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QUASI-GREEDY SYSTEMS OF INTEGER TRANSLATES

MORTEN NIELSEN† AND HRVOJE ŠIKIĆ∗

ABSTRACT. We consider quasi-greedy systems of integer translates in a finitely gen-
erated shift invariant subspace of L2(Rd), that is systems for which the thresholding
approximation procedure is well behaved. We prove that every quasi-greedy system of
integer translates is also a Riesz basis for its closed linear span. The result shows that
there are no conditional quasi-greedy basis of integer translates in a finitely generated
shift invariant space.

1. INTRODUCTION

We are interested in finitely generated shift-invariant (FSI) subspaces of L2(Rd). By
this we mean a subspace S ⊂ L2(Rd) for which there exists a finite family Φ = {ϕj}j∈E

of L2(Rd)-functions such that

S = span{ϕ(· − k) : ϕ ∈ Φ, k ∈ Zd}.

For many applications it is useful to have a stable generating set for S. Here the word
“stable” covers a broad spectrum from weak notions such as (local) linear indepence
all the way to an unconditional basis. Given the structure of S, it is natural to consider
stable generating sets of integer translates. That is, a system of the form

(1.1) {ψ(· − k) : ψ ∈ Ψ, k ∈ Zd},

where Ψ ⊂ L2(Rd) is a finite subset. Often we take Ψ = Φ, but Ψ may be different
from Φ, and the two sets need not have the same cardinality.

In this paper, we study the special case where S has a Schauder basis (1.1) having the
additional property that decreasing rearrangements are norm convergent. Put another
way, we assume that the approximants, obtained by thresholding an expansion in the
system (1.1), converge. Thresholding is a very natural way to build approximants,
and for Riesz bases it is known to be (up to a constant) the best possible way to build
m-terms approximants.

Systems for which decreasing rearrangements are norm convergent are known as
quasi-greedy bases. Every unconditional basis is also a quasi-greedy basis, but it is
well-known that conditional quasi-greedy bases exist, even in an infinite dimensional
Hilbert space, see [13] and [18]. However, our main result shows that there are no
conditional quasi-greedy bases of integer translates. Put another way, the structure of

Key words and phrases. Quasi-greedy system, Schauder basis, integer translates, shift invariant space,
FSI space.

†Supported by a grant from the Danish Research Council for Technology and Production.
∗Supported by the NSF-INT-0245238 grant and by the MZOŠ grant 037-0372790-2799 of the Republic
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the system (1.1) implies any such quasi-greedy basis is automatically an unconditional
Riesz basis for S. We thereby obtain a characterization of all the possible quasi-greedy
basis of the form (1.1). The result also shows that for every quasi-greedy basis of integer
translates, thresholding is the optimal way to build m-term approximants.

Problems on translates of functions have a long history, let us mention classical re-
sults by Kolmogoroff [12] and Helson [10]. More recently, FSI subspaces have been
used in several applications. Wavelets and other multiscale methods are based on FSI
subspaces [3, 4, 11], and FSI subspaces play an important role in multivariate approx-
imation theory such as spline approximation [7] and approximation with radial basis
functions [9, 15]. The fundamental structure of FSI spaces has been studied in a num-
ber of papers, see for example [1, 2, 5, 6, 16]. The problem of characterizing when (1.1)
forms a Schauder basis for S has been considered recently by the present authors. In
the univariate case with one generator, a complete characterization is given in [14].

2. NOTATION AND MAIN RESULT

Let us begin by introducing some notation and recalling some necessary results.
First we consider the precise definition of a quasi-greedy system in a Hilbert space H.
A biorthogonal system is a family (xn, x∗n)n∈N ⊂ H×H such that 〈xn, x∗m〉 = δn,m. We
fix a biorthogonal system (xn, x∗n)n∈N with spann(xn) dense in H. We assume that the
system is quasi-normalized, i.e., infn ‖xn‖H > 0 and supn ‖x∗n‖H∗ < ∞. For each x ∈ H
and m ∈ N, we define

Gm(x) = ∑
n∈A

x∗n(x)xn,

where A is a set of cardinality m satisfying |x∗n(x)| ≥ |x∗k (x)| whenever n ∈ A and
k 	∈ A. Whenever A is not uniquely defined, we arbitrarily pick any such set. The
definition of Gm leads directly to the definition of a quasi-greedy system, see [13].

