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ABSTRACT

The purpose of this paper is to generalize a result byDonoho,
Huo, Elad and Bruckstein on sparse representations of sig-
nals/images in a union of two orthonormal bases. We con-
sider general (redundant) dictionaries in finite dimension,
and derive sufficient conditions on a signal/image for hav-
ing a unique sparse representation in such a dictionary. In
particular, it is proved that the result of Donoho and Huo,
concerning the replacement of a combinatorial optimization
problem with a linear programming problem when search-
ing for sparse representations, has an analog for dictionaries
that may be highly redundant. The special case where the
dictionary is given by a union of several orthonormal bases
is studied in more detail and some examples are given.

1. INTRODUCTION

Images and signals, when considered as vectors in a high-
dimensional Hilbert space (resp. ), can
be uniquely represented by their set of coefficients in any
given basis. For many applications –such as denoising [1],
compression [2] or source separation [3] –, the goodness
of such a representation is related to its sparsity : a good
representationwill be such that many coefficients are almost
zero while only a few ones are non negligible.

It has been observed that in many cases, natural images
or sounds contain superimposed structures of very different
nature (edges and textures, transients and stationary parts)
that do not necessary have sparse representations in a sin-
gle basis. The dictionary approach [4] to signal and image
representation considers more general types of expansions,
where the basis is replaced by a so-called dictionary. A dic-
tionary in (resp. ) is a family of
unit (column) vectors that spans . We will use the
matrix notation for a dictionary.

A representation of an image in a dictionary
is any (column) vector such that .
When , the dictionary forms a family which is lin-
early dependent, so there exists infinitely many represen-
tations for a single image. This allows for the choice of

“the best” representation with a criterion that may depend
on the application. In this paper we will consider two crite-
ria related to the notion of sparsity. Following [5, 6] we will
measure the sparsity of a representation by two
quantities: the and the norm of , resp. (the -norm
simply counts the number of non-zero entries of a vector).
This leads to the following two minimization problems to
determine the sparsest representation of :

minimize subject to (1)

and
minimize subject to (2)

The optimization problem (1) is combinatorial and gener-
ally computationally intractable [7]. On the other hand, (2)
is much easier to handle through the use of linear program-
ming (LP), which is the ground of the Basis Pursuit (BP) ap-
proach [8] to dictionary signal and image processing. None
of these problems is strictly convex, so it is important to
know when they have a unique solution. Moreover, it has
been observed in practice [8] that solving (2) often gives the
solution to (1), hence it is a question whether this can be
grounded mathematically. In the special case where is
the union of two orthonormal bases, these issues have been
studied in details in [5] and later been refined in [6].

In this paper1, we generalize the results of [5, 6] 2 to
arbitrary dictionaries . The flavour of the main results is
the following: we provide sufficient conditions that can be
checked on a computed solution of the problem (2) to
guarantee that : (i) it is indeed the unique solution of (2);
(ii) it is also the unique solution of (1).

In Section 2 we introduce the notations and in Section 3-
4 we give the results for arbitrary dictionaries. The case
where is the union of orthonormal bases for is
studied in detail in section 5. This leads to a natural gener-
alization of the recent results from [6] valid for .

1The detailed proofs are available in our preprint [9].
2A parallel work done independently by Donoho and Elad [10] also

addresses the question of generalizing previous Basis Pursuit analysis re-
sults general dictionaries. Though there are some similarities between this
work to the work in [10], somewhat different perspective on the problem is
adopted.



2. NOTATIONS

We will make an extensive use of the following definitions.
The support of a coefficient vector (resp.

) is . The kernel Ker
of the dictionary will play a special role as

well as the integer quantity (called spark of in [10])

Ker
(3)

The coherence of a dictionary is

(4)

and it will serve to estimate in some of our results.
It is not difficult to check that, when contains at least
an orthonormal basis and some additional unit vector, the
value of satisfies When the lower
bound is achieved we say that is perfectly
incoherent.

3. MAIN RESULTS

In this section we consider and an arbitrary
dictionary . We provide conditions for a solution of the
problem

minimize subject to (5)

to be indeed unique. Our first main result is the following
Lemma which we proved in [9] by refining ideas from [6].

Lemma 1 ([9]) Let a (possibly redundant) dictionary and
a set of indices. For define

Ker
(6)

where we use the convention and .

1. If there exists such that
and such that and .

2. If then, for all such that
, is a solution to the problem (5) with .

3. If then, for all such that
, is the unique solution to the problem (5) with

.

The quantities are not always completely straight-
forward to evaluate. Next we concentrate on the case

. In the special case we have, for any ,

Ker

card card (7)

It follows (we leave the proof to the reader) that we have :

Corollary 1 For all such that ,
is the unique solution to the problem (1) with .

In the next sections we will prove lower bounds on
in order to have explicit sufficient conditions for uniqueness
of an solution.

When we are given an image and compute (with LP) a
solution to the problem (2), we can use Corollary 1 to
check whether it is also a (and indeed the unique) solution to
the problem (5). Another question is its uniqueness with
respect to the problem. While we can in theory check
if , this is not a very explicit test. In
the next sections we will provide more explicit sufficient
conditions to check uniqueness of an solution.

