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We present a generalization of V. Temlyakov’s weak greedy algorithm, and
give a sufficient condition for norm convergence of the algorithm for an arbi-
trary dictionary in a Hilbert space. We provide two counter-examples to show
that the condition cannot be relaxed for general dictionaries. For a class of dic-
tionaries with more structure, we give a more relaxed necessary and sufficient
condition for convergence of the algorithm.

We also provide a detailed discussion of how a “real-world” implementation
of the weak greedy algorithm, where one has to take into account floating point
arithmetic and other types of finite precision errors, can be modeled by the
new algorithm.
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1. INTRODUCTION

Given a set D of unit vectors with dense span in a separable Hilbert
space H, one can consider the problem of finding the best approximation
of a given element f0 ∈ H by a linear combination of m elements from D.
ForD an orthonormal basis ofH it is very easy to construct the bestm-term
approximation of f0, but whenever D is redundant the construction is much
more difficult. A greedy algorithm (known as Matching Pursuit in signal
processing [MZ93], or Projection Pursuit in statistics [FS81]) provides an
m-term approximation of f0, which might be sub-optimal, by constructing
a sequence fm ∈ H, m ≥ 1, such that at each step

fm = fm−1 − 〈fm−1, gm〉gm, gm ∈ D
1
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with

|〈fm−1, gm〉| = sup
g∈D
|〈fm−1, g〉|. (1)

The m-term approximant of f0, denoted by Gm, is then defined as Gm =
f0 − fm. Hence,

Gm =
m∑
k=1

〈fk−1, gk〉gk.

It was proved in [Hub85] that fm → 0 weakly, and norm convergence was
proved in [Jo87]. However, the optimization step in (1) is very costly from
a computational point of view, and more recently the convergence of the
greedy algorithm was proved under the weaker condition

|〈fm−1, gm〉| ≥ tm sup
g∈D
|〈fm−1, g〉|, (2)

provided that {tm}m≥1 ⊂ [0, 1] complies with some additional condition.
The greedy algorithm with the relaxed selection criterion (2) is called the
weak greedy algorithm (WGA). In [Jo87] norm convergence of the WGA
was already proved under the assumption that ∃t̃ > 0, ∀m : tm ≥ t̃.
Temlyakov improved this result considerably in [Tem00], proving norm
convergence whenever

∑
m tm/m =∞.

In the present paper we propose a modification/generalization of the
WGA which we call the Approximate Weak Greedy Algorithm (AWGA).
The setup is as follows: let H be a real Hilbert space with inner product
〈·, ·〉 and associated norm ‖f‖ = 〈f, f〉1/2. We call D ⊂ H a dictionary
if each g ∈ D has norm one and span{g : g ∈ D} is a dense subset of H.
Note that what we call a dictionary is generally called a complete dictionary.

Approximate Weak Greedy Algorithm (AWGA). Let {tm}∞m=1 ⊂
[0, 1], {εm}∞m=1 ⊂ [−1, 1], and a dictionary D be given. For f ∈ H we
define a sequence {fm}∞m=0 inductively by letting f0 = f , and for m ≥ 1
assume that {f0, f1, . . . fm−1} have already been defined. Then:

1. Take any gm ∈ D satisfying (2);

|〈fm−1, gm〉| ≥ tm sup
g∈D
|〈fm−1, g〉|,

2. Define

fm = fm−1 − (1 + εm)〈fm−1, gm〉gm. (3)
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3. Put

Gm = f − fm =
m∑
j=1

(1 + εj)〈fj−1, gj〉gj . (4)

Remark 1. 1. The above procedure for the choice εm = 0, m ≥ 1, is
the weak greedy algorithm introduced by V. Temlyakov in [Tem00].

Remark 1. 2. From (3) we obtain

‖fm‖2 = ‖fm−1‖2 − (1− ε2m)|〈fm−1, gm〉|2, (5)

which shows that the error ‖f − Gm‖ is decreasing since |εm| ≤ 1. Con-
versely, whenever fm = fm−1 − cmgm and ‖fm‖ ≤ ‖fm−1‖, one can show
that cm = (1 + εm)〈fm−1, gm〉 for some εm ∈ [−1, 1]. Hence, if {Gm} is
a sequence of approximants, with decreasing error ‖f −Gm‖, that can be
written as the partial sums

∑m
j=1 cjgj , then Gm can be obtained through

some AWGA by choosing the associated tm’s small enough.

We are interested in norm convergence of the AWGA procedure for a
given dictionary D, i.e. whether Gm → f for every f ∈ H (or equivalently,
fm → 0). If the procedure converges for every f ∈ H then we say that
AWGA(D) is convergent.

In the following Section we give sufficient conditions on {εm} and {tm}
for AWGA(D) to converge with any dictionary D, and we demonstrate by
providing two counter-examples that the conditions cannot be relaxed in
general. In Section 3, we show that the conditions can be improved for a
class of dictionaries with some structure. One example of such a dictionary
is an orthonormal basis.