Definition 2.1. A quasi-normalized biorthogonal system (xn, x∗n)n∈N ⊂ H×H, with
spann(xn) dense in H, is called a quasi-greedy system if there exists a constant Q such
that

(2.1) ‖Gm(x)‖H ≤ Q‖x‖H, ∀x ∈ H.

If the system is also a Schauder basis for H, we will use the term quasi-greedy basis.

Remark 2.2. In was proved by Wojtaszczyk in [18] that a system is quasi-greedy if and
only if for each x ∈ H, the sequence Gm(x) converges to x in norm.

It turns out that a quasi-greedy basis in a Hilbert space is “very close” to a Riesz
basis. Let us now state the Theorem that justifies this claim in its general form, in order
to compare it to our main result on integer translates stated below in Theorem 2.4. Let
use introduce some needed additional notation.

For a sequence {an}∞
n=1 we denote by {a∗n} a non-increasing rearrangement of the

sequence {|an|}. Then we define the Lorentz norms

‖{an}‖2,∞ := sup
n

n1/2a∗n and ‖{an}‖2,1 :=
∞

∑
n=1

n−1/2a∗n.

The following general result is proved in [18].
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Theorem 2.3 ( [18]). Let B = {bn}n∈N be a quasi-greedy basis in a Hilbert space H. Then
there exist constants 0 < c1 ≤ c2 < ∞ such that for any coefficients {an}

c1‖{an}‖2,∞ ≤ ∥∥ ∑
n∈N

anbn
∥∥H ≤ c2‖{an}‖2,1.

It is known that conditional quasi-greedy bases exist in an infinite dimensional Hilbert
space, see [13] and [18]. Therefore, in the general case, we cannot expect an improve-
ment of Theorem 2.3 that would give a complete characterization of the Hilbert space.
However, for systems of integer translates Theorem 2.3 can be strengthened. Let us
state our main result that there are no conditional quasi-greedy systems of integer
translates. A quasi-greedy system of integer translates is also a Riesz-basis for its closed
linear span.

Theorem 2.4. Suppose that Q = {ψ(· − k) : ψ ∈ Ψ, k ∈ Zd} is a quasi-greedy system in a
FSI space S. Then Q is a Riesz-basis for S, i.e., there exist constants 0 < c ≤ C < ∞ such that

(2.2) c1‖{cψ(k)}‖�2 ≤
∥∥∥∥ ∑

ψ∈Ψ
∑

k∈Zd

cψ(k)ψ(· − k)
∥∥∥∥

L2(Rd)
≤ C‖{cψ(k)}‖�2 ,

for every finite sequence {cψ(k)}.

It may not be evident at first, but Theorem 2.4 is essentially a result on properties of
trigonometric polynomials in a certain vector-valued space. The reason for this is that
the Fourier transform translates problems on FSI spaces to problems on trigonometric
polynomials. The proof of Theorem 2.4 is given in Section 3.

3. QUASI-GREEDY SHIFT INVARIANT SYSTEMS

This section contains the proof of Theorem 2.4. To prove the result, we use the
Fourier transform to study expansions in a FSI space with a generating set Ψ with
cardinality #Ψ := N < ∞. For notational convenience, we assume that some ordering
has been imposed on Ψ. We define the Fourier transform by

(3.1) f̂ (ξ) :=
∫

Rd
f (x)eix·ξ dx, f ∈ L2(Rd),

and we let Td = [−π, π)d denote the fundamental domain for Fourier series. Follow-
ing [6], we introduce the so-called bracket product given by

[ f , g] : Td → C : x → ∑
k∈Zd

f (x + 2πk)g(x + 2πk),

for f , g ∈ L2(Rd). With this setup, we have the fundamental identity

(3.2) (2π)d〈 f , g〉L2(Rd) = 〈 f̂ , ĝ〉L2(Rd) =
∫

Td
[ f̂ , ĝ] dξ, f , g,∈ L2(Rd).

Let us now consider an expansion

f = ∑
ψ∈Ψ

∑
k∈Zd

cψ(k)ψ(x − k),
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relative to the system generated by Ψ. An application of the Fourier transform yields

f̂ (ξ) = ∑
ψ∈Ψ

(
∑

k∈Zd

cψ(k)eik·ξ
)

ψ̂ := ∑
ψ∈Ψ

τψ(ξ)ψ̂.

