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Abstract. It is well known that the Walsh-Fourier expansion of a function from the
block space B,([0,1)), 1 < g < 0o, converges pointwise a.e. We prove that the same
result is true for the expansion of a function from B, in certain periodized smooth
periodic non-stationary wavelet packets bases based on the Haar filters. We also
consider wavelet packets based on the Shannon filters and show that the expansion
of LP-functions, 1 < p < oo, converges in norm and pointwise almost everywhere.

Keywords: Wavelet packets, non-stationary wavelet packets, pointwise conver-
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Introduction

In a recent paper [6] a family of non-stationary wavelet packets called
Walsh-type wavelet packets was introduced. The Walsh-type wavelet
packets can be considered smooth generalizations of the Walsh func-
tions and they have some of the same nice convergence properties for
expansion of LP-functions, 1 < p < oo, as the Walsh-Fourier series have.
However, it was also demonstrated in [5, 6] that Walsh-type wavelet
packet expansions fail when it comes to L'-functions. There is thus a
gap between the negative result in L' and the positive results for L?,
1 < p < 0o. The same gap exists for the Walsh system, and several
families of spaces containing I”, 1 < p < oo, have been introduced
where the positive results about convergence almost everywhere can be
shown to still hold true, see e.g. [7].

The purpose of this paper is to show that for Walsh-type wavelet
packet expansion, we also obtain pointwise convergence almost every-
where for the expansion of functions from the block space By, 1 < ¢ <
oo. This will be done by a careful analysis of the partial sum operator
for the Walsh-type wavelet packet expansions. The block space B, was
introduced by Taibleson and Weiss [8, 9] to study convergence prop-
erties for trigonometric series, and we recall their definition in Section
1.

In Section 1 we will also give the definition of the Walsh-type wavelet
packets that will be considered and give a precise statement and proof
of the main result, Theorem 2.4.

The second part of this paper is devoted to a study of wavelet packets
based on the Shannon filters. In a sense the Shannon filter is the oppo-
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site extreme to the Haar filter associated with the Walsh functions. It
is the only filter with “perfect” frequency localization. In Section 3 we
will consider wavelet packets based on the Shannon filters, and prove
LP-convergence for certain nonstationary wavelet packets based on the
Shannon filter.

Finally, there is an appendix dealing with some elementary prop-
erties of the Walsh functions that is used in the proofs in Section
1.

1. Walsh-Type Wavelet Packets

The Walsh-type wavelet packets are one example of a family of so-called
non-stationary wavelet packets; to define the non-stationary wavelet
packets we need a multiresolution analysis {V;}jez for L%(R) (for the
definition and properties, see e.g. [1, 4]). To every multiresolution anal-
ysis we have an associated scaling function ¢ and a wavelet 1 with the
properties that

V; = spa(20/24(2 - —k)lk € 7},
and ' '
{wix =292 - —k)|j.k € Z}
is an orthonormal basis for L?(R). We denote W; = span{2//%(27 -
—k)|k € Z}.
We let (Fép), Fl(p)), p € N, be a family of bounded operators on £2(Z)
of the form

(FPa)e =Y anh® (n—2k),  €=0,1
neEL

with hgp) (n) = (—1)"h(()p)(1 —n) a real-valued sequence in £!(Z) such
that

Fo(p)*FO(p) + F1(p)* 1(10) -1
FPFP* =0,

We define the family of functions {wy,}>2, recursively by letting wo =
¢, w1 =1 and then for n € N

wop () = 2 Z h(()p)'wn(Z:U -/ (1)
LEZ

won1(z) = 23 b (q)wn (22 — 0), 2)
LET
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where 2° < n < 2P+ The family {w,}°, is our basic non-stationary
wavelet packets. It is easy to verify that

{wn(- —k)In >0,k € Z}
is an orthonormal basis for L?(RR). Moreover,
{wp(- — k)20 <n< 2tk e}

is an orthonormal basis for W; = span{2//2w; (2’ - —k)|k € Z}.

