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Mean Size of Wavelet Packets

§1. Introduction

Wavelet analysis is a powerful tool for time-frequency localization. The central equa-

tion in wavelet analysis is the refinement equation

ϕ(x) =
∑
k∈ZZ

a(k)ϕ(2x− k). (1.1)

Here a := {a(k)} is a finitely supported sequence called refinement mask. A solution of

(1.1) is called a refinable function. It is called a scaling function if its shifts {ϕ(x− k)}

are orthonormal.

A necessary condition for (1.1) to have a scaling function solution is that
∑
a(k) = 2

and ∑
k∈ZZ

a(k)a(k + 2j) = 2δj,0. (1.2)

Conversely, if the mask a satisfies the above conditions, then under some easily checked

conditions (see [3, 16, 15]), the refinement equation (1.1) has a solution ϕ with orthonormal

shifts and ϕ̂(0) = 1. Define

ψ(x) =
∑
k∈ZZ

b(k)ϕ(2x− k),

where b(k) = (−1)ka(1 − k). Then {ψ(2j/2ψ(2jx − k)}j,k∈ZZ forms an orthonormal basis

of L2(IR), called an orthonormal wavelet basis. This basis has good localization in the

time-frequency domain and has many applications in different fields.

In order to have better localization for high frequency components in the wavelet de-

composition, Coifman, Meyer, and Wickerhauser introduced another kinds of bases called

wavelet packets. Let w0 = ϕ,w1 = ψ and

w2n(x) =
∑

a(k)wn(2x− k),

w2n+1(x) =
∑

b(k)wn(2x− k).
(1.3)

The family of functions {wn : n ∈ ZZ+} is called the wavelet packets. Their shifts {wn(x−

k) : n ∈ ZZ+, k ∈ ZZ} form an orthonormal basis of L2(IR) called the orthonormal wavelet
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packet basis. This in connection with the orthonormal wavelets provides a best basis

algorithm in terms of the entropy estimates, see Coifman and Wickerhauser [7].

Since the wavelet packets form orthonormal bases of L2, it is natural to ask whether

they also form bases for Lp spaces. In fact, Paley [18] showed a long time ago that for the

Haar wavelet, the corresponding wavelet packets (Walsh system) constitute a Schauder

basis for Lp(IR)(1 < p < ∞). However, Coifman, Meyer and Wickerhauser [6] proved

that the wavelet packets associated with the Meyer wavelet are not uniformly bounded

in Lp when p is large, hence their frequency localization is not very satisfactory. This

result was improved by Fan in [10]. Recently, Nielsen [17] considered some of the well-

known compactly supported orthogonal wavelets (Daubechies’ orthogonal wavelets, least

asymmetric wavelets, Coiflets) and showed that the corresponding wavelet packets do not

form Schauder bases for Lp when p is sufficiently large. These negative results are all based

on estimates of Lp-norms of the wavelet packets.

The orthogonal wavelet packets have been extended to a biorthogonal setting. One

inconvenience of orthogonal wavelets is the lack of symmetry except the Haar wavelet. In

order to have symmetry, Cohen, Daubechies and Feauveau [5] constructed biorthogonal

wavelets. In this case, we have two refinable functions ϕ and ϕ̃ associated with refinement

masks a and ã, respectively.

If ϕ and ϕ̃ have biorthogonal shifts, then∑
k∈ZZ

a(k)ã(k + 2j) = 2δj,0.

The biorthogonal wavelets ψ and ψ̃ can be constructed by

ψ(x) =
∑
k∈ZZ

(−1)kã(1 − k)ϕ(2x− k),

and

ψ̃(x) =
∑
k∈ZZ

(−1)ka(1 − k)ϕ̃(2x− k).

Their shifts constitute dual Riesz bases of L2(IR).

The biorthogonal wavelet packets were considered by Chui and Li [2]. However, it was

shown by Cohen and Daubechies [4] that the biorthogonal wavelet packets are globally in-
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stable. The essential step in their approach is to estimate the L2-norms of the biorthogonal

wavelet packets, see [4, Theorem 6.4].

The purpose of this paper is to study the mean size of the wavelet packets in Lp. This

will be stated in Section 2 as a corollary of an asymptotic formula for the Lp-norms on

subdivision trees. Then in Section 3 we apply the estimates for the mean size of wavelet

packets to analyze the stability and Schauder basis property of wavelet packets in Lp.

Section 4 is devoted to a quantitative study of the instability of biorthogonal wavelet

packets in L2.

Our general result will be stated for multivariate vector refinement equations. That

is, in (1.1) ϕ is a vector of functions (ϕ1, · · · , ϕr)T on IRs, the mask a = (a(α))α∈ZZs is a

sequence on ZZs and each a(α) is an r × r matrix. Thus, our analysis applied to wavelet

packets generated by multiple wavelets.

