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Abstract. We show that asymptotic estimates for the growth in Lp(R)-norm of a certain sub-
sequence of the basic wavelet packets associated with a finite filter can be obtained in terms of
the spectral radius of a subdivision operator associated with the filter. We obtain lower bounds
for this growth for p � 2 using finite dimensional methods. We apply the method to get es-
timates for the wavelet packets associated with the Daubechies, least asymmetric Daubechies,
and Coiflet filters. A consequence of the estimates is that such basis wavelet packets cannot
constitute a Schauder basis for Lp(R) for p � 2. Finally, we show that the same type of results
are true for the associated periodic wavelet packets in Lp[0, 1).
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1. Introduction and Main Results

Let {Vj} be a multiresolution analysis with associated scaling function φ, wavelet ψ, and
associated low-pass filters (m0,m1). The basic wavelet packets {wn}∞n=0 are defined recursively
by w0 = φ, w1 = ψ, and for n ∈ N with binary expansion n =

∑
k εk2

k−1, we let

ŵn(ξ) =
∞∏

j=1

mεj
(ξ/2j).

Such functions were introduced in [2, 1] to improve the frequency localization of wavelets at high
frequency. It was proved in [1] that the collection {wn}n of basic wavelet packets associated
with the Lemarié-Meyer multiresolution analysis are not uniformly bounded in Lp(R)-norm for
p large. The technique used was to show that the family {ŵn}n is not bounded in L1-norm. This
works because the Lemarié-Meyer low-pass filter m0 is a nonnegative functions so each ŵn is just
a modulation of a nonnegative function. It is therefore possible to recover the L∞-norm of wn

from the L1-norm of ŵn. However, this technique fails in general since all finite filters associated
with a multiresolution analysis are not nonnegative functions (see [3]). The growth in L1-norm of
the Fourier transform of basic wavelet packets associated with finite filters was studied in detail
by É. Séré in [6], where he proves that the subsequence of the basic wavelet packets with worst
asymptotic growth is {w2n−1}∞n=0.

In the present paper we introduce a technique to estimate the Lp(R)-norm of the subsequence
{w2n−1}∞n=0 associated with finite filters (m0,m1). The key is to study the subdivision operator
S, associated with the finite high-pass filter m1(ξ) =

∑
k∈Z gke

ikξ, defined by

(1) (Sc)i =
∑
j∈Z

gi−2jcj, i ∈ Z.

for c ∈ `p(Z), 1 ≤ p ≤ ∞. We let σp[S] denote the spectral radius of S on `p(Z). The main
observation of Section 2 is

1



SIZE PROPERTIES OF WAVELET PACKETS GENERATED USING FINITE FILTERS 2

Theorem 1.1. Let {wn}∞n=0 be the wavelet packets generated by the finite filters (m0,m1) asso-
ciated with a multiresolution analysis. Define σ̃p, 1 ≤ p ≤ ∞, by

σ̃p = lim
n→∞

‖w2n−1‖1/n
p .

Then σ̃p exists and σ̃p = 21−1/pσp[S].

In section 3 we derive numerical estimates using Theorem 1.1 for the growth in Lp(R)-norm,
p � 2, for a number of Daubechies, least asymmetric Daubechies, and Coiflet filters. We find
that such families of wavelet packets all have a subsequence with growth in Lp(R)-norm of order
nα, with n denoting the frequency, for p � 2 and for some α > 0 (depending on p). Moreover,
our technique provides a lower bound for the value of α and a surprising consequence of this
is derived in section 4, where we prove that such wavelet packets cannot constitute a Schauder
basis for Lp(R) for p � 2. This is in sharp contrast to the simplest wavelet packet system, the
Walsh system, that do constitute a Schauder basis for Lp(R) for 1 < p <∞.
In section 5 we consider the same but more difficult question about growth in Lp[0, 1)-norm for
the periodized wavelet packets {w̃n}∞n=0 defined by

w̃n(x) =
∑
k∈Z

wn(x− k).

The following theorem will be proved in Section 5.