One reason for introducing the parameters εm in the procedure is to
provide an “algorithm” that takes into account the fact that, for most
implementations of the weak greedy algorithm, we will only be able to
compute the inner products appearing in the procedure to within a given
relative error. Moreover, one is forced to use floating point arithmetic for
all the computations. In Section 4 we will discuss the feasibility of using
the AWGA to model a “real-world” implementation of the weak greedy
algorithm.

2. CONVERGENCE OF AWGA IN GENERAL
DICTIONARIES

In this section we will present conditions that ensure convergence of the
AWGA in a general dictionary D. We will also present two counterexamples
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to illustrate that the conditions cannot be relaxed without requiring some
form of special structure of the dictionaries.

2.1. Sufficient Conditions for Convergence of AWGA
The main general result on convergence of the AWGA is the following.

Theorem 2.1. Let D be any dictionary. Suppose that {εm}∞m=1 ⊂
[−1, 1− δ] for some 0 < δ < 2 and

∞∑
m=1

tm(1− ε2m)
m

=∞. (6)

Then AWGA(D) is convergent.

We will give a proof of Theorem 2.1 based on the technique introduced
by V. Temlyakov in [Tem00], but before we get to the proof itself we have
to state two lemmas. The first Lemma concerns weak convergence of the
AWGA, and will also be used in Section 3.

Lemma 2.1. Suppose {εm}∞m=1 ⊂ [−1, 1] and

∞∑
m=1

t2m(1− ε2m) =∞. (7)

Then there exists a subsequence {fmk
}∞k=0 which converges weakly to zero.

Proof. From Remark 1.2, the sequence {‖fm‖2}∞m=1 is decreasing and
thus convergent. Hence,

‖f0‖2 − lim
m→∞

‖fm‖2 =
∞∑
k=0

(
‖fk‖2 − ‖fk+1‖2

)
=
∞∑
k=0

(1− ε2k+1)|〈fk, gk+1〉|2 (8)

≥
∞∑
k=0

t2k+1(1− ε2k+1) sup
g∈D
|〈fk, g〉|2.

By assumption,
∑∞
m=1 t

2
m(1− ε2m) =∞ so we must have

lim inf
m→∞

sup
g∈D
|〈fm, g〉|2 = 0,

and since the span of D is dense in H the result follows. �
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We will also need the following property of `2-sequences due to V. Temlyakov
and S. V. Konyagin, see [Tem00].

Lemma 2.2. Suppose {τn}∞n=1 ⊂ [0,∞) satisfies

∞∑
n=1

τn
n

=∞.

Then for any {αn}∞n=1 ∈ `2,

lim inf
n→∞

|αn|
τn

n∑
j=1

|αj | = 0.

We can now give a proof of the Theorem.

Proof of Theorem 2.1. First we notice by the Cauchy-Schwarz inequality
that

∞∑
m=1

tm(1− ε2m)
m

≤
( ∞∑
m=1

(1− ε2m)
m2

)1/2( ∞∑
m=1

t2m(1− ε2m)
)1/2

,

so
∑∞
m=1 t

2
m(1 − ε2m) = ∞. Using Lemma 2.1 we see that it suffices to

prove that {fm} is a norm convergent sequence or, equivalently, that it is
strongly Cauchy. Suppose m > n. We have

‖fn − fm‖2 = ‖fn‖2 − ‖fm‖2 − 2〈fn − fm, fm〉.

Denote aj = |〈fj−1, gj〉| and let ∆n,m = |〈fn − fm, fm〉|. Clearly,

fm − fn =
m∑

j=n+1

(1 + εj)〈fj−1, gj〉gj ,

so we obtain the estimate

∆n,m ≤
m∑

j=n+1

(1 + εj)|〈fj−1, gj〉||〈fm, gj〉|

≤ am+1

tm+1

m+1∑
j=1

(1 + εj)aj

=
(1 + εm+1)
(1 + εm+1)

am+1

tm+1

m+1∑
j=1

(1 + εj)aj . (9)
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Eq. (8) shows that

∞∑
j=1

(1 + εj)2a2
j ≤

2− δ
δ

∞∑
j=1

(1− ε2j )a2
j <∞,

so we can use Lemma 2.2 with αn = (1 + εn)an and τn = tn(1 + εn) to
conclude that

lim inf
n→∞

max
m>n

∆n,m = 0.

This together with the fact that {‖fm‖}∞m=1 is a convergent sequence shows
that {fm}∞m=1 is strongly Cauchy. �

2.2. Counter-examples for the AWGA with Weaker Conditions
With a result like Theorem 2.1 it is natural to wonder whether the con-

dition on {tm} and {εm} can be relaxed. Next we will show that this is
not the case: the conditions cannot be relaxed for general dictionaries. We
consider two different cases. First, we show

Theorem 2.2. Suppose that

∞∑
m=1

t2m(1− ε2m) <∞. (10)

Then there exists a dictionary D for which AWGA(D) is divergent.

