suppose Q ∈ Qn0+1.

Then for each k = 1, 2, . . . , n0 there exists a Qk ∈ Qk such that Qk ∩Q 6= ∅. But this is a
contradiction to the fact that #Q∗ ≤ n0. �

Lemma B.2. Let Q and Q′ be two α-coverings. For each Q ∈ Q let

AQ = {Q′ ∈ Q′ : Q′ ∩Q 6= ∅}.
Then there exists a constant dA such that #AQ ≤ dA independent of Q.

Proof. Recall that there exists a constant δ such that |Q| ≤ δ|Q′| for all Q′ ∈ AQ, inde-
pendent of Q ∈ Q. According to (B.1) and Lemma B.1 we have

|Q| ≥ sdr
d
Q ≥ δsd

κdn0
(#AQ)|Q|,
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i.e., #AQ ≤ κdn0

δsd
. �
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[20] L. Päivärinta and E. Somersalo. A generalization of the Calderón-Vaillancourt theorem to Lp and hp.
Math. Nachr., 138:145–156, 1988.

[21] K. Tachizawa. The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr.,
168:263–277, 1994.

[22] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag,
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