Theorem 1.2. Let {wn}n be a wavelet packet basis associated with the finite filters (m0,m1).
Choose N such that diam supp(wn) ≤ 2N . Fix L ∈ 2Z+ + 1. If

(m−1
0 (0) ∪m−1

1 (0)) ∩
( N⋃

k=1

2−k(2Z + 1)π
)

= ∅

then there exist finite constants cp, Cp > 0 (depending on L) such that

cp‖w2n−1‖p ≤ ‖ ˜w2n+N−L‖Lp[0,1) ≤ Cp‖w2n−1‖p, for n � 2n+N − L ≥ 1.

This theorem is then applied to the periodized versions of the wavelet packets mentioned above.
The conclusion is that they all have a subsequence with growth in Lp[0, 1)-norm of order nα,
α > 0, for p � 2. Moreover, we prove that such periodic wavelet packets cannot constitute a
Schauder basis for Lp[0, 1) for large p.

2. Lp-norms of Wavelet Packets

In this section we some fundamental results about multiresolution analyses and scaling func-
tions to calculate the Lp(R)-norm of wavelet packets associated with finite filters. We will
assume that {Vj} be a multiresolution analysis with associated scaling function φ satisfying
|φ(x)| ≤ C(1 + |x|)−1−ε for some ε > 0, and associated low-pass filters (m0,m1). In [5] one can
find the following lemma,

Lemma 2.1. There exist finite constants cp, Cp > 0 such that for every finite sequence {ck}k∈Z ⊂
C we have

cp‖{ck}‖`p(Z) ≤
∥∥∥∑

k∈Z

ckφ(x− k)
∥∥∥

p
≤ Cp‖{ck}‖`p(Z),

which gives us a sharp estimate of the Lp(R) norm of a wavelet packet associated with a mul-
tiresolution analysis.
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Lemma 2.2. There exist finite positive constants cp and Cp such that the Lp(R)-norm, 1 ≤ p ≤
∞, of the wavelet packet wn, defined by

ŵn(ξ) =

[
N∏

j=1

mεj
(ξ/2j)

]
φ̂(ξ/2N),

is bounded by

cp2
N2−N/p‖{ck}‖`p(Z) ≤ ‖wn‖p ≤ Cp2

N2−N/p‖{ck}‖`p(Z),

where

mεN
(ξ)mεN−1

(2ξ) · · ·mε1(2
N−1ξ) =

∑
k∈Z

cke
ikξ.

Proof. We have

ŵn(ξ) =

[
N∏

j=1

mεj
(ξ/2j)

]
φ̂(ξ/2N),

so

(2) ŵn(2Nξ) =

[
N−1∏
j=0

mεN−j
(2jξ)

]
φ̂(ξ).

Taking the inverse Fourier Transform of (2) shows that 2−Nwn(2−Nx) is a linear combination of
the functions {φ(x− k)}k and that the expansion coefficients are given by the coefficients of the
Fourier series

mεN
(ξ)mεN−1

(2ξ) · · ·mε1(2
N−1ξ) =

∑
k∈Z

cke
ikξ.

Note that ‖2−Nwn(2−N ·)‖p = 2−N2N/p‖wn‖p for 1 ≤ p ≤ ∞. It now follows from Lemma 2.2 that
there exist constants cp and Cp (independent of n) such that

cp2
N2−N/p‖{ck}‖`p(Z) ≤ ‖wn‖p ≤ Cp2

N2−N/p‖{ck}‖`p(Z).

�

In what follows, we will restrict our attention to subsequences of the form {w2n−1}n. The
main reason is that the binary expansion of 2n − 1 consists of n− 1 1’s and nothing else which
simplifies the estimates given by Lemma 2.2. The key to getting good estimates is to consider the
operator S defined by (1) on `p(Z), 1 ≤ p ≤ ∞. S is called the (stationary) subdivision operator
associated with the filter m1. Note that S is just the bi-infinite matrix (gi−2j)ij considered as a
bounded operator on `p(Z). It is also easy to check that S can be represented (formally) as the
multiplication operator

Sf(ξ) = m1(ξ)f(2ξ),

for f(ξ) =
∑

k∈Z cke
ikξ.