Each pair (Fép ), l(p )) can be chosen as a pair of quadrature mir-
ror filters associated with a multiresolution analysis, but this is not
necessary. The trigonometric polynomials given by

m(()p) (&) = - Z h(()p)(k)e k& and mgp) (&) = E Z hgp)(k)e k¢
k k

are called the symbols of the filters. The Fourier transform of (1) is

given by
() = mf) (£ )om (5, ®)
and (2) becomes
Won+1(§) = mgp) (g) Wn (g) . (4)

The Haar low-pass quadrature mirror filter {ho(k)}; is given by
ho(0) = ho(1) = 1/v/2, ho(k) = 0 otherwise, and the associated high-
pass filter {h1(k)}x is given by hi(k) = (=1)kho(1 — k). We now give
the definition of the family of non-stationary wavelet packets we will
consider

DEFINITION 1.1. Let {wy }n>0kez be a family of non-stationary wavelet
packets constructed by using a family {h(()p ) (n)}p2y of finite filters for

which there is a constant K € N such that h(()p) (n) is the Haar filter
for every p > K. If w; € CY(R) it is compactly supported then we call
{wn}n>0 a family of Walsh-type wavelet packets.

We call the functions (basic) Walsh-type wavelet packets since it turns
out that they share a number of metric properties with the Walsh
system and they can therefore be considered a smooth generalization
of the Walsh system (see [6]).

For technical reasons we would like the functions to have support
on [0,1). This can be obtained by periodizing the Walsh-type wavelet
packets.
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DEFINITION 1.2. Let {wy}32, be a family of Walsh-type basic wavelet
packets. For n € Ny we define the corresponding periodic Walsh-type
wavelet packets wy, by

W () = an(.’ﬂ — k).
kEZ

It follows easily from Fubini’s theorem that {wy,}>2 , is an orthonor-
mal basis for L2[0,1).

1.1. BLOCK SPACES

We now briefly recall the definition of the block spaces, see also [8, 9].

DEFINITION 1.3. A dyadic g-block is a function 8 € L1]0,1) which
is supported on some dyadic interval I such that |G|, < |I)'/97". We
let B, denote the space of measurable functions f on [0,1) which has
an erpansion

(e e]
F=> kb,
k=1
where each Py is a q-block and the coefficients {cy} satisfy
2521 eyl
el = 3 farl(1+108 =L ) <o )
k:cp#0 k
The quasi-norm of f € By is given as the infimum of ||| - ||| over all
possible decompositions of f into blocks:
Iflls, == inf [[[{ck}l-
! =" cuBr

REMARK 1.4. Notice that for f € By,
o0 (e e]
11 <D lerlllBrlli £ D7 lex] < o0
k=1 k=1

using (5) and the fact that for each k, ||Bllq < |I|'/971 which implies
that ||Bx|1 < 1, i.e. By C LY0,1). Moreover, for f € L10,1), 1 < g <
0o, B=|fll;*f is a g-block supported on I =[0,1) so L4[0,1) C B,.

The classical example to show that for each ¢ > 1 there exists f € B,
which belong to none of the LP[0,1)-spaces is the following: put

2k 97k < p <2kl

0 otherwise.

Br(z) = {

Then f = 3321 k2B € By but ||f[l) = X732, k~2¥0~) = oo for
every p > 1.
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2. Main Results

We are now in a position to state the main result on Walsh-type wavelet
packets. We need the following definition.

DEFINITION 2.1. Let {wy} be a periodic Walsh-type wavelet packet
basis. For any function f € L'[0,1) we define the Carleson operator by

N
Z fawn wn

= sup
N>0

the weak Carleson operator G is defined by

N

n=0

Gf(z) = limsup

N>0

and the dyadic Carleson operator G% is defined by

2t—1

> ", W) Wn (z)|.

n=0

G4f(z) = sup

>0

REMARK 2.2. It is obvious that G, G, and G are sub-linear operators.
The reason we use the term weak for G is of course that it is defined
with “limsup” in place of “sup”.