Proof. First, let us suppose
∑∞
m=1 t

2
m(1 − ε2m) < 1. Let f0 be any unit

vector in H. Define the sequences g1, g2, . . . and f1, f2, . . . recursively by

gm : ‖gm‖ = 1 and |〈fm−1, gm〉| = tm‖fm−1‖

fm = fm−1 − (1 + εm)〈fm−1, gm〉gm.

Clearly, {fm} is a sequence of residuals for the AWGA with any dictio-
nary containing the vectors {gm}m≥1. However,

‖fm‖2 = ‖fm−1‖2 − t2m(1− ε2m)‖fm−1‖2,

so

lim
m→∞

‖fm‖2 =
∞∏
k=1

‖fk‖2

‖fk−1‖2
=
∞∏
k=1

(
1− t2k(1− ε2k)

)
> 0.
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Now we consider the general case. We choose M > 1 such that

∞∑
m=M+1

t2m(1− ε2m) < 1.

Select a set of M + 1 orthonormal vectors {u1, . . . , uM , uM+1} in H, and
let PV denote the orthogonal projection onto V = span{u1, . . . , uM}⊥.

We define the sequences {gm}m≥1 of unit vectors inductively as follows:
do M steps of the AWGA for f0 = u1 + · · · + uM + uM+1, where at step
m ≤ M we go in the direction gm := um with coefficient 1 + εm (this will
be justified later). We use fm to denote the residual at step m. Then,
suppose fm−1, m − 1 ≥ M , has been defined. We consider the following
two possibilities:

1. If maxj≤M{|〈fm−1, uj〉|} > tm‖PVfm−1‖ then we go in the direction
gm := uj for which maxj≤M{|〈fm−1, uj〉|} is obtained.

2. Otherwise, take gm to be a unit vector in V for which |〈fm−1, gm〉| =
tm‖PVfm−1‖.

In both cases we define

fm = fm−1 − (1 + εm)〈fm−1, gm〉gm.

Finally, we let {hj}j≥1 be any dictionary for V containing all the vectors
{gk|gk ∈ V}. It is easy to see that {fm} is a sequence of residuals for the
AWGA for the dictionary D = {u1, . . . , uM}∪{h1, h2, . . .}. Also, note that
the special structure of D ensures that the first M steps of the AWGA are
justified. However, by construction,

lim
m→∞

‖PVfm‖2 ≥
∞∏

k=M+1

(
1− t2k(1− ε2k)

)
> 0,

where the estimate corresponds to the “worst case” scenario,

{gk| k ≥M + 1} ⊂ V.

�

Next we consider the case where
∑
m tm/m <∞.

Theorem 2.3. Suppose that {tm}m≥1 is a decreasing sequence with

∞∑
m=1

tm
m

<∞. (11)
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Then for each sequence {εm}m≥1 ⊂ [−1, 1] there exists a dictionary D for
which AWGA(D) diverges.

The proof will be based on a modification of the so-called Equalizer
procedure introduced by V. Temlyakov and E. Livshitz in [LT00]. The
setup is as follows. Let {ei}∞i=1 be an orthonormal basis for H, and let the
sequence {ηm}∞m=1 ⊂ [−1, 1] satisfying

∑∞
m=1(1 + ηm) = ∞ and τ ∈ (0, 1]

be given.
The idea of the Equalizer is to start at a basis vector ei and then pro-

duce a sequence of vectors {fm} ⊂ (R+ei,R+ej) approaching the diagonal
R+(ei + ej) without loosing too much energy on the way. The last vector
before the procedure crosses the diagonal will be fN−1 and fN denotes
the first vector to have crossed (or landed on) the diagonal. The technical
details are as follows;

Equalizer E(ei, ej , τ, {ηk}). Put f0 = ei. Define the sequences g1, . . . , gN ;
φ1, . . . , φN and f1, . . . , fN inductively by:

gm = cosφmei − sinφmej ; fm = fm−1 − (1 + ηn)〈fm−1, gm〉gm,

with φm ∈ [0, π/2] such that

〈fm−1, gm〉 = τ‖fm‖, m = 1, 2, . . .

Notice that

‖fm‖2 = ‖fm−1‖2 − τ2(1− η2
m)‖fm−1‖2,

and

fm = ‖fm‖(cosαmei + sinαmej), (12)

for some αm. Using the assumption
∑∞
k=1(1 + ηk) = ∞ we will now

show that, for sufficiently small values of τ , there exists N > 1 such that
αN−1 < π/4 but αN ≥ π/4. We need the following Lemma to estimate the
angles between the residuals produced by the Equalizer.