§2. Subdivision Trees and Their Norm Estimates

In this section we study the mean size of Lp-norm of a general infinite tree called

subdivision tree.

Let 1 ≤ p ≤ ∞, s, r,N be positive integers, and ψ = (ψ1, · · · , ψr)T be a vector

of functions in (Lp(IRs))r supported in [0, N ]s. Let M := {aε : ε ∈ E} be a finite

set of sequences of r × r matrices supported on {0, · · · , N}s. The subdivision tree

T (M, ψ) associated with M and ψ is an infinite tree of vectors of functions {ψε1,···,εn :

n ∈ IN ∪ {0}, ε1, · · · , εn ∈ E} and are defined by

ψε1,···,εn(x) =
∑

α∈ZZs

aε1(α)ψε2,···,εn(2x− α), x ∈ IRs. (2.1)

Here ψε1,···,εn = ψ when n = 0.

We want to study the mean size of the Lp-norms of a subdivision tree. Our purpose

is to investigate the limit

Mp(M, ψ) := lim
n→∞

{ ∑
ε1,···,εn∈E

∥ψε1,···,εn
∥p

p

}1/np

. (2.2)

Here for f = (f1, · · · , fr)T ∈ (Lp(IRs))r, we denote ∥f∥p :=
(∑r

j=1 ∥f j∥p
p

)1/p. If this limit

exists, then asymptotically, ∥ψε1,···,εn∥p is almost Mp(M, ψ)(#E)−1/p.
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We shall show that the limit (2.2) always exists and equals the p-norm joint spectral

radius of a finite set of matrices.

Let us review the concept of p-norm joint spectral radius. Let A be a finite collection

of linear operators on a vector space V , which is not necessarily finite dimensional. A

subspace of V is said to be A-invariant if it is invariant under every operator in A. For

v ∈ V , we call the intersection of all A-invariant subspaces of V containing v the minimal

A-invariant subspace generated by v, denoted as V (v). If W is an A-invariant subspace

of V with dimW <∞ and v ∈W , then V (v) is spanned by

{A1 · · ·Ajv : A1, · · · , Aj ∈ A, j = 0, 1, · · · ,dimW − 1}.

Suppose that V (v) is finite dimensional. We choose an arbitrary norm ∥ · ∥ on V (v).

For a linear operator A on V (v),

∥A∥ = max{∥Au∥ : u ∈ V (v), ∥u∥ = 1}.

Define

∥An|V (v)∥p :=

{(∑
A1,···,An∈A ∥A1 · · ·An|V (v)∥p

)1/p
, if 0 < p <∞,

maxA1,···,An∈A ∥A1 · · ·An|V (v)∥, if p = ∞.

Then the p-norm joint spectral radius of A|V (v) is defined to be

ρp(A|V (v)) = lim
n→∞

∥An|V (v)∥1/n
p .

It is easily seen that ρp(A|V (v)) is independent of the choice of the vector norm ∥ · ∥ on

V (v), and

lim
n→∞

∥An|V (v)∥1/n
p = inf

n∈IN
∥An|V (v)∥1/n

p .

The uniform joint spectral radius (p = ∞) was introduced by Rota and Strang [19]

and applied to the investigation of wavelets by Daubechies and Lagarias [9]. The mean

joint spectral radius (p = 1) was studied by Wang [24]. The p-norm joint spectral radius

was introduced by Jia [13] for 1 ≤ p ≤ ∞, while for 0 < p < 1 it appeared in [26].

The p-norm joint spectral radius is hard to compute if one uses the definition, since

the limit in the definition is reached very slowly. An efficient formula provided by Zhou
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[26] is to compute p-norm joint spectral radius in terms of the spectral radius of some finite

matrix when p is an even integer. With this formula we can estimate the p-norm joint

spectral radius for other p by the relation among the p-norm joint spectral radii presented

by Strang and Zhou in [23].

Denote

∥Anv∥p :=

{(∑
A1,···,An∈A ∥A1 · · ·Anv∥p

)1/p
, if 0 < p <∞,

maxA1,···,An∈A ∥A1 · · ·Anv∥, if p = ∞.

Then

ρp(A|V (v)) = lim
n→∞

∥Anv∥1/n
p .