The main result that will be proved below is.

THEOREM 2.3. For 1 < q < oo there exists a finite constant Cy such

that
Cq |l fl5,
a b

{Gf > a}| < a >0,

for every f € By.

Before we get to the details of the proof of Theorem 2.3 let us verify
that the result implies convergence a.e. for the Walsh-type wavelet
packet expansion of block functions. We have the following corollary.

COROLLARY 2.4. Let {w,} be a periodic Walsh-type wavelet packet
basis. Then the Fourier expansion of any function f € By, 1 < g < oo,
in {wn} converges pointwise a.e.

Proof. Define Xy f(z) = S N_o(f, Wn)wn (). With f = 322, cxf €
B, we let gk = b, B and notice that || f — gx||s, — 0. For each
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T € [O, 1) we write f — 2, f = (f — gK) + (gK — Eng[() + (Eng]( — Enf)
Thus

= : lirrlrljgplf(w) — Znf(z)] > a}
<|{z: 1iﬂ8£p|f($) — gk (7)| > a/3}+
+ [z : lirlglsgp l9x (z) — Engr(z)] > a/3}]

+ {z: liﬁsgplzngK(w) —Ynf(z)| > a/3}

3| f — 3C, —
< ||f 9K||Bq 104+ q||f gK”Bq.
[0 a

From this it follows that
[ < limsup| (2) — S f (@)] > a}| =0,
which proves the claim.

The proof of Theorem 2.3 will be based on a number of Lemmas,
and the following result proved by the author in [6].

THEOREM 2.5. Let {w,} be a periodic Walsh-type wavelet packet
basis, and let G be the associated Carleson operator. Then G is of strong
type (p,p), 1 < p < o0, i.e. G is sub linear and there exists a constant
Ky such that |G flp < Kp| fllp-

REMARK 2.6. One cannot deduce from Theorem 2.5 that the Carleson
operator for a periodic Walsh-type system maps L'[0,1) into weak-L".
In fact, this type of result will most likely not be true similar to the
situation for the Walsh system and the trigonometric system. The much
weaker result that the Carleson operator cannot be bounded on L'[0,1)
follows from a counterezample in [6].

The first lemma, deals with the dyadic partial sums of the wavelet
packet expansion of a single g-block. Before we state and prove the
lemma we want to recall two basic facts about the periodic multires-
olution analysis {V;} in which the wavelet packets live. We let P‘7j

denote the orthogonal projection onto Vj, and let K;(z,y) denote the
operator kernel associated with P‘7 . Then there exists a finite constant

C (independent of j) such that
|Kj(z,y)| < Cla —y| ™, (6)

and the operator f — sup; Py f(z) is of strong type (¢,¢), 1 < ¢ < oo,
J
see e.g. [10] for details.
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On convergence of wavelet packet expansions 7

LEMMA 2.7. Let {w,} be a periodic Walsh-type wavelet packet system.
Then there exists a constant Cy such that for every g-block 8, 1 < g,

C.
98 > o} < 1.
Proof. The dyadic partial sums for the expansion of a measuable
(integrable) function f in the periodic Walsh-type wavelet packets,

2N _1

Snf(x) = Y (f Wn)in,

n=0

agrees everywhere with the projection onto the (periodized) scaling
space Vi associated with the underlying multiresolution analysis, see
[3]. It therefore suffices to consider the projection operators Py~ onto

the spaces Vy. Suppose that the ¢g-block § is associated with the dyadic
interval I C [0,1], and let o > 0. If 1 < a|I| then |I|'"9/af < 1/a,
and using the fact that the operator f — supy PV~N f(z) (and thus

f — G4f(x)) is of strong type (g, q), we obtain

7]t
ol

<

a C
{G4f(z) > a}| < C&@) <c, ;q

Next we suppose that 1 > a|I| with I = [a,b). Put I = [3%=t 30=2)n
[0,1), and define I = [0,1)\I. We have

{6 > a}| < 21| + 1N {G'5 > a}|

<2 +|Tn{g% > o},

Fix = € T and using the estimate (6) on the kernel K we obtain

sw8@)| = | [ Kna)bway] < { o+ == Hlglh.

|z —al |z — b

Using ||B|l1 < 1, and the fact that = € I implies that |z — a|,|z — b] >
|I]/2, we finally obtain

bl

Q|

[{e € I:sup|SnB(a)| > a}f <

with C independent of I and 8 and the Lemma follows.