Lemma 2.3. Let Ψm(τ) be the angle between fm−1 and fm constructed
by the Equalizer E(ei, ej , τ, {ηm}m≥1). Then

Ψm(τ) = arccos
1− τ2(1 + ηm)√
1− τ2(1− η2

m)
,

so

Ψm(τ) = (1 + ηm)τ +O(τ3), as τ → 0.
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Proof. From the definition of fm in terms of fm−1 it follows that

〈fm, fm−1〉 = ‖fm−1‖2 − τ2(1 + ηm)‖fm−1‖2,

which combined with ‖fm‖2 = ‖fm−1‖2 − τ2(1− η2
m)‖fm−1‖2 gives us

cos Ψm(τ) =
1− τ2(1 + ηm)√
1− τ2(1− η2

m)
.

The remainder of the Lemma follows from a Taylor expansion of Ψm about
τ = 0. �

We have the following easy corollary.

Corollary 2.1. There exist τ0 > 0 and constants c > 0;C < ∞ such
that for τ < τ0, and αm(τ) defined by (12) using E(ei, ej , τ, {ηm}m≥1), we
have

c

m∑
k=1

(1 + ηk)τ ≤ αm(τ) ≤ C
m∑
k=1

(1 + ηk)τ.

Remark 2. 1. It follows easily from Lemma 2.3 that the constants c and
C in Corollary 2.1 satisfy c, C → 1 as τ0 → 0, i.e. we can get c and C as
close to one as we wish by choosing τ0 sufficiently small.

Let us assume that τ < τ0 with τ0 given by Corollary 2.1. The size
of N can now be estimated in terms of τ and the ηm’s as follows; since
αN−1(τ) < π/4 we have

N−1∑
k=1

(1 + ηk) ≤ π

4cτ
,

It follows that
∑N
k=1(1 + ηk) ≤ π/(4cτ) + 2 ≤ C̃/τ , using the assumption

τ ∈ (0, 1]. From this we can estimate the norm of fN ; we have

‖fN‖2 =
N∏
k=1

‖fk‖2

‖fk−1‖2

=
N∏
k=1

(
1− τ2(1− η2

k)
)

≥ e−ατ , (13)
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where α = 4C̃ log 2, and we have used, see e.g. [Wic94, p. 3],

N∑
k=1

log(1− τ2(1− η2
k)) ≥ −2(log 2)

N∑
k=1

τ2(1− ηk)(1 + ηk) ≥ −4C̃(log 2)τ.

For technical reasons, the proof of Theorem 2.3 will be much easier if
we can make sure that the vector fN is actually on the diagonal. We can
consider fN as a function of τ , and we will now show that for some τ̃ with
τ/2 ≤ τ̃ ≤ τ the vector fN (τ̃) is on the diagonal.

Corollary 2.2. Let N be such that fN−1(τ) from E(ei, ej , τ, {ηm}m≥1)
has not crossed the diagonal but fN (τ) has. Then there exists a τ0 ∈ (0, 1)
such that whenever τ ≤ τ0, there is a τ̃ with τ/2 ≤ τ̃ ≤ τ for which fN (τ̃)
is on the diagonal.

Proof. Use Corollary 2.1 and Remark 2.1, we see that whenever τ is
small enough and αN (τ) > π/4 we have αN (τ/2) < π/4, so using the obvi-
ous continuity of αN (η) as a function of η, we see that there is a τ̃ ∈ (τ/2, τ)
for which αN (τ̃) = π/4. �

Remark 2. 2. It is clear that E(ei, ej , τ̃ , {ηn}) defined as in the above
Lemma is an AWGA in the Hilbert space span{ei, ej} with regard to the
dictionary {ei, g1, . . . , gN} with weakness parameter τ̃ : τ/2 ≤ τ̃ ≤ τ . From
now on, for 2τ ≤ τ0, we will use the notation Ẽ(ei, ej , τ, {ηn}) to denote
the result of modifying E(ei, ej , 2τ, {ηn}) according to Lemma 2.2. Hence,
the output of Ẽ(ei, ej , τ, {ηn}) consists of two sequences f0, f1, . . . , fN and
g1, g2, . . . , gN , where {fm} is a finite sequence of residuals for the AWGA
in span{ei, ej} with respect to the dictionary Dτi,j = {ei, g1, . . . , gN} and
weakness parameter τ̃ ≥ τ (in particular, it is an AWGA with respect to the
weakness parameter τ). Moreover, the vector fN is right on the diagonal
R+(ei + ej).

Remark 2. 3. We also notice that {fm} remains a finite sequence of
residuals for the AWGA in H with weakness parameter τ in any larger
dictionary D : Dτi,j ⊂ D for which any given elements g ∈ Dτi,j and u ∈
D − Dτi,j share at most one nonzero coordinate in the orthonormal basis
{ei}. Also, note that for the resulting fN we have

‖fN‖2 ≥ e−ατ̃ ≥ e−2ατ . (14)
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With the above results we can now prove Theorem 2.3 using the same
technique as Livshitz and Temlyakov [LT00].