We are interested in calculating the spectral radius σp[S] of S on `p(Z). The multiplicative
representation of S suggests that the product

m1(ξ)m1(2ξ) · · ·m1(2
n−1ξ)

might be useful for that purpose. Indeed, the following result can be found in [4]:
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Theorem 2.1. Let m1 be a finite high-pass filter, and let S be defined by (1). Define the sequence
{gn

k}k by ∑
k∈Z

gn
k e

inξ = m1(ξ)m1(2ξ) · · ·m1(2
n−1ξ).

Then

σp[S] = lim
n→∞

‖{gn
k}k‖1/n

`p(Z).

We now combine Theorem 2.1 and Lemma 2.2 to get the proof of Theorem 1.1.

Proof. (Theorem 1.1.) We have, using the same notation as in Lemma 2.2,

cp2
n2−n/p‖{cnk}‖`p(Z) ≤ ‖w2n−1‖p ≤ Cp2

n2−n/p‖{cnk}‖`p(Z).

The result then follows from Theorem 2.1 by taking the n’th root of the above inequalities and
letting n→∞. �

2.1. Estimates for σp[S]. We want to find the asymptotic behavior of the subsequence {w2n−1}n

in Lp(R). By Theorem 1.1 this reduces to calculating the spectral radius σp[S]. Unfortunately,
there is no general method available to calculate σp[S]. However, the following lemma shows
that we only have worry about σ∞[S] to estimate σp[S] for p large. Note that the lemma is a
Bernstein type inequality.

Lemma 2.3. Let {wn} be a wavelet packet system associated with a multiresolution analysis
{Vj} with scaling function φ. Let n > 0, 2j−1 ≤ n < 2j. Then there is a finite constant Cp,
independent of j, such that for p ∈ [1,∞]

‖wn‖∞ ≤ Cp2
j/p‖wn‖p.

Proof. We have wn ∈ Vj so

wn(x) =
∑
k∈Z

ckφj,k,

for some finite sequence {ck}. Then, using Lemma 2.1,

‖wn‖∞ ≤ C∞2j/2‖{ck}‖`∞(Z)

≤ C∞2j/2‖{ck}‖`p(Z)

= C∞2j/p[2j/2−j/p‖{ck}‖`p(Z)]

≤ Cp2
j/p‖wn‖p.

�

And we have

Corollary 2.1. Let {wn} be a wavelet packet system associated a multiresolution analysis. Then

σ̃p ≥ 2−1/pσ̃∞.



SIZE PROPERTIES OF WAVELET PACKETS GENERATED USING FINITE FILTERS 5

2.2. Lower Bounds for σ∞. We are left with the following problem; how do we obtain a lower
bound for σ∞[S]? It turns out that the calculation of σ∞[S] can be reduced to a finite dimensional
problem. We need the following definition and theorem

Definition 2.1. Let A0 and A1 be two n × n-matrices. The joint spectral radius of A0 and A1

is given by
ρ(A0, A1) = lim sup

r→∞
max

ε∈{0,1}r
‖Aε1Aε2 · · ·Aεr‖1/r,

where ‖ · ‖ is any (matrix) norm on Rn×n.

The following general theorem about subdivision operators is proved in [4].

Theorem 2.2. Let m1(ξ) =
∑N

n=−1 gne
inξ be a high-pass filter associated with a multiresolution

analysis. Form the two matrices

A0 = (g−i+2j)
N−1
i,j=−1, A1 = (g1−i+2j)

N−1
i,j=−1.

Then
σ∞[S] = ρ(A0, A1).

It is, in general, difficult to calculate the joint spectral radius of the matrices A0, A1 introduced
in Theorem 2.2. However, we just want a lower bound for σ∞ so for our purpose it suffices to
notice that ρ(A0, A1) ≥ ρ(A0). Hence, the spectral radius of the matrix A0 gives us a lower
bound on σ∞, i.e., we have reduced the problem to a finite dimensional eigenvalue problem that
can be solved (numerically, at least) for any finite filter.