We now turn our attention to G itself. Using the result on G¢ we
only need to consider the situation “between” dyadic scales. To get
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such estimates we need to estimate the size of the kernels
m

KJ,m(:L'ay) = Z wn(l')wn(y), m < 2J+1,

n=2J

associated with the partial sum operator. We have

LEMMA 2.8. Let

Kim(@,y) = ) wa(z)wa(y),
n=2J
for 27 <m < 27t Then
2N C
K ym(z,y)] < 5
nenlS 2 Gy
Proof. We expand the kernel, using Lemma 4.2 from the appendix,
m
Kim(@,y) = Y w(z)wn(y)
n=2J
m 2/-K_12/-K_3

:Z Z ZWnQJK€2(JK))
=0 k=0

n=2J
X W,,_gi—x (k27K wor (27 Kz — O)wox (27 Ky — k)

oJ-—K_19J-K_1

XX {ian(@“"‘“)Wn2JK<kz—<J—K>)}
=0 k=0

n=2J
X wor (277K — D)wox (277 Ky — k)
Hence, by Lemma 4.3,

Kym(@:y)| < ngo-x ([2775 (z + 25T 0))27 /=KDy

—Nk=—N'"n=2J

X Wi _gr-5 (2775 (y + 2577 8)]27 Y 750) g |5

C
D R e

where ZI indicates that only the terms for which z + 25K-7¢ € [0,1)

and y + 25=7k € [0,1), respectively, should be included in the sum.
This implies the estimate

C
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since we have a @ b > 2702 [a=bll > |4 —p|/2.

PROPOSITION 2.9. Let1 < g < oo. There ezxists a finite constant Cy
such that

6o >a) <%, a>o,

for all g-blocks .
Proof. Fix a > 0 and a g-block 3 supported on the dyadic interval
C [0,1). We consider two cases. If 1 < a|I| then |I|'"%/af < 1/a.
Hence by Theorem 2.5 we have

q
s> a} < 6, (12ls) <,

Now suppose 1 > a|I| with I = [a,b). Put
1
= . 3a—b 3b—a
= (U G+E2t 2o ap,
j=-—1
and define T = [0,1)\I. Then
{GB > a}| < ||+ IN{GS > o}
6 -
§a+|Iﬂ{Gﬂ>a}|.

7]t

ol

<%
(87

Notice that
IN{GB > a}| <|IN{G8 > a/2}| + [I N {limsup M8 > a/2}|,
J

with
M;p(x) = 2J§$%§+1_1M?B(x) and M7'B(z) = niJ(ﬁ,'&?ﬁ)wn(w)

For z € [0,1) we have

N N m

Z Z Z (B, wn (- — €1))wn(z — £o)

51* N {ly=—N pn=2J

i (8, wa(- — £))wn(z — )|
) (7)

lim sup M7 B(z) = lim sup

J,m Jym

N

< Z Z thlsup

li=—N{ly=—N

Hence it suffices to estimate |E:¢2| with

> (B wn(- — £1)ywn(x — £2)

n=2J

Eft = {m el: lilTllsup
\m

> al.
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Fix z € R\I. We have

o0 d
‘/ K ym(z—L1,y—£2)B( dy‘<0 Z / Aly) dy

=N oo|x—y+€2—£1+2K Jf|
which implies that whenever z € E+#2 there is an increasing sequence
Jir — oo for which

(e=avam

1
> Ca,
w—a+€2—f1+2KJk€|+|$—b+£2—e1+2KJke‘) @
for some fixed C > 0 and for £ = 1,2 As J;. — oo we see that this
implies
( 1 v 1
|z —a+ £y — 41