We can now calculate the norm of f̂ using the bracket product and (3.2). We form the
vector τ = [τψ]ψ∈Ψ, and we let τH denote the Hermitian transpose of the vector τ. We
obtain

(3.3) ‖ f̂ ‖2
L2(Rd) =

∫
Td

[ f̂ , f̂ ] =
∫

Td
τ(ξ)HG(ξ)τ(ξ) dξ,

where G := G(Ψ) is the Hermitian positive semi-definite N × N-matrix given by

(3.4) G(Ψ) =
(
[η̂, ψ̂]

)
η,ψ∈Ψ.

G is known as the Grammian matrix associated with Ψ. Notice that the Cauchy-
Schwarz inequality shows that each entry in G is contained in L1(Td) since Ψ ⊂
L2(Rd).

The analysis so far shows that studying metric properties of the shift invariant sys-
tem (1.1) is equivalent to studying the same properties of the trigonometric system

{eikξej}k∈Zd,j=1,...,N ,

where ej, j = 1, . . . , N, is the standard basis for CN, in the vector-valued weighted
space

L2(Td, CN; G) :=
{

f : Td → CN : ‖ f‖2
L2(Td,CN ;G) :=

∫
Td

f (ξ)H G(ξ) f (ξ) dξ < ∞
}

.

At this point, we can outline the most important idea in the proof of Theorem 2.4.
The idea is to “probe” the Grammian G in (3.4) using translates of the Dirichlet kernel
in equation (3.3). The Dirichlet kernel has two important features. The square of it
(properly normalized) forms an approximation to the identity, and moreover, it has
“flat” coefficients.

It is possible to estimate the norm of expansions with flat coefficients relative to a
quasi-greedy system. We need the following result due to Wojtaszczyk [18], see also [8].
It shows that quasi-greedy bases are unconditional for constant coefficients.

Lemma 3.1. Suppose {ek}k∈N is a quasi-greedy system in a Hilbert space H. Then there exist
constants 0 < c1 ≤ c2 < ∞ such that for every choice of signs εk = ±1 and any finite subset
A ⊂ N we have

(3.5) c1
∥∥ ∑

k∈A
ek

∥∥H ≤ ∥∥ ∑
k∈A

εkek
∥∥H ≤ c2

∥∥ ∑
k∈A

ek
∥∥H,

where c1 and c2 depend only on the quasi-greedy constant for the system.

For our purpose, Lemma 3.1 is not quite enough. When we consider translates of
the Dirichlet kernel, we need to be able to handle arbitrary unimodular complex coef-
ficients and not only ±1 as covered by Lemma 3.1. The following proposition, which
will be essential for the proof of Theorem 2.4, takes care of that.
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Proposition 3.2. Suppose that {ψ(· − k) : ψ ∈ Ψ, k ∈ Zd} is a quasi-greedy system in S.
Then there exist constants c1, c2 such that for every finite unimodular sequence {α

ψ
k }(ψ,k)∈F ⊂

C, F ⊂ Ψ × Zd, and every scalar sequence {vψ}ψ∈Ψ, we have

(3.6) c1(max
ψ∈Ψ

|vψ|)L1/2 ≤
∥∥∥∥ ∑

(ψ,k)∈F

vψα
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)

≤ c2(max
ψ∈Ψ

|vψ|)(#F)1/2.

where L := minψ∈Ψ #{k ∈ Zd : α
ψ
k 	= 0}.

Proof. We begin by proving the upper estimate. An easy application of the triangle and
Hölder inequalities yield

(3.7)
∥∥∥∥ ∑

(ψ,k)∈F

vψα
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)

≤ (max
ψ∈Ψ

|vψ|) ∑
ψ∈Ψ

∥∥∥∥ ∑
k:(ψ,k)∈F

α
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)

.

For technical reasons we define a new scalar sequence {β
ψ
k } by

β
ψ
k =

{
α

ψ
k , (ψ, k) ∈ F,

1, (ψ, k) ∈ (Ψ × Zd)\F.