Proof of Theorem 2.3. First, we notice that we only have to consider the
case where

∞∑
m=1

(1 + εm) =∞,

since otherwise
∞∑
m=1

(1− ε2m) ≤ 2
∞∑
m=1

(1 + εm) <∞

and we are in the case covered by Theorem 2.2.
Let τ0 be given by Corollary 2.2, and suppose τ0/2 ≥ t1 ≥ t2 ≥ · · · ≥ 0.

Notice that since
∞∑
k=1

tk
k

= S <∞,

we have
∞∑
`=0

t2` ≤ 2S <∞.

We define the AWGA and the dictionary D as follows. The idea is
to equalize iteratively. Start with f0 = e1 ∈ span{e1, e2} and apply
Ẽ(e1, e2, t1, {εk}∞k=1). After m1 = N1,2 ≥ 1 steps we get g0

1 , . . . , g
0
N1,2

and

fm1 = c1(e1 + e2),

with property, see (14),

‖fm1‖2 ≥ ‖f0‖2e−2αt1 .

Now apply Ẽ(e1, e3, t2, {εk}∞k=N1,2+1) on the component c1e1 of fm1 in
span{e1, e3}, using N1,3 steps, and apply Ẽ(e2, e4, t2, {εk}∞k=N1,2+N1,3+1) on
the component c1e2 in span{e2, e4} using N2,4 steps. From this we obtain
g1
1 , . . . , g

1
N1,3+N2,4

, with m2 −m1 := N1,3 +N2,4 ≥ 2, and

fm2 = c2(e1 + · · ·+ e4)

satisfying

‖fm2‖2 ≥ ‖fm1‖2e−2αt2 .
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After s iterations we get

fms
= cs(e1 + · · · e2s),

and for i = 1, 2, . . . , 2s we apply Ẽ(ei, ei+2s , t2s , {εk}∞k=Ni+1), where N i is
the largest index of an εk used by the previous application of the equalizer,
on the component csei of the residual along ei in span{ei, ei+2s}. We
use Ni,i+2s steps, and obtain unit vectors gs1, . . . , g

s
N1,2s+1+···+N2s,2s+1

, with
ms+1 −ms :=

∑
iNi,i+2s ≥ 2s, and

fms+1 = cs+1(e1 + · · ·+ e2s+1)

satisfying

‖fms+1‖2 ≥ ‖f0‖2e−2αt1e−2αt2 · · · e−2αt2s ≥
∞∏
k=0

e−2αt2k ≥ e−4αS .

Using Remark 2.3 we see that {fms
} is actually a subsequence of residuals

for the AWGA, with respect to the dictionary

D =
∞⋃
k=1

ek ∪
⋃
s≥0;`

gs` ,

which fails to converge to zero.
For the general case, we notice that tm → 0 as m → ∞ so we can find

L > 0 such that t2L ≤ τ0/2. Then we take f = e1 + ·+e2L and at the 2L−1
first steps of the AWGA we go in the directions specified by {e1, . . . , e2L−1}.
Then we use the procedure described above with f = e2L to complete the
proof. �

3. AWGA IN DICTIONARIES WITH SOME STRUCTURE

So far we have considered the AWGA(D) with no assumptions on the
structure of the dictionary D. One would expect that Theorem 2.1 can
be improved provided that we have some control on the structure of the
dictionary. This is indeed the case, and in this section we will give an
example of a large class of dictionaries where we can improve the result.
The prime example from this class is the dictionary with the most structure
of all, the orthonormal basis. Let us state and prove the general result and
then consider a number of examples. The reader should compare the result
below to the negative result of Theorem 2.2.
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Theorem 3.1. Suppose

H =
∞⊕
j=0

Wj ,

with dimWj <∞ for j = 0, 1, . . ., and let

D =
∞⋃
j=0

Dj

be a dictionary for H for which Dj ⊂ Wj is an arbitrary dictionary for Wj.
Then AWGA(D) is convergent provided that

∞∑
m=1

t2m(1− ε2m) =∞. (15)

Proof. Let PWj denote the orthogonal projection onto Wj . For a given
function f ∈ H consider the sequence {‖PWj

fm‖}∞j=0 ∈ `2(N) for m =
1, 2, . . . . It follows from the orthogonality of the subspaces Wj and the
definition of the AWGA that for each j, ‖PWj

fm‖ is decreasing as m→∞.
Thus, by the Dominated Convergence Theorem, the sequence has an `2(N)-
limit, which we denote by {γj}j , and

lim
m→∞

‖fm‖2 =
∞∑
j=0

γ2
j .

It follows from Lemma 2.1 that there exists a subsequence fmk
that con-

verges weakly to zero. Hence, for each j, the projections PWjfmk
con-

verges weakly to zero in Wj as k → ∞. By assumption, dimWj <
∞ so the weak convergence in Wj is also strong convergence and γj =
limk→∞ ‖PWj

fmk
‖ = 0. Hence, limm→∞ ‖fm‖ = 0. �

Remark 3. 1. By applying exactly the same technique as in the proof
of Theorem 2.2, one can show that the condition (15) is sharp within this
class of structured dictionaries.