> Ca.
|.’L‘—b+e2 —21|)
Using that I = [0,1)\] and the same technique as in the proof of
Lemma 2.8, we complete the proof to conclude that |E’zl ’ZE\ < a !and
consequently

|I N {limsup M 8 > a/2}| <

J

which completes the proof

Qu| Qe

6.3]

Now we can complete the proof of Theorem 2.3 using standard
estimates. The proof of the following lemma can be found in [7, Sec

LEMMA 2.10. Suppose {B}32, is a sequence of g-blocks satisfying
[16¢] > o} <~
k ar| S a.

Then for any sequence {c,}32; € £'(N) and f = 332, kB, we have

3 el
A1 > o) < 2L

With this result we have

Proof. (Theorem 2.3) We notice that for f = >3, kB € By,
we have Sy f = Y22, cxXnB due to the L' convergence of the sum
defining f. Hence

Gf <Y |cklGBr,

k=1
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On convergence of wavelet packet expansions 11

and Theorem 2.3 follows by combining Proposition 2.9 and Lemma
2.10.

3. Shannon Wavelet Packets

Now we turn our attention to Shannon wavelet packets. The Shannon
filters can be considered the opposite extremal to the Haar filters, and
is the only pair of filters with “perfect” frequency localization.

The (stationary) Shannon wavelet packets are defined by taking

mg (€) =D Xj—ny2,n/2)(€ — 2k)
kez

and

my (€) = 1 —mg (€)

in Equations (3) and (4), with wp defined by wo(§) = X[—r/2,r/2)(£)-
It is possible to finad an explicit expression for w,. We define a map
G : Ny — Ny in the following way. Let n = Y 7> nx2F ! be the binary
expansion of n € Ny. Then we let G(n); = n; + n;y1 (mod 2), and
put G(n) = 332, G(n),2* 1. The map G is the so-called Gray-code
permutation (one can easily check that G is 1 — 1 and onto Ny). The
Gray-code permutation relates the Walsh system in Paley order and
frequency order, and enters naturally into the frequency localization of
more general wavelet packets. We have the following simple formulas
for the Shannon wavelet packets. See [11] for a proof.

THEOREM 3.1 ([11]). Let {wy, }, be the Shannon wavelet packets. Then

A

WG(n) (§) = Xnr,(n+1)r] (1€])-

Note that the Shannon wavelet packets are uniformly bounded just
like the Walsh functions due to their perfect frequency localization.

The above result suggests that reordering the Shannon wavelet pack-
ets using the inverse Gray-code permutation might improve their con-
vergence properties. We define a new system by letting w, = wg(y) for
n € Ny. We call the reordered system {wy,}>2, the Shannon wavelet
packets in frequency order.

We want to prove that the Shannon wavelet packets form a Schauder
basis for the LP(R)-spaces. We need the following sampling theorem.
The proof can be found in [4].
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THEOREM 3.2 ([4]). Let L(z) = sin(nd~! (z—dk))/ (76~ (z—6k)), 0 <
0 <1, and let {ck}r C C. Then
1> cx Lillp = |{ck}Hler(z),
kEeZ
for 1 <p < 0.

REMARK 3.3. Note that if {ct} € P(Z),1 < p < oo, then it follows
from the Lemma that ) ;7 ck Li converges unconditionally in LP(R).

The following two lemmas will be used to prove the main result,
Theorem 3.6. The first is a well known fact and we therefore omit the
proof.

LEMMA 3.4. Let f € LP(R), 1 < p < co. Define fop = F 'XjauF [
fora,be R, a <b. Then

||fa,b||p < Cp”f”pa

for some constant C), independent of a and b. Moreover,
If — fapllp — 0 as —a,b— oo.