Now observe that {β
ψ
k ψ(· − k)}ψ∈Ψ,k∈Zd is also a quasi-greedy system. In fact, the

greedy approximation operator G̃m for {β
ψ
k ψ(· − k)}ψ∈Ψ,k∈Zd is idential to the approx-

imation operator Gm for {ψ(· − k)}ψ∈Ψ,k∈Zd . This follows from the trivial observation

that if f ψ
k is the dual element to ψ(· − k), then β

ψ
k f ψ

k is the dual element to β
ψ
k ψ(· − k),

since |βψ
k | = 1. We use this fact together with Lemma 3.1 to obtain (for fixed ψ ∈ Ψ)∥∥∥∥ ∑

k:(ψ,k)∈F

α
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)


 Avg
ε

ψ
k =±1

∥∥∥∥ ∑
k:(ψ,k)∈F

ε
ψ
k [βψ

k ψ(· − k)]
∥∥∥∥

L2(Rd)



(

∑
k:(ψ,k)∈F

‖β
ψ
k ψ(· − k)‖L2(Rd)

)1/2

≤ C(#F)1/2,(3.8)

where we used that L2(Rd) has Rademacher type and cotype 2, see [17, §III.A]. This
together with (3.7) proves the upper estimate in (3.6). We turn to the lower estimate in
(3.6). Pick an index ψ′ ∈ Ψ such that |vψ′ | = maxψ∈Ψ |vψ|. Now we use that the system

{β
ψ
k ψ(· − k)}ψ∈Ψ,k∈Zd is quasi-greedy to conclude that for every ε > 0,

(1 + ε)|vψ′ |
∥∥∥∥ ∑

(ψ′,k)∈F

α
ψ′
k ψ′(· − k)

∥∥∥∥
L2(Rd)

≤ Q
∥∥∥∥(1 + ε)vψ′ ∑

(ψ′,k)∈F

α
ψ′
k ψ′(· − k) + ∑

ψ∈Ψ,ψ 	=ψ′
vψ ∑

k∈Z

α
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)

,(3.9)
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where Q is the quasi-greedy constant for {β
ψ
k ψ(· − k)}ψ∈Ψ,k∈Zd . We let ε → 0+ to

conclude that

|vψ′ |
∥∥∥∥ ∑

(ψ′,k)∈F

α
ψ′
k ψ′(· − k)

∥∥∥∥
L2(Rd)

≤ Q
∥∥∥∥ ∑

(ψ,k)∈F

vψα
ψ
k ψ(· − k)

∥∥∥∥
L2(Rd)

.

Using the same argument as in (3.8), we see that there exists a constant c such that

L := min
ψ∈Ψ

#{k ∈ Zd : α
ψ
k 	= 0} ≤ c

∥∥∥∥ ∑
(ψ′,k)∈F

α
ψ′
k ψ′(· − k)

∥∥∥∥2

L2(Rd)
,

and the lower estimate in (3.6) follows. �
Remark 3.3. Notice that the only properties of the system {ψ(· − k) : ψ ∈ Ψ, k ∈ Zd}
that are used in the proof of Proposition 3.2 are quasi-greedyness and the fact that the
system is quasi-normalized in L2(Rd). Hence, the estimate (3.6) holds for an abstract
quasi-normalized and quasi-greedy system {eψ

k : ψ ∈ Ψ, k ∈ Zd} in a Hilbert space H.

Let G be the Gram matrix (3.4) associated with the finite collection Ψ of functions
in L2(Rd). The entries in G are L1(Td)-functions and consequently finite a.e. We let
λ(ξ) and Λ(ξ) denote the smallest, respectively largest, eigenvalue of the Gram matrix
G(ξ). On the null-set of Td where G may not exist, we assign any convenient value to
λ(ξ) and Λ(ξ). We can now give a proof of Theorem 2.4.

Proof of Theorem 2.4. Let L ⊆ Td denote the common set of Lebesgue points for the
entries in G. We notice that L has full measure. Pick u ∈ L, and let v ∈ CN be an �2-
normalized eigenvector corresponding to the smallest eigenvalue of G(u). We use the
Dirichlet kernel

DK(ξ) := ∑
k∈Zd :|ki|≤K

eik·ξ , K ≥ 1,

to create the vector functions

τK(ξ) := DK(u − ξ)v,

K ∈ N. Notice that DK(u − ξ) is a trigonometric polynomial with exactly O(Kd) non-
zero unimodular coefficients, so ‖DK‖L2(Td) 
 Kd/2. We let

fK = ∑
(ψ,k)∈FK

α
ψ,K
k ψ(· − k)

be the “pre-image” expansion in (1.1) that gives the Fourier transform

f̂K = ∑
ψ∈Ψ

[τK]ψψ̂.