Let us consider some examples of dictionaries that fit into the setup of
the theorem. First up is the orthonormal basis.

Example 3.1. Let D = {ej}∞j=0 be an orthonormal basis for H. Define
Wj = span{ej}. Clearly, Theorem 3.1 applies, so AWGA(D) converges
provided

∑∞
m=1 t

2
m(1− ε2m) =∞.
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The second example comes from the library of Walsh wavelet packet
bases for L2[0, 1). We remind the reader that the Walsh functions {Wn}∞n=0

are the basic wavelet packets associated with the Haar Multiresolution
Analysis, see [Wic94, HW96]. The Walsh functions form an orthonormal
basis for L2[0, 1) and the library of Walsh wavelet packet bases are obtained
as follows; for every dyadic partition P of the “frequency axis” {0, 1, . . .}
with sets of the form

In,j = {n2j , n2j + 1, . . . , (n+ 1)2j − 1}, with j, n ≥ 0,

we have an orthonormal basis for L2[0, 1) consisting of the family of func-
tions ⋃

In,j∈P
{2j/2Wn(2jx− k)|k = 0, 1, . . . , 2j − 1}.

It can also be shown that for each set In,j we have

span{2jWn(2jx− k)}2
j−1
k=0 = span{W`}`∈In,j

.

With these facts about the Walsh wavelet packets we can give the fol-
lowing fairly general setup where the Theorem works.

Example 3.2. Let B1 and B2 be two orthonormal Walsh wavelet
packet bases for L2[0, 1). Define the dictionary D = B1 ∪ B2. Notice that
D is a tight frame for L2[0, 1) with frame bound 2. Using the remarks
above, and the dyadic structure of the sets In,j (the intersection of In,j
and Iñ,j̃ is either empty or one set is contained in the other), we see that
it is always possible to find finite dimensional spaces Wj , each spanned by
elements from B1 and B2, such that

L2[0, 1) =
∞⊕
j=0

Wj .

We can thus apply the Theorem 3.1 to conclude that AWGA(B1 ∪ B2)
converges provided that

∑∞
m=1 t

2
m(1− ε2m) =∞. �

Remark 3. 2. The reader can easily verify that the previous example
can be generalized to dictionaries D being a union of a finite number of
orthonormal Walsh wavelet packet bases. It is also possible to replace the
Walsh wavelet packets with periodized versions of smoother wavelet packet
bases. The periodization ensures the finite dimensionality of the spacesWj
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defined as above [H-NW96]. An example of such smooth wavelet packets
are the periodized wavelet packets associated with the Daubechies filters.

4. IMPLEMENTATION OF GREEDY ALGORITHMS

In this section we will analyze computational and approximation issues
that occur in “real-life” implementations of greedy algorithms. We will
give a description of the major modifications which were proposed to en-
sure sparsity of the approximations and improve computational efficiency.
While such modifications do not fit in the pure greedy algorithm nor the
WGA models, we will see that they are well modeled by AWGAs.

4.1. Computational Issues
It is known that greedy algorithms are unstable [DMA97], hence their

numerical implementation is likely to be sensitive to the finite precision
of the computations with floating point arithmetic. In particular, there
is a need for a careful study of their convergence properties under finite
precision assumptions. Moreover, because of the large size of the dictio-
nary, the actual computation of all the inner-products 〈fm, g〉 , g ∈ D, at
each step of the algorithm, is “intractable” in most numerical implemen-
tations of greedy algorithms. As a result, numerical implementations do
not compute all these inner products : at most steps, only a much smaller
number is computed. It is also common to compute approximate values
of the inner products in order to accelerate the computations. Hence im-
plementations of greedy algorithms can be modeled as approximate weak
greedy algorithms, as we will see right now with more details.

First, D might be an uncountable dictionary such as the Gabor multiscale
dictionary [MZ93] or the multiscale dictionary of chirps [Bul99]. In such
a situation one defines by discretization a suitable finite sub-dictionary
Dd ⊂ D such that

∀f, sup
g∈Dd

|〈f, g〉| ≥ ρ sup
g∈D
|〈f, g〉| (16)

for some ρ > 0.
The numerical complexity of M iterations of the greedy algorithm in this

dictionary Dd is essentially the cost of the computation of

{〈fm, g〉 , g ∈ Dd, 0 ≤ m ≤M − 1} .