S(R). But
We have the following Lemma which shows that the expansion of each
LP(R)-function in the Shannon scaling functions is well behaved.
LEMMA 3.5. Let
sin(md =1 (x — 6k))
Li(z) = 0<d6<1
K@) = =T —am) <o=4

and suppose f € LP(R), 1 < p < oco. Then

ST L) LY (8)

k€EZ

converges unconditionally in LP(R).

Proof. First, assume that f € LP(R) with supp(f) C [-671m, 67 n]
(with f in the sense of tempered distributions for 2 < p < c0.). Note
that f is the restriction of an analytic function of exponential type
in this special case. We claim that >, [f(6k)|P < Cp ]/ f][5 for some
constant C,, ;. Indeed, take ¢ € S(R) with ¢ = 1 on [-0'm, 6~ 7],
Then, by Plancherel’s Theorem,

[ 1@ dtw— k) da = o [ F€)3(€) explione) de

I S
[ 7@ expiong) de

27 —6— 17

= J(6k).
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We now apply Holder’s inequality to get

SR < [1F@P Y 6@ — dk) da /"

kEZ kEZ
< Cpsll 15

Thus, Lemma 3.5 applies to the sequence f(dk) and (8) converges

unconditionally since (f, L) = f(0k). For general f € LP(R) it suffices
to notice that, by Lemma 3.4, the operator f — (X[_g-1r5-14]f) i

bounded on LP(R), and that f and (x[_s-1s-1.f) have the same
expansion in the functions {LJ}.

Finally, we combine the above Lemmas to get a positive convergence
result for expansions in the Shannon wavelet packets in frequency order.

THEOREM 3.6. The Shannon Wavelet Packet system in frequency
order {wy (- — k) }n x forms a Schauder basis for LP(R), 1 < p < oo, in
the sense that

i Z(fawn( - k))wn( — k) LOR)) f,
N—00

n=0k€eZ
for f € LP(R).

Proof. We have w,(¢) = X[mr,(n+1)7r)(|f|) 50

sin((n + 1)7z sin(nmx nt1)-1 n—
(o) = (ner ) D) SRR ) £ 2

Let f € LP(R), 1 < p < co. Lemma 3.5 shows that {(f,wn(-—k)) }xez €
¢P(Z). Hence

Y {f,wn(- = k) wal- — k)

kEZ
converges unconditionally to Pq, f, where Pq, is the projection onto
the closed span of {wy,(- — k) }x, i.e. P, = F~1 X{nr<|é|<(n+1)m} F- S0
all we have to check is that Y-, Py, are uniformly bounded in N on
LP(R). But 271:7:_01 Pq, is just the operator f — fﬁlX[—Nﬂ,Nw]fa and
it is uniformly bounded on L”(R) by Lemma 3.4.

The above result can also be used to show that the expansion in
the Shannon wavelet packets coverges pointwise a.e. Indeed this fact
follows directly from the Carleson-Hunt theorem for the line:
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THEOREM 3.7 (Carleson-Hunt). Let f € LP(R), 1 < p < oo. Define
Tr, R>0, by

R .
Taf(a) = 5 [ 7€ de
and let (T f)(z) = supgso(Tr)(z). Then T is of strong type (p,p).

We have

COROLLARY 3.8. Let {wn}n be the Shannon Wavelet Packet system
in frequency order Then for f € LP(R), 1 < p < oo,

N
Zz<f’wn('_k)>wn($_k) mf(ai), a.e.
n=0

Proof. Jusl‘zefote that

~

LY S tont —)ente — 1)} © = F©x nenn(®)

n=0 k€Z

3.1. SHANNON-TYPE WAVELET PACKETS

We now generalize the above results to a class of nonstationary wavelet
packets.

DEFINITION 3.9. Let {wy}n>0 be the family of nonstationary wavelet
packets constructed using a family {h%p ) Yoy of filters in equations (1)
and (2). If there exists a constant J € N such that h®) is the Shannon

filter for every p > J then we call {w,} a family of Shannon-type
wavelet packets.