4. ARBITRARY DICTIONARIES

In this section, we provide a general lower bound on
based on the coherence of an arbitrary dictionary.

In [5, 6], the case of was considered
where and are two orthonormalmatrices correspond-
ing to orthonormal bases. Donoho and Huo proved an un-
certainty principle [5, Th. VII.3]

(8)

which corresponds to the sufficient condition for uniqueness
of the solution

(9)

In addition, they proved that (11) is also a sufficient condi-
tion for uniqueness of the solution. Elad and Bruckstein
improved the uncertainty principle by getting [6, Th. 1]

(10)

resulting in a less restrictive sufficient condition for unique-
ness

(11)

With a different technique, Elad and Bruckstein also ob-
tained a sufficient condition

(12)

for uniqueness of the solution. In [11], Feuer and Ne-
mirovsky proved that the latter condition cannot be relaxed.

Next we show that the result of Donoho and Huo indeed
extends from the case of the union of two bases to the case
of arbitrary dictionaries.



Theorem 1 ([9, 10]) For any dictionary, we have the gen-
eralized uncertainty principle

(13)

Moreover, if

(14)

then is the unique solution to the and the problems.

5. UNIONS OF BASES

In this section we consider the special case where is the
union of orthonormal bases, i.e.
where is an orthonormal matrix, . First, let
us see that it is actually possible to have several orthonor-
mal basis with small coherence factor . The proof of
Theorem 2 can be found in [12, 13].

Theorem 2 Let , and consider .
There exists a dictionary in consisting of the union of

orthonormal bases for , such that for any
pair : .

For , and , one can find a
dictionary in consisting of the union of or-
thonormal bases for , again with the perfect incoherence
property: .

Let us now state the main results for dictionaries that are
the union of orthonormal bases. First, we get another lower
bound on , another generalized uncertainty principle.

Lemma 2 ([9]) Let a union of orthonormal bases. Let

Ker with (resp. ) and

. Then

(15)

Consequently

(16)

For the condition (15) can be rewritten
as in [6, Th. 1], and our generalized uncertainty

principle (16) corresponds to that of Elad and Bruckstein (11).
So, the above result recovers the result of Elad and Bruck-
stein for and extends them to .

In a sense the uncertainty principle (16) is sharp for
, because there are example of pairs of bases with

[5, 6]. For strictly larger than , (16) is

certainly not sharp since it is strictly weaker than the general
lower estimate (13). For , it is not known
whether (16) is sharp.

Combining Lemma 2 and Corollary 1, we can check
uniqueness of an solution using the sufficient condition

(17)

When , this sufficient condition is less restric-
tive than the one for general dictionaries (14). However,
this less restrictive condition does not seem to be sufficient
to ensure uniqueness of as an solution. Instead we have
the following result.

Theorem 3 ([9]) Let a union of orthonormal bases.

Denote with (resp. ). Without

loss of generality, we can assume that the bases have
been numbered so that . If

(18)

then is the unique solution to the problem. In the more
restricted case where

(19)

is also the unique solution to the problem.

The sufficient conditions (19) and (17) are very similar but
differ by a gap in the constant
in front of . This is just the same as the difference
between the conditions (12) and (11) proved by Elad and
Bruckstein in the case of two bases. For , Feuer and
Nemirovsky [11] proved that this gap cannot be bridged. If
the same holds true for all , then the only values of
for which the new sufficient condition (19) is less restrictive
than the general one of Theorem 1 are , with
some possible restrictions depending on the value of .

6. CONCLUSION

In this paper we have considered two theoretical problems
of sparse decomposition of signals or images in a redundant
dictionary. We have shown that when the solution of the
(combinatorial) problem is very sparse, it is unique and
coincides with that of the problem, which can be found
in polynomial time by linear programming.

In a given incoherent dictionary , most real signals or
images do not have an exact representation that is sparse
enough to satisfy the sparsity constraints of our theorems.



However, they can be approximated by a linear combina-
tion of vectors from [14]. The more redundant
the dictionary, the more likely it is that any will have good
sparse approximations. However, the relation between spar-
sity and goodness of nonlinear approximations in redundant
dictionaries is only partially understood yet [15].

For each class of signals/images, onemay need to “learn”
different dictionaries that yield sparse representations [16,
17] and it is not clear whether these dictionaries are close to
be perfectly incoherent.

It is also an important practical issue to build efficient
approximation algorithms in such redundant dictionaries.
For incoherent dictionaries and , recent results
[18] show that it is possible to compute in polynomial time
a near-best -term approximation to any . Another
approach is to replace the linear programming problem (2)
by a quadratic program (QP) for which Fuchs [19] obtained
optimality results similar to those presented in this paper.
When is a finite union of bases, QP can be solved by a
relaxation method [20], but the rate of convergence seems
unknown. It would only seem natural that the rate of con-
vergence depends on the coherence of the dictionary.
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