3. Growth in Lp-norm of Some Familiar Wavelet Packets

We now apply this method to some much used filters. We have calculated lower bounds for
σ̃∞ for some of the standard Daubechies filters, least asymmetric Daubechies filters, and Coiflet
filters (see [3] for definitions). The estimates, which were calculated using Matlab and verified
using the power method, appear in Tables 1, 2, and 3, respectively. The columns related to “σ̃1”
and “p0” will be explained in section 4. It is interesting to note the difference in the estimates
obtained for the Daubechies filter and the least asymmetric Daubechies filter of the same length
since their transfer functions agree in absolute value. It suggests that the phase of the transfer
function does influence the behavior of the associated wavelet packets in Lp(R).

The following result generalizes the results obtained in [1] for the Meyer wavelets.

Corollary 3.1. For each wavelet packet system associated with one of the filters listed in Tables
1, 2, and 3 there is a p0 > 2 such that for p ≥ p0 we have a constant rp > 1 such that
‖w2n−1‖p ≥ Cpr

n
p .
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DaubN Lower bounds for
σ̃1 σ̃∞ σ̃1σ̃∞ p0

2 0.918558
√

11+
√

3
4

1.159376 4.687617
3 0.946828 1.182094 1.119240 6.153068
4 0.964076 1.128085 1.087560 8.257957
5 0.975229 1.178557 1.149363 4.979198
6 0.982686 1.120631 1.101229 7.188270
7 0.987780 1.088578 1.075275 9.550474
8 0.991312 1.120338 1.110605 6.607374
9 0.993788 1.081554 1.074836 9.604556
10 0.995538 1.050467 1.045780 15.48460
11 0.996783 1.077456 1.073990 9.710528
12 0.997673 1.053657 1.051206 13.87991
13 0.998313 1.023405 1.021679 32.31807
14 0.998774 1.047230 1.045946 15.42983
15 0.999107 1.034474 1.033551 21.00407
16 0.999349 1.007608 1.006952 100.0505
17 0.999524 1.027401 1.026913 26.10002
18 0.999652 1.021871 1.021515 32.56199
19 0.999745 1.001009 1.000754 919.3268
20 0.999813 1.015251 1.015061 46.36799

Table 1. Lower bounds for σ̃1, σ̃∞, and p0 for the first 20 Daubechies filters (with
filter length from 4 to 40).

Least asymmetric DaubechiesN Lower bounds for
σ̃1 σ̃∞ σ̃1σ̃∞ p0

4 0.964076 1.192708 1.149862 4.963745
5 0.975229 1.087374 1.060439 11.81179
6 0.982686 1.146192 1.126374 5.825744
7 0.987780 1.133295 1.119446 6.143067
8 0.991312 1.111158 1.101505 7.169679
9 0.993788 1.047619 1.041111 17.20426
10 0.995538 1.084002 1.079118 9.095479

Table 2. Lower bounds for σ̃1, σ̃∞, and p0 for the least asymmetric Daubechies
filters of length 8 to 20.

CoifletN Lower bounds for
σ̃1 σ̃∞ σ̃1σ̃∞ p0

3 0.939727 1.075437 1.010617 65.63136
6 0.967122 1.197928 1.158542 4.710071
9 0.984923 1.151143 1.133787 5.520289
12 0.992775 1.114805 1.106750 6.833865
15 0.996445 1.086199 1.082338 8.760274

Table 3. Lower bounds for σ̃1, σ̃∞, and p0 for the ”Coiflet” filters with filter
length 6 to 30.



SIZE PROPERTIES OF WAVELET PACKETS GENERATED USING FINITE FILTERS 7

We would like to know if the previous theorem is sharp in the sense that there is a p, 2 < p < p0,
such that supn ‖w2n−1‖p <∞. The answer is, in general, negative as the following result shows.

Theorem 3.1. Let m0 be the Daubechies filter of length 4 and let {wn} be the associated wavelet
packets. Then

‖w2n−1‖p
n→∞−−−→∞

for every p > 2.