This relation was proved for 1 ≤ p ≤ ∞ by Han and Jia [12]. Moreover, there exists a

positive constant C such that

∥An|V (v)∥p/C ≤ ∥Anv∥p ≤ C∥An|V (v)∥p, n ∈ IN. (2.3)

In our application of joint spectral radius, we consider the space V = (ℓ0(ZZs))r×1,

the space of all finitely supported sequences of r × 1 vectors. The collection A is a set of

linear operators {A(η)
ε : ε ∈ E , η ∈ E}, where E is the set {0, 1}s. For ε ∈ E , η ∈ E, the

linear operator A(η)
ε is defined on (ℓ0(ZZs))r×1 as

A(η)
ε v(α) =

∑
β∈ZZs

aε(η + 2α− β)v(β), α ∈ ZZs, v ∈ (ℓ0(ZZs))r×1. (2.4)

Under these circumstances, for any v ∈ (ℓ0(ZZs))r×1, the minimal A-invariant subspace

V (v) is always finite dimensional.

The p-norm joint spectral radius of these linear operators will be used to estimate the

norms concerning the subdivision sequences appearing in (2.1).

For the set M, we define the subdivision sequence {(aε1,···,εn(α))α∈ZZs : n ∈

IN, ε1, · · · , εn ∈ E} as

aε1,···,εn(α) =
∑

β∈ZZs

aε1(β)aε2,···,εn(α− 2n−1β), , α ∈ ZZs. (2.5)

The subdivision sequence has an equivalent form as follows.
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Lemma 2.1. Let M = {aε : ε ∈ E} be a finite set of finitely supported sequences of r× r

matrices. Define the subdivision sequence by (2.5). Then for n ∈ IN, ε1, · · · , εn ∈ E , we

have

aε1,···,εn(α) =
∑

β∈ZZs

aε1,···,εn−1(β)aεn(α− 2β), α ∈ ZZs. (2.6)

Proof. The case n = 2 is trivial by the definition (2.5).

Suppose (2.6) holds for n. Then by the definition (2.5), for α ∈ ZZs we have

aε1,···,εn,εn+1(α) =
∑

β∈ZZs

aε1(β)aε2,···,εn,εn+1(α− 2nβ).

The induction hypothesis tells us that

aε2,···,εn,εn+1(α− 2nβ) =
∑

γ∈ZZs

aε2,···,εn(γ)aεn+1(α− 2nβ − 2γ).

Therefore, by the definition (2.5) again

aε1,···,εn,εn+1(α) =
∑

β∈ZZs

aε1(β)
∑

γ∈ZZs

aε2,···,εn(γ)aεn+1(α− 2nβ − 2γ)

=
∑

η∈ZZs

{ ∑
β∈ZZs

aε1(β)aε2,···,εn(η − 2n−1β)
}
aεn+1(α− 2η) =

∑
η∈ZZs

aε1,···,εn(η)aεn+1(α− 2η).

This completes the induction procedure and the proof of Lemma 2.1.

An induction procedure shows that the subdivision tree defined by (2.1) can be written

as combinations of scaled shifts of ψ with the subdivision sequence coefficients.

Lemma 2.2. Let T (M, ψ) be a subdivision tree defined by (2.1), and the subdivision

sequence be defined by (2.5). Then for n ∈ IN, ε1, · · · , εn ∈ E , we have

ψε1,···,εn(x) =
∑

α∈ZZs

aε1,···,εn(α)ψ(2nx− α).

By Lemma 2.2, the norm ∥ψε1,···,εn∥p = ∥
∑
aε1,···,εn(α)ψ(2nx − α)∥p can be easily

expressed up to a uniform constant if the shifts {ψj(x−α) : 1 ≤ j ≤ r, α ∈ ZZs} are stable,

that is, there exists a positive constant C such that

∥c∥p/C ≤ ∥
r∑

j=1

∑
α∈ZZs

cj(α)ψj(x− α)∥p ≤ C∥c∥p. (2.7)
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Here for c = (c1, · · · , cr)T ∈ (ℓp(ZZs))r, the linear space of vectors of ℓp(ZZs) sequences, the

norm ∥c∥p is defined by

∥c∥p :=
( r∑

j=1

∥cj∥p
p

)1/p
.

In general, without assuming stability, there always exist d ∈ IN and a vector of

compactly supported functions g = (g1, · · · , gd)T ∈ (Lp(IRs))d such that the shifts of g are

stable and

ψ(x) =
∑

α∈ZZs

b(α)g(x− α), (2.8)

where b :=
(
b(α)

)
α∈ZZs is in (ℓ0(ZZs))r×d. Such a vector g is called a generator of the

shift-invariant space

S(ψ) :=
{ r∑

j=1

∑
α∈ZZs

cj(α)ψj(x− α) : cj(α) ∈ C
}
. (2.9)

In fact, we may even choose generators g with linear independent shifts by taking a basis

of span{ψj |α+[0,1)s : 1 ≤ j ≤ r, α ∈ ZZs}. We denote G(ψ) as the set of all generators of

S(ψ).