In what follows, [-] will denote the function that converts a binary
string to the corresponding integer, and [-]2 the function that con-
verts an integer to its binary expansion. For fixed J € N we define
a permutation Gy : N — N by

n ifn <2/
Gy(n) = e oL L+1
[nL---nL_J+1[G([nL_J---nl])]g] if2b<n<?2 , L > J,
where n = [npng_1---n1] is the binary expansion of n. So G; leaves
the J most significant bits unchanged, but performs the Gray-code
permutation on the least significant L — J bits.

The frequency ordering of any Shannon-type wavelet packet system

{wp} (with J as in definition 3.9) is given by
{wn = we, () Fnzo-

The following result is the analog of Theorem 3.6.
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THEOREM 3.10. Let {wp}n be a system of Shannon-type wavelet pack-
ets in frequency order. Then {wy(-—k)}n>o0kez forms a Schauder basis
for LP(R), 1 < p < o0, in the sense that

i Z<fawn(' —k))wn (- — k) L@R% f,
N—o00

n=0keZ

for f € LP(R).
Proof. First, let us assume that wg is band limited with supp(wg) C
[-K7,Kn], K €N, and that 1 < p < 2. Define P; by

Pif(z) =Y (f,wj(- — k))wj(z — k).

kEZ

We know that the family {E?igl Pj}ren is uniformly bounded on
LP(R) since it is just the projection onto the wavelet space V. It
therefore suffices to prove that 37" ,. P; is bounded on LP(R) with

bound independent of I, € N and m < 271, Let J be the scale from
which only the Shannon filter is used to generate the wavelet packets.
Take j € N: 28 < j < 2L L > J G;(§) = [er -+ €1]. Then

(&) = mE (€/2)mS,(€/2%) -+~ mZ_ (¢/2"77)
xmi) (/25T om) (€728 )i (¢/27)

€L—J+1
2/-1K
={ T -2 fay g2t ),
s=—2/-1K

where i; = [leg_1---€er_st1)2 € [0,27 — 1] and 277LI; C [—m, 7] is
symmetric about 0 and is a union of two intervals, each of length
27=Ln (follows from Theorem 3.1). For a function g we will use the
notation g7 to denote the 27-periodic function obtained by taking
the 27-periodic extension of the restriction of g to I. Using Plancherel’s
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theorem we have

2/-1K

PIO =52 [ F0) X xlt-2 e

k€L~ s=—2/-1K
Gy, (127 L)e™ dte™ ™, (¢)

2J-1K

S LS S

5:—2J71KkEZ J

t 4 2L—J+1 . .
N (u)ezkt dteiZkg(:)j (é)

Wi oL—J
271K L—J+1 per
_ ; Lt~ (EF2 S
- SZ_QZJIK [f(§ +2 TS, (—2LJ )] ; x
2/-1K
Yo xp(E =28 )y (¢/28)
r==2/"1K
2/-1K 21K — er
R B ) §+2L J+lgg p
SR e e (S
s=—2J-1K r=—2/-1K L
iy (€ — 270 ) b (6/2)
271K 271K
{ T X e -
s=—2/ 1K r=—2J-1K
L (E+ 2L (s — 7 _ R _
oy (FE = D - 2 b (g2 )

Note that the inverse Fourier transform of each term

F(&+257 T n(s =), (ﬁ . 2L_;:j?(8 - T))le (& — 28 Ttgr)

is the convolution of f with an L' function of norm |lw;;||; and then
composed with the bounded operator given by the multiplier xr,(£§ —
2L=J+1pr). Thus, Pjf is a finite sum of convolutions of LP(R) func-
tions, all with LP-norm < C||f||, (with C independent of j), and a
function of fixed L!-norm. So P; is bounded on LP(R). In general, for
m — 2L = k2L=7 + d with d € [0,2F77),

i Pif(€) =

j=2
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k-1 2/-1K 2/-1K ) L—J+1 _
S{ Y T fertineene (ST