As the completeness of Dd makes it no smaller than a basis, the number of
inner products to be computed at each step is at least ]Dd ≥ N = dimH.
Hence, the cost C(Dd) of their computation cannot be less than N .
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Actually, for the Gabor multiscale dictionary [Tor91, MZ93, QC94] one
gets C(Dgd) = O(N log2N), while with local cosines [CM91], wavepackets
[CMQW92] and the chirp dictionary [MH95, Bul99, Gri00], the correspond-
ing costs are respectively C(Dlcd ) = O(N log2N), C(Dwpd ) = O(N logN),
and C(Dcd) = O(N2 logN). Such values of C(Dd) show that the decompo-
sition of high dimensional signals with greedy algorithms requires a large
computational effort.

4.1.1. Adaptive sub-dictionaries

A more drastic modification of the algorithm can be introduced, which
has strong connections with the notion of weak greedy algorithm. At each
step, instead of choosing gm by a costly optimization in the large dictionary
Dd, one only proceeds to a search in a much smaller adaptive sub-dictionary
Dm ⊂ Dd so that only a small number ]Dm � ]Dd of inner products have
to be computed.

A practical realization of this principle [Ber95, BM96, Gri99] was sug-
gested in time-frequency dictionaries. The principle is to define Dm as
a set of time-frequency atoms where |〈fm−1, g〉|2 is locally maximum ei-
ther in the time direction or in the frequency direction. The heuristics is
that the location of such local maxima should not change two much within
a few consecutive steps. Hence it allows to compute the locations only
at reasonably spaced steps {mp}p∈N : when mp ≤ m ≤ mp+1 − 1, the
search is done in Dm ⊆ Dmp

and one computes only the inner products{
〈fm−1, g〉 , g ∈ Dmp

}
. Ideally, one would like to ensure that

sup
g∈Dm

|〈fm−1, g〉| ≥ ρ′ sup
g∈Dd

|〈fm−1, g〉| (17)

for some ρ′ > 0, but it is actually quite hard to check this condition for such
adaptive sub-dictionaries as the sub-dictionaries of local maxima. Instead,
the following condition

sup
g∈Dm

|〈fm−1, g〉| ≥ ρm sup
g∈Dd

|〈fm−1, g〉| (18)

is always true for some sequence {ρm}m∈N, ρm ∈ [0, 1]. Temlyakov results
[Tem00] show that

∑
m ρm/m = ∞ is sufficient to ensure the convergence

of such an implementation of a greedy algorithm.
With sub-dictionaries of local maxima one can easily check inequality

(18), with ρmp
= 1 and ρm = 0,m /∈ {mp, p ∈ N}. Temlyakov’s condi-

tion thus becomes
∑
p 1/mp = ∞, showing that mp can be quite sparse

and still ensuring convergence (e.g. mp � p log p). In particular it gives
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a much weaker condition than the uniform boudedness of mp+1 −mp re-
quired by Bergeaud and Mallat [Ber95, BM96]. More recently, Livschitz
and Temlyakov [LT00] showed that in such a 0/1 setting the mp’s can be
even sparser.

4.1.2. Fast update of inner products

The reduction of numerical complexity in a strategy with sub-dictionaries
also relies on the use of fast approximate computations of inner products
by updating procedures. It was noted by Mallat and Zhang [MZ93] that
from one step to the next one, for any g ∈ D,

〈fm, g〉 = 〈fm−1, g〉 − 〈fm−1, gm〉 〈gm, g〉 . (19)

At the time of the computation of 〈fm, g〉, the two numbers 〈fm−1, g〉 and
〈fm−1, gm〉 are known, so this update essentially requires the computation
of

〈gm, g〉 =
∫ +∞

−∞
gm(t)g(t)dt. (20)

In practice, one uses discrete atoms g[n], n = 0, 1, . . . , N − 1, g ∈ Dd, so
(20) is replaced by

∑N−1
n=0 gm[n]g[n], which costs O(N).

In highly structured dictionaries such as the Gaussian time-frequency
dictionaries in L2(R) [MZ93, Bul99], it is possible to derive analytic ex-
pressions for the inner products (20). With the discrete-time versions of
these dictionaries, such analytic formulas are replaced by summation for-
mulas [MZ93, Bul99, Gri99] which truncation give an approximation to
〈gm, g〉 within a given relative error η. The computational cost O(1) of
these approximate inner products is independent of the dimension N of
the analyzed signal.

4.1.3. AWGA Model

Fast implementations of greedy algorithms are thus using approximate
coefficients ˜〈fm−1, g〉 both for the choice of a “best” atom at each step

˜|〈fm−1, gm〉| ≥ ρm sup
g∈Dd

˜|〈fm−1, g〉| (21)

and for the update of the residual

fm = fm−1 − ˜〈fm−1, gm〉gm. (22)
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An additional source of approximation is of course the finite precision of the
computations with floating-point arithmetic [Wic94]. If one only models
roundoff errors, the approximation of the inner products can be written as

˜〈fm−1, g〉 = 〈fm−1, g〉+ ‖fm−1‖ ηm(g) (23)

where the order of magnitude ηm of ηm(g) is essentially determined by the
machine precision and the dimension N . If the fast update procedure (19)
is used with an approximate value of 〈gm, g〉, ηm additionnaly depends on
the precision of the latter approximation, as well as on the number of times
this procedure was used, which may depend on m (e.g. m −mp times in
the strategy with adaptive sub-dictionaries).