Proof. If we can prove that ‖w2n−1‖1
n→∞−−−→ 0 then the result will follow by Hölder’s inequality

since ‖w2n−1‖2 = 1. It suffices to show that σ1[S] < 1. Note that if we can find an N such that∑
k |cNk | = α < 1, where

m1(ξ) · · ·m1(2
N−1ξ) =

∑
k∈Z

cNk e
ikξ,

then σ1[S] ≤ α1/N < 1. But one can check that∑
k∈Z

|c7k| =
9517 + 13043

√
3

32768
< 0.98.

�

4. Failure of Some Wavelet Packet Systems to be a Basis for Lp(R)

It is well known that the simplest example of a wavelet packet system, the Walsh system, do
form a Schauder basis for Lp(R), 1 < p < ∞, so one might conjecture that such a result holds
for any reasonable wavelet packet system. However, it turns out that the assertion is not true for
many nice finite filters such as the Daubechies, least asymmetric Daubechies, and Coiflet filters.
They all fail because of the following result:

Lemma 4.1. If {wn(x − k)}k,n is a Schauder basis for Lp(R), 1 < p < ∞, then there exists a
finite constant Cp such that

(3) ‖wn‖p‖wn‖p′ ≤ Cp, n = 0, 1, . . . .

Proof. It is a well known result (see [7]) that a Schauder basis {en} in a Banach space B with
associated coefficient functionals {fn} satisfies

sup
n
‖en‖B‖fn‖B∗ < +∞.

So it suffices to show that wn ∈ Lp′(R) is the coefficient functional of wn ∈ Lp(R). However, this
follows easily using that {wn(x − k)}n,k is an orthonormal system in L2(R) and the fact that
bi-orthogonal sequences for Schauder bases are unique [7]. �

The idea is to find a subsequence of a given wavelet packet system for which (4.1) fails. We
have the following useful result.

Lemma 4.2. If

σ̃1[S]σ̃∞[S] = α > 1,

then the associated wavelet packet system {wn(· − k)}n,k (in any ordering) fails to be a Schauder
basis for Lp(R) for p > p0, where p0 = 1/ log2(α).
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Proof. Since the functions {wn} all have support contained in some fixed finite interval, we have
‖wn‖1 ≤ Cp‖wn‖p. Thus, for p > 2,

‖w2n−1‖p′‖w2n−1‖p ≥ Cp‖w2n−1‖1‖w2n−1‖p

≥ C̃p2
−n/p‖w2n−1‖1‖w2n−1‖∞,

where we have used Lemma 2.3. Note that

2−n/p‖w2n−1‖1‖w2n−1‖∞
n→∞−−−→∞

for p > p0, and from Lemma 4.1 it follows that {wn(x − k)}n,k fails to be a Schauder basis for
such Lp(R). �

Remark: Notice that the negative result of Lemma 4.2 is independent of the ordering of the
system {wn}. Thus, whenever a wavelet packet system fails to be a Schauder basis due to this
result we can be sure that the reason is not that we have chosen the “wrong” ordering of the
system. Lemma 4.2 is coarse in the sense that it does not take into account the interaction
between different wavelet packets, and all we can say in the case where α = 1 is such a wavelet
packet system might be a Schauder basis for Lp(R). One such example is the Walsh system.

We already have estimates of σ∞[S]. The following result takes care of σ1[S],

Lemma 4.3. Let m1(ξ) be a finite high-pass filter with real coefficients associated with a mul-
tiresolution analysis. Then

σ1[S] ≥ |m1(2π/3)|.

Proof. Note that the set {−2π
3
, 2π

3
} is invariant under the transformation ξ → 2ξ (mod 2π). Also,

|m1(
2π
3

)| = |m1(−2π
3

)| since m1 has real coefficients. Thus,

|m1(
2π
3

) · · ·m1(2
n−1 2π

3
)| = |m1(

2π
3

)|n.

Let ∑
k∈Z

cnke
ikξ = m1(ξ)m1(2ξ) · · ·m1(2

n−1 ξ).

Then

|m1(
2π
3

)|n ≤ ‖m1(ξ) · · ·m1(2
n−1ξ)‖L∞[0,2π) ≤

∑
k∈Z

|cnk |,

and the results follows from Lemma 2.1. �

We have the following unfortunate result about the basic wavelet packets associated with one
of the filters listed in Tables 1, 2, and 3.