A generator g of S(ψ) is called perfect if S(ψ) = S(g). In the univariate case s = 1,

perfect generators with d ≤ r always exist. In the multivariate case s > 1, perfect generator

may not exist. See [28] for detailed discussions.

Suppose that g ∈ G(ψ) and (2.8) holds. Then

∥ψε1,···,εn∥p = ∥
∑

aε1,···,εn(α)ψ(2nx− α)∥p = ∥
∑

aε1,···,εn∗b(α)g(2nx− α)∥p,

where aε1,···,εn∗b ∈ (ℓ0(ZZs))r×d is the convolution given by

aε1,···,εn∗b(α) =
∑

β∈ZZs

aε1,···,εn(β)b(α− β), α ∈ ZZs.

The norm on (ℓ0(ZZs))r×d is defined by

∥c∥p :=
( r∑

j=1

d∑
k=1

∥cjk∥p
p

)1/p
, c(α) = (cjk(α))1≤j≤r,1≤k≤d, α ∈ ZZs.
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It follows from the stability assumption of g that for all n ∈ IN, ε1, · · · , εn,

∥aε1,···,εn∗b∥p/C ≤ ∥
∑

α∈ZZs

aε1,···,εn(α)ψ(x− α)∥p ≤ C∥aε1,···,εn∗b∥p. (2.10)

Thus, we only need to understand the norm for the sequence an∗b. To this end, we need

the following result on the relation between the norms concerning subdivision sequences

and the linear operators defined by (2.4). When the set M contains only one sequence, this

result was proved by Goodman, Micchelli and Ward [11] for r = 1,M = 2I (see also [1]),

by Han and Jia [12] for r = 1 and the general dilation matrix M , by Jia, Riemenschneider

and Zhou [14] for r > 1, s = 1, and by Zhou [28] for r > 1 and s > 1.

Lemma 2.3. Let ε1, · · · , εn ∈ E and α = ηn+2εn−1+· · ·+2n−1ε1+2nγ with η1, · · · , ηn, γ ∈

ZZs. Then for v ∈ (ℓ0(ZZs))r×1,

aε1,···,εn∗v(α) = A(η1)
ε1

· · ·A(ηn)
εn

v(γ).

Proof. The case n = 1 is trivial by the definition (2.4).

Suppose the statement is true for n. Let α = ηn+1 + 2α1. Then by (2.6)

aε1,···,εn+1∗v(α) =
∑

β∈ZZs

∑
γ∈ZZs

aε1,···,εn(γ)aεn+1(ηn+1 + 2α1 − β − 2γ)v(β)

=
∑

γ∈ZZs

aε1,···,εn(α1 − γ)
∑

β∈ZZs

aεn+1(ηn+1 + 2γ − β)v(β) = aε1,···,εn∗
(
A(ηn+1)

εn+1
v
)
(α1).

Set α1 = ηn + · · · + 2n−1η1 + 2nγ. The induction hypothesis tells us that

aε1,···,εn∗(A(ηn+1)
εn+1

v)(α1) = A(η1)
ε1

· · ·A(ηn)
εn

A(ηn+1)
εn+1

v(γ).

Therefore,

aε1,···,εn+1∗v(α) = A(η1)
ε1

· · ·A(ηn)
εn

A(ηn+1)
εn+1

v(γ).

thereby completing the induction procedure.

Lemma 2.3 tells us that

∥aε1,···,εn∗v∥p
p =

∑
η1,···,ηn∈{0,1}s

∥A(η1)
ε1

· · ·A(ηn)
εn

v∥p
p.
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This in connection with (2.10) and Lemma 2.2 implies that for ε1, · · · , εn ∈ E ,

C−12−n/p
{ d∑

j=1

∑
η1,···,ηn∈{0,1}s

∥A(η1)
ε1

· · ·A(ηn)
εn

(bej)∥p
p

}1/p ≤ ∥ψε1,···,εn∥p

≤ C2−n/p
{ d∑

j=1

∑
η1,···,ηn∈{0,1}s

∥A(η1)
ε1

· · ·A(ηn)
εn

(bej)∥p
p

}1/p
.

Here ej denotes the jth column of the d × d identity matrix, and bej is the sequence in

(ℓ0(ZZs))r×1 given by bej(α) = b(α)ej for α ∈ ZZs.

Now we are in a position to state our main result.