Since v is normalized in �2, we have maxi |vi| ≥ 1/
√

N. We use this fact together with
Proposition 3.2 to obtain the estimate,

‖ fK‖L2(Rd) 
 Kd/2,
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uniformly in K and u ∈ Td. The crucial step is to observe that

|DK(u − ξ)|2
‖DK‖2

L2(Td)

is an approximation of the identity at u. We have

1
‖DK‖2

L2(Td)

τK(ξ)H G(ξ)i,jτK(ξ) =
N

∑
i=1

N

∑
j=1

G(ξ)i,jvivj
|DK(u − ξ)|2
‖DK‖2

L2(Td)

We thus obtain the estimate

lim
K→∞

∫
Td

1
‖DK‖2

L2(Td)

τK(ξ)HG(ξ)τK(ξ) dξ =
N

∑
i=1

N

∑
j=1

G(u)i,jvivj = λ(u).

At the same time,∫
Td

1
‖DK‖2

L2(Td)

τK(ξ)HG(ξ)τK(ξ) dξ =
‖ fK‖2

L2(Rd)

‖DK‖2
L2(Td)


 1,

uniformly in K and u ∈ Td. Hence there exists c > 0 such that c ≤ λ(u) for a.e. u ∈ Td.
To get the estimate for Λ(u), we repeat the argument with w ∈ CN, a normalized
eigenvector corresponding to the largest eigenvalue of G(u).

To conclude the proof, we take an arbitrary finite expansion

f = ∑
ψ∈Ψ

∑
k∈Zd

cψ(k)ψ(· − k),

with f̂ = ∑ψ∈Ψ τψψ̂, where τψ = ∑k cψ(k)eik·ξ . We have, using the standard Rayleigh-
Ritz estimate and Plancherel’s Theorem,

(2π)dc‖{cψ(k)}‖2
�2
≤ ess inf

u∈Td
λ(u) ∑

ψ∈Ψ

∫
Td

|τψ(ξ)|2 dξ

= ess inf
u∈Td

λ(u) ·
∫

Td
τ(ξ)Hτ(ξ) dξ

≤
∫

Td
τ(ξ)HG(ξ)τ(ξ) dξ

= (2π)d‖ f‖2
L2(Rd)

≤ ess sup
u∈Td

Λ(u) ·
∫

τ(ξ)H τ(ξ) dξ

= ess sup
u∈Td

Λ(u) ∑
ψ∈Ψ

∫
Td

|τψ(ξ)|2 dξ

≤ (2π)dC‖{cψ(k)}‖2
�2

.

It follows that (2.2) holds, so the quasi-greedy system (1.1) is indeed a Riesz basis for
S. �
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An application to vector valued spaces. The proof of Theorem 2.4 relies heavily on
properties of the trigonometric system in a certain weighted vector-valued space. Here
we spell out the equivalent version of Theorem 2.4 in this vector-valued setting since
the result may be of some interest in its own right.

For W : Td → CN×N a positive definite matrix-valued function, we can consider the
CN-valued L2 space defined by

L2(Td, CN; W(ξ)) :=
{

f : Td → CN : ‖ f‖2
L2(Td,Cd;W(ξ)) :=

∫
Td

f (ξ)HW(ξ) f (ξ) dξ < ∞
}

.

For such a space, we have the following Corollary to the proof of Theorem 2.4. We let
ej, j = 1, . . . , N, denote the standard basis for CN, and we let λ(ξ) and Λ(ξ) denote the
smallest, resp. largest, eigenvalue for W(ξ). It is proved in [6, Lemma 3.25] that λ and
Λ are measurable functions whenever the entries of W(ξ) are in L1(Td).

Corollary 3.4. Let W : Td → CN×N be a positive definite matrix-valued function with entries
in L1(Td). The trigonometric system {eik·ξej}k∈Zd,j=1,...,N forms a quasi-greedy basis for the

vector-valued space L2(Td, CN; W(ξ)) if and only if there exists positive constants c, C such
that the spectrum σ(W(ξ)) of W(ξ) satisfies

(3.10) c ≤ min σ(W(ξ)) ≤ max σ(W(ξ)) ≤ C,

for a.e. ξ ∈ Td. Moreover, whenever {eik·ξej}k∈Zd,j=1,...,N forms a quasi-greedy basis for

L2(Td, CN; W(ξ)), it is also a Riesz basis for the same space.