Corollary 4.1. For each wavelet packet system {wn} associated with one of the filters listed in
Tables 1, 2, and 3 there exists a (finite) p0 > 2 such that for p > p0, the system {wn(· − k)}n,k

(in any ordering) fails to be a Schauder basis of Lp(R).

Lower bounds for p0 can be found in Tables 1, 2, and 3.
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5. Periodic Wavelet Packets

We want to calculate the growth in Lp[0, 1)-norm of the periodic wavelet packets associated
with wavelet packet systems generated using finite filters. The main result is Theorem 1.2 below,
which we will prove using the next lemma.

Lemma 5.1. Let {mk}k∈Z be a 2N -periodic sequence with α = infk |mk| > 0. Then the operator
T , defined on L2[0, 1) by

T
{ ∑

k∈Z

ake
2πikx

}
=

∑
k∈Z

mk ake
2πikx,

extends to an isomorphism on Lp[0, 1), 1 < p <∞.

Proof. Define the operator AN : Lp[0, 1) → Lp[0, 1) by

AN(g)(x) :=
1

2N

2N−1∑
`=0

g

(
x− `

2N

)
,

where g is considered a 1-periodic function. It is clear that AN is bounded on Lp[0, 1). We claim
that T has the representation

Tf(x) =
2N−1∑
k=0

mkAN(fe−2πik·)e2πikx,

for every trigonometric polynomial f =
∑

n∈Z ane
2πinx. To see this we notice that

AN(fe−2πk ·)(x) =
1

2N

2N−1∑
`=0

∑
n∈Z

ane
2πi(n−k)xe−2πi(n−k) `

2N

=
∑
n∈Z

ane
2πi(n−k)x

(
1

2N

2N−1∑
`=0

e−2πi(n−k) `

2N

)
=

∑
n∈k+2N Z

ane
2πi(n−k)x,

from which the claim follows at once. Hence, T is bounded on Lp[0, 1), 1 < p < ∞, and
applying the same argument to the multiplier sequence λk = 1/mk we get that T extends to an
isomorphism on Lp[0, 1). �

We can now prove Theorem 1.2.

Proof. (Theorem 1.2.) We have, using that m1(kπ) = −(k mod 2),

˜w2n+N−L(x) =
∑
k∈Z

ŵ2N+n−L(2πk)e2πikx

=
∑
k∈Z

m1(πk)mε2(
πk
2

) · · ·mεJ
( πk

2N )ŵ2n−1(
πk
2N )e2πikx

= −
∑
`∈Z

mε2

(
(2`+1)π

2

)
· · ·mεJ

(
(2`+1)π

2N

)
ŵ2n−1

(
(2`+1)π

2N

)
e2πi2`xe2πix,
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where ε1, ε2, . . . , εJ are the first J bits of the binary expansion of 2n+N − L. Note that ε1 = 1
since L is odd and ε2, . . . , εJ do not depend on n, only on L. Thus,

‖ ˜w2n+N−L‖Lp[0,1) =
∥∥∥∑

`∈Z

mε2(
(2`+1)π

2
) · · ·mεJ

( (2`+1)π
2N )ŵ2n−1(

(2`+1)π
2N )e2πi2`xe2πix

∥∥∥
Lp[0,1)

=
∥∥∥∑

`∈Z

mε2(
(2`+1)π

2
) · · ·mεJ

( (2`+1)π
2N )ŵ2n−1(

(2`+1)π
2N )e2πi2`x

∥∥∥
Lp[0,1)

=
∥∥∥∑

`∈Z

mε2(
(2`+1)π

2
) · · ·mεJ

( (2`+1)π
2N )ŵ2n−1(

(2`+1)π
2N )e2πi`x

∥∥∥
Lp[0,1)

.