Theorem 1. Let M = {aε : ε ∈ E} be a finite set of finitely supported sequences

of r × r matrices. Define {ψε1,···,εn : n ∈ IN, ε1, · · · , εn ∈ E} by (2.1). Suppose that

1 ≤ p ≤ ∞, g ∈ G(ψ) and (2.8) holds. If {A(η)
ε : ε ∈ E , η ∈ {0, 1}s} is defined by (2.4),

then Mp(M, ψ) equals

lim
n→∞

{ ∑
ε1,···,εn∈E

∥ψε1,···,εn∥p
p

}1/np

= max
1≤j≤d

2−1/pρp

({
A(η)

ε |V (bej) : ε ∈ E , η ∈ {0, 1}s
})
.

If the shifts of ψ are stable, i.e., (2.7) holds, then the mean size of the subdivision

tree can also be described in the following (somehow simpler) way.

Theorem 2. Let 1 ≤ p ≤ ∞, N ∈ IN and M = {aε : ε ∈ E} be a finite set of sequences

of r × r matrices supported on [0, N ]. Suppose ψ satisfy (2.7). Define {ψε1,···,εn : n ∈

IN, ε1, · · · , εn ∈ E} by (2.1). Then

Mp(M, ψ) = lim
n→∞

{ ∑
ε1,···,εn∈E

∥ψε1,···,εn∥p
p

}1/np

= 2−1/pρp

({(
aε(η + 2α− β)

)
α,β∈{0,···,N−1}s : ε ∈ E , η ∈ {0, 1}s

})
.

§3. Stability of Wavelet Packets in Lp

Wavelet packets were introduced to improve the frequency localization of wavelets to

be able to do a more refined analysis of signals containing both stationary and transient

components. However, the price one often has to pay for better frequency resolution is
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less stability of the system when one looks in other function spaces than L2. A well

known example of this phenomenon is given by the trigonometric system {e2πikx}k∈ZZ,

where it is known that the dyadic partial sums associated with an expansion of an Lp-

function, 1 < p < ∞, converges unconditionally, whereas the partial sums only converges

conditionally; the system only forms a so-called Schauder basis for Lp[0, 1), 1 < p <∞, but

not an unconditional basis. The idea is exactly the same going form the wavelet expansion

to a wavelet packet expansion since the wavelet expansion can be considered a dyadic type

partial sum of a wavelet packet expansion. However, for certain wavelet packet systems the

situation can be even worse than for the trigonometric system, it was demonstrated in [17]

that there are basic wavelet packet systems that fail to be a Schauder basis for Lp when p

is large. In this section we will extend the results and estimates in [17] to subdivision trees

and give necessary conditions for certain subsystems of the tree to be a Schauder basis for

Lp.

3.1. The growth of branches in subdivision trees

We will use the methods of the previous section to obtain more information on the

asymptotic behavior in Lp(IRs) of specific subsequences (branches) of the subdivision tree.

For example, if we consider the one dimensional construction of orthogonal/biorthogonal

wavelet packets, one branch of the wavelet packet tree we can estimate using the methods

presented below is the the branch consisting of the wavelet packets {w2n−1}∞n=1. The

wavelet packets with index set {2n − 1}∞n=1 play a special role when it comes to frequency

localization of wavelet packets. It was proved by Séré [20] that with respect to a certain

reasonable measure of the frequency localization, the wavelet packet w2n−1 is, in general,

the one on scale n with the worst localization. This can be explained by the fact that

the subsequence w2n−1 is obtained by iterating only the high-pass filter in (1.3), and the

high-pass filter does not generate a convergent subdivision scheme due to the fact that

the symbol of the filter has value zero at the origin. The frequency measure Séré used

was essentially the L1 norm of the Fourier transform of the wavelet packets. However,

such Fourier transforms turn out not to be nonnegative functions for the wavelet packets

associated with finite quadrature filters, so we cannot get any information on the growth
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in the L∞ or Lp norms from such estimates.

The p-norm joint spectral radius can be used to obtain very precise information about

the asymptotic growth of certain subsequence of the subdivision tree. For simplicity we

will assume in this section that the root of the subdivision tree ψ has stable integer shifts

in the Lp-space we are looking at, i.e. that (2.7) is satisfied for this p.

Given a finite set M = {aϵ(α), ϵ ∈ E} of sequences of r × r matrices supported on

[0, N ]s, we consider the following family of linear operators

Cϵ =
{(
aϵ(η − 2α− β)

)
α,β∈{0,...,N−1}s : η ∈ {0, 1}s

}
, (3.1)

and we have the following Corollary to Theorem 2.

Corollary 3.1. Suppose that the shifts of ψ are stable in Lp(IRs), 1 ≤ p ≤ ∞, i.e. that

(2.7) holds and let ϵ ∈ E . Then

M ϵ
p(M, ψ) := lim

n→∞

ϵ1=···=ϵn=ϵ

∥ψϵ1,...,ϵn∥1/n
p = 2−1/pρp

(
Cϵ

)
.