Proof. Suppose {eik·ξej}k∈Zd ,j=1,...,N is a quasi-greedy system in L2(Td, CN; W(ξ)). To
derive the lower estimate in (3.10) we follow the proof of Theorem 2.4. For u ∈ Td, a
common Lebesgue point of the entries of W(ξ), we let let v ∈ CN be an �2-normalized
eigenvector corresponding to the smallest eigenvalue of W(u). Then we form the
trigonometric polynomials τK(ξ) := DK(u − ξ)v, K ∈ N. We notice that the quasi-
greedy system {eik·ξej}k∈Zd,j=1,...,N is quasi-normalized in L2(Td, CN; W(ξ)), so follow-
ing Remark 3.3 we conclude that ‖τK‖L2(Td,CN ;W(ξ)) 
 Kd/2. The lower estimate in
(3.10) now follows along the lines of the proof of Theorem 2.4. The upper estimate in
(3.10) is proved the same way.

Next, we let f (ξ) := ∑N
j=1 ∑k∈Zd cj,keik·ξej be a finite expansion. We have, using the

standard Rayleigh-Ritz estimate,

c‖{cj,k}‖2
�2
≤ ess inf

ξ∈Td
λ(ξ) ·

∫
Td

f (ξ)H f (ξ) dξ

≤
∫

Td
f (ξ)HW(ξ) f (ξ) dξ

≤ ess sup
ξ∈Td

Λ(ξ) ·
∫

f (ξ)H f (ξ) dξ

≤ C‖{cj,k}‖2
�2

.

It follows immediately that {eik·ξej}k∈Zd,j=1,...,N is a Riesz basis for L2(Td, CN; W(ξ)).
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The converse result is straightforward. Suppose (3.10) holds. Then L2(Td, CN; W(ξ))
is isomorphic to L2(Td, CN; Id) and it follows that {eik·ξej}k∈Zd,j=1,...,N is a Riesz-basis
for L2(Td, CN; W(ξ)) since it is an orthonormal basis for L2(Td, CN; Id). In particular,
{eik·ξej}k∈Zd,j=1,...,N is a quasi-greedy basis for L2(Td, CN; W(ξ)). �

Remark 3.5. A natural question is whether Corollary 3.4 holds true for more general
systems than the trigonometric basis. An analysis of the proof of Corollary 3.4 shows
that we only use two properties of the system:

• The system is a character group for a compact group. This means that the trans-
lated Dirichlet kernel DK(u + ξ) (here “+” is the addition on the compact group)
is exactly DK(ξ) modified by unimodular coefficients.

• The kernel |DK(u + ξ)|2/‖DK‖L2 is an approximate identity at u as K → ∞.
So for a given system we just have to check the two conditions. We mention, as an
example, that the corollary holds true for the Walsh system.

REFERENCES

[1] M. Bownik. The structure of shift-invariant subspaces of L2(Rn). J. Funct. Anal., 177(2):282–309,
2000.

[2] M. Bownik. The structure of shift-modulation invariant spaces: the rational case. J. Funct. Anal.,
244(1):172–219, 2007.

[3] I. Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[4] C. de Boor, R. A. DeVore, and A. Ron. On the construction of multivariate (pre)wavelets. Constr.
Approx., 9(2-3):123–166, 1993.

[5] C. de Boor, R. A. DeVore, and A. Ron. Approximation from shift-invariant subspaces of L2(Rd).
Trans. Amer. Math. Soc., 341(2):787–806, 1994.

[6] C. de Boor, R. A. DeVore, and A. Ron. The structure of finitely generated shift-invariant spaces in
L2(Rd). J. Funct. Anal., 119(1):37–78, 1994.

[7] C. de Boor and A. Ron. Fourier analysis of the approximation power of principal shift-invariant
spaces. Constr. Approx., 8(4):427–462, 1992.

[8] S. J. Dilworth, N. J. Kalton, D. Kutzarova, and V. N. Temlyakov. The thresholding greedy algorithm,
greedy bases, and duality. Constr. Approx., 19(4):575–597, 2003.

[9] N. Dyn and A. Ron. Radial basis function approximation: from gridded centres to scattered centres.
Proc. London Math. Soc. (3), 71(1):76–108, 1995.

[10] H. Helson. Lectures on invariant subspaces. Academic Press, New York, 1964.
[11] E. Hernández and G. Weiss. A first course on wavelets. Studies in Advanced Mathematics. CRC Press,

Boca Raton, FL, 1996. With a foreword by Yves Meyer.
[12] A. A. Kolmogoroff. Stationary sequences in Hilbert spaces. Trabajos Estadistica, 4:55–73, 243–270,

1953.
[13] S. V. Konyagin and V. N. Temlyakov. A remark on greedy approximation in Banach spaces. East J.

Approx., 5(3):365–379, 1999.
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