We notice that the roundoff error behaves like a relative error

˜〈fm−1, g〉 = (1 + εm(g)) 〈fm−1, g〉 , εm(g) ∈ [−1, 1], (24)

whenever ˜〈fm−1, g〉 is replaced by a thresholded value. The threshold
Cm ‖fm−1‖ ηm is specified using some Cm > 2.

Let us analyze a given step and show that such an implementation of a
greedy algorithm is indeed an AWGA.

To prove the “approximate” part of this statement is actually quite easy
using (22) and (24) : it only requires showing |εm(gm)| ≤ 1. Let’s note

that if the atom g is such that ˜|〈fm−1, g〉| = 0, then εm(g) = −1 and
|〈fm−1, g〉| ≤ (Cm + 1) ‖fm−1‖ ηm. In the opposite case, |〈fm−1, g〉| ≥
(Cm − 1) ‖fm−1‖ ηm, hence |εm(g)| ≤ (Cm − 1)−1 < 1.

More interesting is the proof of the “weak” part. It is clear from the
previous discussion that

sup
g∈Dd, ˜|〈fm−1,g〉|6=0

|〈fm−1, g〉| ≥ (Cm − 1) ‖fm−1‖ ηm

≥ Cm − 1
Cm + 1

sup
g∈Dd, ˜|〈fm−1,g〉|=0

|〈fm−1, g〉| .

As a result

sup
g∈Dd, ˜|〈fm−1,g〉|6=0

|〈fm−1, g〉| ≥
Cm − 1
Cm + 1

sup
g∈Dd

|〈fm−1, g〉|

From (24) and |εm(g)| ≤ 1/(Cm − 1) when ˜|〈fm−1, g〉| 6= 0, one gets

sup
g∈Dd, ˜|〈fm−1,g〉|6=0

˜|〈fm−1, g〉| ≥
(

1− 1
Cm − 1

)
Cm − 1
Cm + 1

sup
g∈Dd

|〈fm−1, g〉|
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which, using (21), becomes

˜|〈fm−1, gm〉| ≥ ρm
Cm − 2
Cm + 1

sup
g∈Dd

|〈fm−1, g〉| .

It follows that

|〈fm−1, gm〉| =
1

1 + εm(gm)
˜|〈fm−1, gm〉|

≥ ρm
1 + εm(gm)

Cm − 2
Cm + 1

sup
g∈Dd

|〈fm−1, g〉| ,

so the choice of gm is weak with weakness parameter

1 ≥ tm = ρm
Cm − 1
Cm

Cm − 2
Cm + 1

≥ 0. (25)

4.2. Modified correlation functions

Another family of modified greedy algorithms that fit in the AWGA
model is the class of greedy algorithms which use a correlation function
C(fm−1, g) in place of the inner product 〈fm−1, g〉 to select an atom gm
at each step. The correlation function is used as the coefficient of the
selected atom, and the next residual is fm = fm−1 − C(fm−1, gm)gm. An
example, among some other [MC97], is the so-called high-resolution pursuit
[JCMW98, GDR+96] where the correlation function satisfies the following
property : for every f and g, there is some α : 0 ≤ α ≤ 1 such that
C(f, g) = α 〈f, g〉. Hence this modified greedy algorithm can be expressed
as an AWGA.

5. CONCLUSION

We have defined and studied the class of Approximate Weak Greedy
Algorithms, which generalize Greedy Algorithms by relaxing the method
to construct greedy approximants. Any iterative construction of m-term
approximants with decreasing error can be obtained through an algorithm
of this class. We have established some necessary and some sufficient con-
ditions for convergence of the procedure. In a special class of structured
dictionaries, we were able to determine a sharp necessary and sufficient
condition for convergence of AWGA (Theorem 3.1). However, with general
dictionaries we have to make stronger assumptions to ensure convergence
(Theorem 2.1), and there is still a small gap between the sufficient condition



20 R. GRIBONVAL AND M. NIELSEN

(Theorem 2.1) and the necessary conditions given by the counter-examples
(Theorems 2.2 and 2.3).

The main difference is that in Theorem 2.1 we have to assume that {εm}
is bounded away from 1, while in the second counter-example we make
no assumption at all about this sequence. Nevertheless, the first counter-
example (Theorem 2.2) shows that εm are not allowed to converge too fast
to 1.

Our belief is that further study of greedy algorithms will be best done by
changing the point of view: it is now an important question to characterize
the family of dictionaries for which the condition

∞∑
m=1

t2m(1− ε2m) =∞

is sufficient for convergence of the AWGA. We conjecture that this class
contains the family of tight frames.
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