Proof. We put aη(α) = 0, ∀α and η ∈ E\ϵ and use the same proof as in Theorem 2.

Remark 3.1. For a given ϵ ∈ E we use the following notation to denote the branch

considered above:

T ϵ(M, ψ) = {ψϵ1,...,ϵn ∈ T (M, ψ)|ϵ1 = · · · = ϵn = ϵ, n ≥ 0}

Let us consider one example in one dimension that can be consider the model on which

every wavelet packet system is based.

Example 1. A special role is played by the Haar filter given by a0(0) = a0(1) = 1

since it generates the well known Walsh system, see [21]. The matrices given by (2.4) are

A0 = A1 = B0 = [1], B1 = [−1] and it is clear that

ρp(A0, A1, B0, B1) = 41/p.
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The Walsh wavelet packets are thus uniformly bounded functions, which is a well known

property [21] of the Walsh system. We also have ρp(B0, B1) = 21/p, which agrees with the

result from Corollary 1.

A more interesting example is the following.

Example 2. We consider the family of quadrature mirror filters with real valued coeffi-

cients of length 4. The family of low-pass filters can be parameterized by one parameter θ

by considering the equations

3∑
k=0

a0(k) = 2 and
4∑

k=0

a0(2j + k)a0(k) = 2δ0,j , j = 0, 1.

Solving this system of equations gives us

a0(0) = θ, a0(1) =
1
2

+
1
2

√
1 + 4θ − 4θ2, a0(2) = 1 − a0(0), and a0(3) = 1 − a0(1),

for 0 ≤ θ ≤ 1/2 + 1/2
√

2. We are interested in the behavior of the associated high-pass

filter. We are not concerned with the interaction of the high-pass filter with the low-pass

filter so we can shift the filter so the high-pass filter is given by a1(k) = (−1)ka0(k). One

of the two matrices of C1, see (3.1), is

B0 :=

 a1(0) 0 0
a1(2) −a1(1) a1(0)

0 −a1(3) a1(2)


and one can check directly that its spectral radius is given by

ρ(B0) = max
{
θ,

1
2

+
1
2

√
1 + 4θ − 4θ2

}
.

Clearly, M1
∞(M, ψ) = ρ∞(C1) ≥ ρ(B0) so the estimate shows that the only values of θ

that give rise to (potentially) uniformly bounded wavelet packets are θ ∈ {0, 1}. One can

check that in those cases the filter of length 4 degenerates to (a shift of) the Haar filter.

Figure 1 shows a plot of the lower bounds as a function of θ.
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Figure 1. Lower bound for the uniform joint spectral radius M1
∞(M, ψ) = ρ∞(C1) as a

function of θ.

A “popular” filter of this type is the Daubechies low-filter of length 4 which is given

by the choice θ = (1 +
√

3)/4 [8], i.e.

a0(0) =
1 +

√
3

4
, a0(1) =

3 +
√

3
4

, a0(2) =
3 −

√
3

4
, and a0(3) =

1 −
√

3
4

,

with a1(k) = (−1)ka0(k). By the estimates above we get

M1
∞(M, ψDaub) ≥

√
11 +

√
3

4
≈ 1.26.

The associated wavelet packets are therefore not uniformly bounded and they have a

growth given by (asymptotically) ∥w2n−1∥∞ ≥ Crr
n, for any r <

√
11+

√
3

4 . More specific

examples can be found in [17].

3.2. Schauder basis properties of wavelet packets

Let us recall that a Schauder basis for a separable Banach space IB is a collection

{ek}∞k=1 ⊂ IB with the property that every element f ∈ IB has a unique norm convergent

expansion of the form f =
∑∞

k=1 αkek, see e.g. [25]. The ordering of the Schauder basis

elements is crucial for convergence, unless the basis also happens to be unconditional.

Using the estimates in the previous section we will give necessary conditions for certain

collection of functions extracted from a subdivision tree to be a Schauder basis for Lp(IRs),

and give examples of wavelet packet systems that fail to satisfy the conditions.

Given ϵ ∈ E , we let D ⊂ L2(IRs) ∩ L∞(IRs) be a collection of function obtained by

selecting one coordinate (function) from each vector in T ϵ(M, ψ) and we will assume that

13



there is a uniform constant cp > 0 such that whenever fi is the coordinate selected from

f ∈ T ϵ(M, ψ), we have

∥fi∥Lp(IRs) ≥ cp∥f∥p. (3.2)

Then we have the following result

Lemma 3.1. Given ϵ ∈ E , and let D be obtained from T ϵ(M, ψ). Suppose D is a subset

of an orthonormal basis IB of L2(IRs) which has dense span in Lp(IRs), 1 ≤ p < ∞, and

that (3.2) holds. Then a necessary condition for IB to be a Schauder basis of Lp(IRs),

1 ≤ p <∞, is

M ϵ
p(M, E)M ϵ

q (M, E) = 1,

where p−1 + q−1 = 1, or equivalently

ρp

(
Cϵ

)
ρq

(
Cϵ

)
= 2.