=0 * s=—2/-1Kr=-2/-1K
2L 4 (141)28-7 -1

x> xle- 2 a2t

j=2L412L-J

271K 271K
) _ [E+2E T (s — 1)
LYY e raema (RS
s=—2/-1K r=—2J/-1K
2L k2L=J +d

<X le- 2 fane/et )
j=2L 4 k2L—J
However,
2L (1+1)2k—7 -1 2L +k2L=J 44
S xg (62" ar) and S xaE-2t )
j=2L412L=J j=2L 4k2L—J

are each the characteristic function of an interval (follows from Theorem
3.1 and the ordering of the functions). The same argument as above
applies and }°7" ,; P; is therefore bounded on LP(R) with bounds in-
dependent of m and L. More generally, if wg is not band limited we can
always find an isometry on LP(R) mapping the wavelet packet system
onto a band limited Shannon-type wavelet packet system (see, e.g., [4,
Chap. 6]). The case 2 < p < oo follows easily by a duality argument.

4. Appendix: Some Elementary Properties of Walsh
Functions

In this appendix we define the Walsh system and prove two lemmas
we will need in the following section. The reader can find much more
information on the Walsh system in the monographs [2, 7).

We need two equivalent definitions of the Walsh system on [0, 1).
The first one fit into the wavelet packet scheme

DEFINITION 4.1. The Walsh system {W,}°° is defined recursively
on [0,1) by letting Wo = x0,1) and

Won(z) = W, (22) + W, (22 — 1)
Wont1(z) = Wp(2z) — W, (22 — 1).
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We note that the Walsh system is the family of wavelet packets obtained
by letting ¢ = X[0,1), ¥ = Xjo,1/2) — X[1/2,1), and using only the Haar
filters in the definition of the nonstationary wavelet packets.

The Walsh system is closed under pointwise multiplication. Define
the binary operator @ : Ny x Ny — Ny by

o0

meén = Z i — ni|2¢,
i=0
where m = 3°9°,m;2¢ and n = 37°, n;2¢. Then, see [7],
Wi (2)Wn(2) = Wingn(z). (9)

We can carry over the operator @ to the interval [0, 1] by identifying
those z € [0,1] with a unique expansion z = Y %242;277~" (almost
all z € [0,1] has such a unique expansion) by their associated binary
sequence {z;}. For two such points z,y € [0, 1] we define

00
.’L'@y = Z |:L‘j - yj|27‘771.

Notice that the operation @ is not defined for every pair z,y € [0,1]
but only for a.a. z,y € [0,1] which is sufficient for our purposes. With
this definition we have [2, p. 11]

Wi(z ©y) = Wi (z)Whi(y) (10)

for every pair x,y for which z @ y is defined.
The following lemma was proved in [6]

LEMMA 4.2. Let f; € L*>(R), and define {fy}n>2 recursively by
fonte(x) = fn(22) + (1) fn (22 — 1), e=0,1.
Then for n,J €N, 27 <n < 27%1, we have

27 1

fulz) = Z WH,QJ(32_J)f1(2Jw — 3).

s=0

The final result we need deal with size estimates of Dirichlet kernels
for the Walsh system.

LEMMA 4.3. There exists a finite constant C such that

C
@y’

Z o (25227 YW, o (259127 | <

n=2K

with K > 1,2K < m < 2K*1 and for all pairs z,y € [0,1) for which
T @y is defined.
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Proof. The Dirichlet kernel, D,,(z) = Y72 Wy(z), for the Walsh

system satisfies | D, (z ® y)| < (z @ y) 7!, see [2, p. 21]. Hence,

) Wn2x<[2Kw12—K)Wn2K<[2Ky12-’<)\

n=2K

| S W e (2€e2 @ 241277
n=2K

= [Wyk (2521275 @ [2Ky)2K)) D, 11 _ox (2K 2]27 K @ [2Ky)27K))
=|Dpi1_9x(z D y)|

<(zoy)!

— ?

where we have used (9), (10), and the fact that D, | ok is constant
on dyadic intervals of the form [£27% (£ 4 1)27K).

10.

11.
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