Note that {
mε2(

(2`+1)π
2

) · · ·mεJ
( (2`+1)π

2N )
}

`∈Z

is a 2N -periodic sequence. Moreover, the sequence is non-vanishing (by assumption). Hence, by
Lemma 5.1 for 1 < p <∞,

‖ ˜w2n+N−L‖p
Lp[0,1) '

∥∥∥∑
`∈Z

ŵ2n−1(
(2`+1)π

2N )e2πi`x
∥∥∥p

Lp[0,1)

= 2−N
∥∥∥∑

`∈Z

ŵ2n−1(
2`π
2N + π

2N )e2πi2−N `x
∥∥∥p

Lp[0,2N )
.

However,

2−N
∑
`∈Z

ŵ2n−1(
2`π
2N + π

2N )e2πi2−N `x

is just the Fourier series on [0, 2N) of the function

g(x) =
∑
k∈Z

f(x− 2Nk),

where f(x) = w2n−1(x)e
−i2−Nπx. Also, ‖g‖Lp[0,2N ) = ‖w2n−1‖Lp(R) since diam supp(w2n−1) ≤ 2N .

So we conclude that for 1 < p <∞

‖ ˜w2n+N−L‖Lp[0,1) ' ‖w2n−1‖Lp(R),

for n sufficiently large. �

We now apply Theorem 1.2 to the wavelet packets of Section 3 to get the following result.

Corollary 5.1. Let {wn}n be a wavelet packet system generated using one of the filters listed in
Tables 1, 2, and 3. Fix L ∈ 2Z+ + 1. Then there is a p0 > 2 such that for p ≥ p0 there is a
constant rp > 1 (depending on L) such that

‖w̃2n−L‖Lp[0,1) ≥ Cpr
n
p ,

for n large.

Proof. Follows at once from Corollary 3.1 and Theorem 1.2, since the combined zero-set of the
filters m0 and m1 is πZ, and (2`+ 1)/2j 6∈ Z for j ≥ 1. �

Corollary 5.1 can also be used to extend Corollary 3.1 to a larger index set. The following
result emphasizes that it is the high-pass filter (m1) that causes the growth in Lp-norm of the
wavelet packets.
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Corollary 5.2. Let {wn}n be a wavelet packet system generated using one of the filters listed in
Tables 1, 2, and 3. Fix L ∈ 2Z+ + 1. Then there is a p0 > 2 such that for p ≥ p0 there is a
constant rp > 1 (depending on L) such that

‖w2n−L‖Lp(R) ≥ Cpr
n
p ,

for n large.

Proof. Follows at once from Corollary 5.1, Minkowski’s inequality, and the fact that the wavelet
packets all have support contained in some fixed interval. �

We proved in the previous section that compactly supported wavelet packets may fail to be
Schauder bases for the Lp(R)-spaces. We show in this section that a similar (unfortunate) result
holds true for periodic wavelet packets. The failure is due to the following analog of Lemma 4.1.

Lemma 5.2. If {w̃n}∞n=0 is a Schauder basis for Lp[0, 1), 1 < p < ∞, then there exists a finite
constant Cp such that

(4) ‖w̃n‖Lp[0,1)‖w̃n‖Lp′ [0,1) ≤ Cp, n = 0, 1, . . . .

Proof. Same as for Lemma 4.1. �

We now use Theorem 1.2 and Lemma 5.2 to obtain the following result.

Corollary 5.3. Let {wn}n be a wavelet packet system generated using one of the filters listed
in Tables 1, 2, and 3. Then there is a p0 > 2 such that for p ≥ p0 the periodic wavelet packet
system {w̃n}n (in any ordering) fails to be a Schauder basis for Lp[0, 1).

Proof. Choose p0 such that
sup

n
‖w2n−1‖p′‖w2n−1‖p = ∞,

for each p ≥ p0. Fix p ≥ p0. By Theorem 1.2, there is a constant cp ∈ (0,∞) and an integer N
such that

‖w̃2n+N−1‖Lp′ [0,1)‖w̃2n+N−1‖Lp[0,1) ≥ cp‖w2n−1‖p′‖w2n−1‖p.

Hence,
sup

j
‖w̃2j−1‖Lp′ [0,1)‖w̃2j−1‖Lp[0,1) = ∞.

The result then follows from Lemma 5.2. �
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