Proof. It is a well known result [25] that given a Schauder basis {ek} for Lp(IRs), 1 ≤ p <

∞, the set of coefficient functionals {fk} satisfy supk ∥ek∥Lp(IRs)∥fk∥Lq(IRs) < ∞. Since

D is a subset of an orthonormal basis in L2(IRs) which has dense span in Lp(IRs), we see

that the coefficient functional of wn ∈ D is just the function itself, wn ∈ Lq(IRs). Thus,

the condition becomes

sup
w∈D

∥w∥p∥w∥q <∞, p ∈ [1,∞) and p−1 + q−1 = 1.

Hence, using assumption (3.2),

M ϵ
p(M, E)M ϵ

q (M, E) = lim
n→∞

ϵ1=···=ϵn=ϵ

(
∥ψϵ1,...,ϵn∥p∥ψϵ1,...,ϵn∥q

)1/n ≤ 1.

The bound M ϵ
p(M, E)M ϵ

q (M, E) ≥ 1 follows easily from Hölder’s inequality and the fact

that the elements of D are normalized in L2(IRs).

Remark 3.2. Lemma 3.1 shows that if ρp

(
Cϵ

)
ρq

(
Cϵ

)
= α > 2 for some p ∈ (2,∞) then

the associated wavelet packet system fails to be a Schauder basis for Lp(IRs) regardless of
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the ordering of the elements in the system, i.e. the failure to be a basis is not due to the

fact that we have chosen the wrong ordering of the functions. Also, by the log-convexity

of the p-norm joint spectral radius [23], we have for 1 ≤ p̃ ≤ p, p̃−1 + q̃−1 = 1,

ρp̃

(
Cϵ

)
ρq̃

(
Cϵ

)
≥ 2s(1/p−1/p̃)ρp

(
Cϵ

)
ρq

(
Cϵ

)
.

Thus, ρp̃

(
Cϵ

)
ρq̃

(
Cϵ

)
> 2 for p̃ > [1/p+ s−1(log2 α− 1)]−1.

Remark 3.3. Consider the orthonormal wavelet packets {wn}∞n=0 in one dimension con-

structed using the low-pass filter {h(k)}k and the high-pass filter {g(k)}k. We will assume

that the underlying multiresolution is such that the wavelet packets have dense span in

Lp(IR). For ϵ = 1, Lemma 3.1 shows that a necessary condition for {wn}∞n=0 to be a

Schauder basis for Lp(IR) is that the high pass filter satisfies ρp(C1)ρq(C1) = 2.

Example 3. We consider the one dimensional wavelet packets generated by a quadrature

mirror filter of length four. By Remark 3.3, if it turns out that ρ1(C1)ρ∞(C1) > 2, then

we know that the associated wavelet packets will fail to be a basis for Lp(IR) for p large.

We already have a lower bound on ρ∞(C1). To get a lover bound on ρ1(C1) we form the

symbol m1(ξ) =
∑

k a1(k)eikξ. Notice that {−2π/3, 2π/3} is an invariant cycle under

ξ → 2ξ mod [−π, π), and that |m1(−2π/3)| = |m1(2π/3)| since the filter-coefficients are

real valued. Hence,

ρ1(C1) = lim
n→∞

∥m1(ξ)m1(2ξ) · · ·m1(2n−1ξ)∥1/n
ℓ1 ≥ |m1(2π/3)|,

where ∥f∥ℓ1 denotes the ℓ1-norm of the Fourier coefficients of f . Figure 2 shows a plot

of the ratio to two of the lower bound for ρ1(C1)ρ∞(C1) obtained this way as a function

of the parameter θ introduced in Example 2. We notice that the estimate shows that for

parameter θ ∈ (0.2, 0.9) the associated wavelet packets fail to be a basis for Lp(IR) for p

large. This interval clearly includes the Daubechies filter. Outside the interval the test is

inconclusive, but it is the belief of the authors that such wavelet packets will also fail to

be a basis for at least some values of p ̸= 2.
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Figure 2. Lower bound for the product β = M1(M, ψ)M∞(M, ψ)/2 as a function of θ.

Remark 3.4. The estimates giving the negative result on stability in Lp presented here

only works for large values of p (or equivalently, for values of p near 1). So, for example, we

can only conclude that the Daubechies wavelet packets associated with the filter of length

four will fail to be a Schauder basis for Lp for p large. It is an open problem what happens

with p near 2, we believe that such wavelet packets will fail to be a basis for Lp for p ̸= 2.

In fact, we conjecture the following:

Conjecture. The basic wavelet packets associated with a Daubechies filter of length at

least 4 will fail to be a Schauder basis for Lp when p ̸= 2, and the functions will not be

uniformly bounded in p-mean across scales for any p > 2.

§4. Instability of Biorthogonal Wavelet Packets

In this section we apply our analysis on the mean size of wavelet packets to give a

quantitative estimate for the instability of biorthogonal wavelet packets in L2.

The biortogonal wavelet packets are defined by means of a pair of biorthogonal refin-

able functions ϕ and ϕ̃ associated with masks a and ã, respectively. Here the biorthogo-

nality means

< ϕ, ϕ̃(· − k) >= δ0,k, k ∈ ZZ.

Set E = {0, 1} and M = {a0 = a, a1} with a1 given by a1(k) = (−1)kã(1 − k);
♡M = {ã0, ã1} with ã0 = ã, ã1 given by ã1(k) = (−1)ka(1 − k). Then the biorthogonal
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wavelet packets are defined by

ψε1,···,εn(x) =
∑
k∈ZZ

aε1,···,εn(k)ϕ(2nx− k), ε1, · · · , εn ∈ {0, 1}, n ∈ ZZ+

and

ψ̃ε1,···,εn(x) =
∑
k∈ZZ

ãε1,···,εn(k)ϕ̃(2nx− k), ε1, · · · , εn ∈ {0, 1}, n ∈ ZZ+

Cohen and Daubechies [4] proved that the biorthogonal wavelet packets are instable

even in L2. In particular, if ϕ ̸= ϕ̃ up to an integer shift, then there exist C > 0 and λ > 1

such that ∑
ε1,···,εn∈{0,1}

∥ψε1,···,εn
∥2
2 ≥ C2nλn, n ∈ IN.

Hence the biorthogonal wavelet packets are even not uniformly bounded in L2. By the

analysis in Section, we can find this number λ measuring the instability.

Using the notion of subdivision tree, we know that the wavelet packet {ψε1,···,εn :

ε1, · · · , εn ∈ {0, 1}, n ∈ ZZ+} is the subdivision tree T (M, ϕ). Hence

lim
n→∞

{ ∑
ε1,···,εn∈{0,1}

∥ψε1,···,εn∥2
2

}1/2n

= M2(M, ϕ).

Thus the following estimate follows from Theorem 2.

Corollary 4.1. Let {ψε1,···,εn} be defined as above. Assume that a and a1 are supported

on [0, N ]. Then

lim
n→∞

{ ∑
ε1,···,εn∈{0,1}

∥ψε1,···,εn∥2
2

}1/2n

= 2−1/2ρ2

({[
aε(η + 2j − k)

]N−1

j,k=0
: ε, η ∈ {0, 1}

})
.

The 2-norm joint spectral radius of the above four matrices can be computed by means

of the spectral radius of a linear operator on a finite dimensional space (a finite matrix).

This linear operator is often called transfer operator or transition operator. We denote it

as Fa0,a1 . This is a linear operator on the space Π∗
N of all trigonometric polynomials of

degree N (with basis {eikξ}N
k=−N ) defined by

(
Fa0,a1W

)
(ξ) =

1∑
η=0

1∑
ε=0

|mε(ξ + ηπ)|2W (ξ + ηπ), W ∈ Π∗
N .
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Here mε is the symbol of aε:

mε(ξ) =
N∑

k=0

aε(k)e−ikξ/2.

Then |mε(ξ)|2 ∈ Π∗
N is a trigonometric polynomial of degree N . It follows that the linear

operator Fa0,a1 on Π∗
N has the matrix representation under the basis {eikξ}N

k=−N :

Fa0,a1 =
(
b(2j − k)

)N

j,k=−N

where b is a sequence supported on [−N,N ] given by

b(k) =
1∑

ε=0

N∑
l=0

aε(k + l)aε(l)/2.

By the same procedure as in [14, 11, 22], we can prove the following result concerning

the mean size of wavelet packets by means of the spectral radius of a finite matrix.

Corollary 4.2. Let {ψε1,···,εn} be defined as above. Assume that a and a1 are supported

on [0, N ]. Then

lim
n→∞

{ ∑
ε1,···,εn∈{0,1}

∥ψε1,···,εn∥2
2

}1/2n

=
√
ρ(Fa0,a1).

By the analysis in [4], we know that ρ(Fa0,a1) > 2.
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